
HAL Id: hal-01382899
https://hal.science/hal-01382899

Preprint submitted on 17 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PRINCIPAL QUARTIC EXTENSIONS AND
ELLIPTIC CURVES

Kevin Mugo

To cite this version:
Kevin Mugo. PRINCIPAL QUARTIC EXTENSIONS AND ELLIPTIC CURVES. 2016. �hal-
01382899�

https://hal.science/hal-01382899
https://hal.archives-ouvertes.fr


PRINCIPAL QUARTIC EXTENSIONS AND ELLIPTIC CURVES

KEVIN MUGO

150 N. University St. Department of Mathematics

Purdue University

W. Lafayette, IN 47905

U.S.A

kevin.mugo@gmail.com

Abstract. We associate to an S4 extension, M/K, a Brauer-Severi variety,
whose K-rational points correspond to quartic polynomials of the form u4 +
Au+B with splitting field M . The condition that M/K is generated by such
a polynomial is a necessary and sufficient condition for M ⊆ K(E[4]) for some
elliptic curve E/K. We point out a flaw in the related work of Holden, provide
numerical examples, and describe a family of elliptic curves with the same mod
4 representation.

1. Introduction

1.1. Notation. LetK be a number field, and fix an extensionM/K with Gal(M/K) ∼=
S4. Choose L/K such that K ⊆ L ⊆ M , [L : K] = 4, and the normal closure of L
in K is M and let ∆L/K denote the discriminant of L/K. The quartic extension
L/K, can be realised asK(α), where α is a root of an irreducible quartic polynomial
defined over K, whose splitting field is M .

A principal, quartic polynomial defined over K, is one of the form u4 +A u+B
with A,B ∈ K and AB 6= 0. If L = K(α) where α is a root of a principal quartic
polynomial, we say L/K is a principal, quartic extension.

For a, b ∈ K×, let (a, b) denote the quaternion algebra on two generators i, j
with defining relations

i2 = a, j2 = b, ij = −ji

We identify (a, b) with its equivalence class in Br2(K), the 2-part of the Brauer
group of K (See [6, Ch.3] for the definition of the Brauer group).

1.2. Overview. In section 2, we give a criterion for determining when M/K is
generated by a principal quartic. In section 3, we apply this criterion to the problem
of deciding when an S4 extension is contained in the 4-torsion point field of an
elliptic curve.
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2. A Brauer-Severi Variety

We show that each principal, quartic, extension L/K, with normal closureM/K,
corresponds to a K-rational point on a variety.

Proposition 2.1. The following are equivalent:

(1) M is a splitting field of a principal quartic, p(u) := u4 +Au +B ∈ K[u].
(2) M is a splitting field of q(x) := x4 − s1x

3 + s2x
2 − s3x + s4 ∈ K[x], with

roots {x1, x2, x3, x4} and the following variety has a K-rational point.

Γq(x) =
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Proof. (1) =⇒ (2)
Let M be the splitting field of r(u) = u4 +Au+B with roots {u1, u2, u3, u4}, then
(0 : 1 : 0 : 0) ∈ Γp(u)(K).

(2) =⇒ (1)
Let (a : b : c : d) ∈ Γq(x)(K) and set ui = a + bxi + cx2

i + dx3
i . Consider p(u) =

∏4
i=1(u − ui). The coefficients of p(u) can be expressed solely in terms of the K-

rational coefficients: a, b, c, d, s1, s2, s3, s4. Moreover, the respective coefficients of
the cubic and quadratic terms are:

∑4
i=1 ui and

(
∑4

i=1 ui)
2 −∑4

i=1 u
2
i

2

both of which are zero by assumption. It follows that r(u) is of the form u4+Au+
B ∈ K[u].

