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CANONICAL POLYADIC DECOMPOSITION OF HYPERSPECTRAL PATCH TENSORS
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ABSTRACT

Spectral unmixing (SU) is one of the most important and stud-
ied topics in hyperspectral image analysis. By means of spec-
tral unmixing it is possible to decompose a hyperspectral im-
age in its spectral components, the so-called endmembers,
and their respective fractional spatial distributions, so-called
abundance maps. The Canonical Polyadic (CP) tensor de-
composition has proved to be a powerful tool to decompose a
tensor data onto a few rank-one terms in a multilinear fashion.
Here, we establish the connection between the CP decompo-
sition and the SU problem when the tensor data is built by
stacking small patches of the hyperspectral image. It turns out
that the CP decomposition of this hyperspectral patch-tensor
is equivalent to solving a blind regularized Extended Linear
Mixing Model (ELMM).

Index Terms— Spectral unmixing, extended linear mix-
ing model, Canonical Polyadic, nonnegative tensor decompo-
sition, patch