It remains to show thatM is the splitting field of p(u). For each i,K(ui) ⊆ K(xi)
and in fact, we will show an equality of fields K(xi) = K(ui). Observe that

S3
∼= Gal(M/K(xi)) ⊆ Gal(M/K(ui)) ⊆ Gal(M/K) ∼= S4

so that [K(xi) : K(ui)] = 1, 2 or 4.
If [K(xi) : K(ui)] = 4 then ui ∈ K. Hence b = c = d = 0 and ui = a. Since

∑4
i=1 ui = 0 then a = 0 as well but (a : b : c : d) = (0 : 0 : 0 : 0) is not a projective

point.
If [K(xi) : K(ui)] = 2 then Gal(M/K(ui)) is a subgroup of S4, of index 2,

containing a subgroup isomorphic to S3, but this is impossible. We conclude that
K(xi) = K(ui) and that M is a splitting field of p(u). �

Example 2.1. (1) Let L = Q(α) where α is a root of q(x) = x4 − x3 + 2x2 +
x− 1, and M is the splitting field of q(x).
(0 : 2 : −2 : 1) ∈ Γq(x)(Q) corresponds to the quartic p(u) := u4 +60u+52
which generates M/Q and therefore L = Q(β), for some root β of p(u).
The extension L/Q is therefore principal over Q.
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(2) Let M/Q be the splitting field of q(x) = x4 − x3 + 2x2 − 1.
Γq(x)(Q) = ∅ and therefore any quartic extension L ⊆ M , will not be
principal.

With the exception of certain degenerate cases, the variety Γq(x), is birationally
equivalent to a conic, and is therefore a Brauer-Severi variety.

Corollary 2.1. Let M be the splitting field of q(x) = x4− s1x
3+ s2x

2− s3x+ s4 ∈
K[x], with roots {x1, x2, x3, x4} and define

A(q) = 3s21 − 8s2
B(q) = −6s3s

3
1 + 2s22s

2
1 − 12s4s

2
1 + 28s2s3s1 − 8s32 − 36s23 + 32s2s4.

(1) If A(q) ·B(q) = 0, Γq(x) has a K-rational point.

(2) If A(q) ·B(q) 6= 0,

Γq(x) ≃
{

(X : Y : Z) ∈ P2

∣

∣

∣

∣

A(q)X2 +B(q)Y 2 + C(q)Z2 = 0

}

Proof. Let σn =
∑4

j=1 x
n
j denote the n-th power sum.

(1) If A(q) = 0,

(σ1 : −σ0 : 0 : 0) ∈ Γq(x)(K).

If B(q) = 0 and A(q) 6= 0,
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∈ Γq(K).

(2) Make the following definitions:
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we have the following identities:

(2.1)
4

∑

i=1

(

a+ b xi + c x2
i + d x3

i

)

=
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= σ0 W
2 +A(q)X2 +B(q)Y 2 + C(q)Z2

Setting both (2.1) and (2.2) equal to zero yields,

Γq(x) ≃
{

(X : Y : Z) ∈ P2

∣

∣

∣

∣

A(q)X2 +B(q)Y 2 + C(q)Z2 = 0

}

�

Remark 2.1. By definition A(q) · B(q) · C(q) equals the discriminant of q(x), and
therefore

A(q) ·B(q) · C(q) ≡ ∆L/K mod (K×)2

Proposition 2.2. Let M/K be an S4 extension, the normal closure of a quartic

extension L/K. Choose q(x) = x4 − s1x
3 + s2x

2 − s3x + s4 ∈ K[x] to be any

polynomial that generates M/K and form the coefficients:

A(q) = 3s21 − 8s2
B(q) = −6s3s

3
1 + 2s22s

2
1 − 12s4s

2
1 + 28s2s3s1 − 8s32 − 36s23 + 32s2s4

If A(q) · B(q) 6= 0, then M/K is a principal extension if and only if the class of

(−∆L/KB(q),−A(q)B(q)) is trivial in Br2(K).

Proof. If A(q).B(q) 6= 0 then by Corollary 2.1

Γq(x) ≃
{

(X : Y : Z) ∈ P2

∣

∣

∣

∣

A(q)X2 +B(q)Y 2 + C(q)Z2 = 0

}

M/K is principal iff the quadratic form Q := A(q)X2+B(q)Y 2+C(q)Z2 represents
0.

By definition, the Hasse invariant of Q, ω(Q), is the class of

(A(q), B(q)) ⊗ (A(q), C(q)) ⊗ (B(q), C(q))

in Br2(K).
For ease of notation, let A,B,C denote A(q), B(q), C(q) respectively. Recall by
Remark 2.1, ABC = disc(q(x)) ≡ ∆L/K mod (K×)2. Using the linearity condition

(a, b)⊗ (a, c) = (a, bc).
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and the identities
(a,−a) = (a, 1) = (a, 1− a) = 1

in Br2(K), we obtain:

ω(Q) = (A,B)⊗ (A,C)⊗ (B,C)
= (A,−AB)⊗ (AB,C)
= (−∆L/K ,−AB)⊗ (A,−AB)⊗ (AB,C) ⊗ (AB,−AB)⊗ (−∆L/K ,−AB)
= (−∆L/KA,−AB)⊗ (AB,−ABC) ⊗ (−∆L/K ,−AB)
= (−BC,−AB)⊗ (AB,−∆L/K)⊗ (−∆L/K ,−AB)
= (−BC,−AB)⊗ (−1,−∆L/K)
= (−BC,−AB)⊗ (AB,−AB)⊗ (−1,−∆L/K)
= (−∆L/KB,−AB)⊗ (−1,−∆L/K)

The quadratic ternary form, Q, has a non-trivial zero when ω(Q) = (−1,−ABC)
(See [5, p. 121]). Hence Q has a non-trivial zero if and only if

(−∆L/KB(q),−A(q)B(q)) = 1.

�

Remark 2.2. It is easily verified that ω(Q) is independent of the choice of q(x), but
rather depends solely on L/K. That is, if L = K(α) = K(β), and α, β are roots of
q(x), q′(x), respectively, with associated quadratic forms Q,Q′, then ω(Q) = ω(Q′).
Notationally we write ω in place of ω(Q).

In the proof of Proposition 2.2 we have established:

Corollary 2.2. Let L/K be a quartic extension. L/K is a principal quartic ex-

tension if and only if ω ⊗ (−1,−∆L/K) = 1.

3. Application to Elliptic Curves

The connection between elliptic curves and principal quartic extensions, stems
from the following result that we establish in [7, Corollary 4] (Cf. [1, Equation
6.6]).

Theorem 3.1. Let E/K be an elliptic curve with invariant j0 6= 0, 1728. The

unique S4 field extension M ⊆ K(E[4]) is the splitting field of the quartic polynomial

p(u) := u4 +
32

j0
u+

4

j0
.

Therefore if M ⊆ K(E[4]), M/K is generated by a principal quartic. The
converse also holds:

Corollary 3.1. M ⊆ K(E[4]) if and only if M/K is the splitting field of a principal

quartic polynomial p(u) ∈ K[u].

Proof. For the sufficiency, let M/K, be the splitting field of u4 + Au + B with
roots u1, u2, u3, u4. Note that AB 6= 0, since M/K is an S4 extension. M/K is the
splitting field of

p(u) =
4
∏

i=1

(

u− Aui

8B

)

= u4 +
32

j0
u+

4

j0
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where j0 = 214B3

A4 . Furthermore j0 6= 1728, since the discriminant of p(u) is non-
zero. The elliptic curve

E : y2 = x3 +
3j0

1728− j0
x+

2j0
1728− j0

has invariant j0 and therefore M ⊆ K(E[4]). �

In Corollary 2.2, we saw that L/K is principal if ω ⊗ (−1,−∆L/K) is trivial. If
L ⊆ M ⊆ K(E[4]), we have the following stronger result:

Theorem 3.2. Let M ⊆ K(E[4]). If Gal(K(E[4])/K) ∼= GL2(Z/4Z) then ω =
(−1,−∆L/K) = 1.

Proof. We have the following lattice of fixed subfields of K(E[4]) and their corre-
sponding Galois groups (See [1, 5.5] for the definition of the groups H and R4).

K(E[4])

pp
pp
pp
pp
pp
p

QQ
QQ

QQ
QQ

QQ
QQ

Q

K(x(E[4]) K( 4

√

∆L/K ,
√
−1)

M

NN
NN

NN
NN

NN
NN

N K(
√

∆L/K ,
√
−1)

mm
mm
mm
mm
mm
mm

K(
√

∆L/K)

K

1

rr
rr
rr
rr
rr
r

LL
LL

LL
LL

LL
LL

±1 H

V4

KK
KK

KK
KK

KK
±H

rr
rr
rr
rr
rr

HR4

GL2(Z/4Z)

The Brauer classes ω and (−1,−∆L/K) can be interpreted as obstructions to
the following embedding problems.

• The obstruction to the embedding problem:

1 −→ µ2 −→ D4 −→ Gal(K(
√

∆L/K ,
√
−1) ∼= V4 −→ 1

is (−1,−∆L/K). (See ([3, Prop. 3.10]).

The field extension K( 4

√

∆L/K ,
√
−1)/K with Galois group D4, is a solu-

tion to this embedding problem and thus (−1,−∆L/K) = 1.
• The obstruction to the embedding problem:

1 −→ µ2 −→ 2 · A4 −→ Gal(M/K(
√

∆L/K)) ∼= A4 −→ 1

is ω. (See ([2]). Here 2 ·A4 denotes the double cover of A4.
The field extensionK(x(E[4])/K(

√

∆L/K) with Galois group SL2(Z/3Z) ∼=
2 · A4 is a solution to this embedding problem and thus ω = 1.
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�

3.1. Elliptic Curves Arising from Mod 4 Representations. In [4], Holden
states a criterion for determining when M ⊆ K(E[4]) for some elliptic curve E/K.
Unfortunately, the main result is incorrect as stated. In particular Theorem 6,
where it is stated that two quartics generate the same extension M/K if and only
if both quartics have the same invariant I and the same invariant J , is false. Indeed
two distinct quartics may generate the same S4 extension, M/K, despite having
different invariants I and J .

For instance, Holden asserts that the splitting field M/Q for q(x) := x4 − x3 +
x2 + x − 1 is not contained in the field Q(E[4]) for any E/Q. However, this is
definitely incorrect. Using the substitution

x → u := −2 + 3x− x2 + 2x3,

we find the principal quartic u4 +103u− 109 generates M . By Corollary 3.1, M is
contained in Q(E[4]) for the elliptic curve E : y2 = x3 − 432948x− 349609151.

In Table 3.1, we list 12 S4 extensions, M/Q, which Holden in [4], claims do not
come from elliptic curves. We find that 7 of the 12 examples do come from elliptic
curves. The first and second columns, list the discriminant of the polynomial,
and the generating polynomial of the M/Q extension. The third column gives a
principal quartic generating the same S4 extension. The fourth column gives the
minimal model of the corresponding elliptic curve E/Q, where [a, b] are coefficients
of the Weierstrass equation y2 = x3 + ax+ b.

Table 1. Examples of Principal and Non-Principal S4 Extensions

∆L/Q q(x) p(u) E/Q
257 x4 + x2 − x+ 1 None
-331 x4 − x3 + x2 + x− 1 u4 + 103u− 109 [-432948, -349609151]
-491 x4 − x3 − x2 + 3x− 1 u4 + 29u− 47 [-276924, -73529705]
592 x4 + 2x2 − 2x+ 1 u4 − 4u+ 4 [-444, -2738]
697 x4 − x3 + 2x2 − x+ 2 None
-731 x4 − x3 + 2x2 − 1 None
761 x4 − x3 + x2 + 2x+ 1 None
788 x4 − x3 + 2x2 − 2x+ 2 u4 − 5344u+ 88064 [-3252864, -2111131982]
-848 x4 − x2 − 2x+ 1 u4 − 16u+ 19 [3021, 5618]
892 x4 − x3 − x2 + 2 u4 − 8u+ 79 [-52851, -4674526]
-976 x4 − 2x3 + 3x2 − 1 u4 + 864u− 1053 [-2379, -320006]
985 x4 − x3 + 2x2 − 3x+ 2 None

It is natural to ask what proportion of S4 extensions, are contained in the 4-
torsion point field of an elliptic curve. Determining the asymptotic density of these
octahedral field extensions is still an open question, but using an extensive database
of quartic polynomials found at the website

ftp://megrez.math.u-bordeaux.fr/pub/numberfields/
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we plotted the function

π(T ) =

#

{

M/K

∣

∣

∣

∣

Gal(M/K) ≃ S4, L/K is principal,
∣

∣∆L/K

∣

∣ 6 T

}

#

{

M/K

∣

∣

∣

∣

Gal(M/K) ≃ S4,
∣

∣∆L/K

∣

∣ 6 T

}

for 0 < T 6 107 and for K = Q and obtained Figure 1.

Figure 1. Plot of π(T )

3.2. A Family of Elliptic Curves With the Same Mod 4 Representation.

Let E/K be an elliptic curve. We would like to describe a family of elliptic curves

{Ei/K | K(E[4]) = K(Ei[4])}.

One sees from Figure 3, that K(E[4]) = M K( 4

√

∆L/K ,
√
−1), so that K(E[4])/K

is completely determined by M/K. If M ⊆ K(Ei[4]) then K(Ei[4]) = K(E[4]).

Fix an elliptic curve E0 : y2 = x3 +
3j0

1728− j0
x +

2j0
1728− j0

defined over K,

with Gal(K(E0[4])/K) ∼= GL2(Z/4Z) and let M/K be the unique S4 extension
contained in K(E0[4]). The invariant of E0 is j0 and therefore by Theorem 3.1, the

principal quartic p(u) := u4 +
32

j0
u+

4

j0
generates M/K.

A K-rational point, Q, on Γp(u) corresponds to a principal quartic

pQ(u) := u4 +A(Q)u +B(Q) ∈ K[u].
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Set j(Q) =
214B(Q)3

A(Q)4
and let

EQ : y2 = x3 +
3j(Q)

1728− j(Q)
x+

2j(Q)

1728− j(Q)

The elliptic curve, EQ, is well defined, since the discriminant of pQ(u) 6= 0 implies

that j(Q) 6= 1728. The splitting field of u4+
32

j(Q)
u+

4

j(Q
is contained in K(EQ[4]).

But as in the proof of Corollary 3.1, this splitting field is the same as that of pQ(u)
and therefore equals M .

This establishes the following theorem:

Theorem 3.3. Let E0 : y2 = x3+
3j0

1728− j0
x+

2j0
1728− j0

be an elliptic curve with

j0 ∈ K and with Gal(K(E0[4])/K) ∼= GL2(Z/4Z). Let p(u) = u4 +
32

j0
u+

4

j0
have

roots {u1, u2, u3, u4} and set

Γp(u) =
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Define the K-rational function

j : Γp(u)(K) −→ P1

Q = (a : b : c : d) 7→ j(Q) =

−124

[

4
∑

i=1

(

a+ b ui + c u2
i + d u3

i

)4

]3

[

4
∑

i=1

(

a+ b ui + c u2
i + d u3

i

)3

]4

Then the elliptic curve

EQ : y2 = x3 +
3j(Q)

1728− j(Q)
x+

2j(Q)

1728− j(Q)

is well defined and EQ[4] ∼= E0[4] as Gal(K/K) modules.
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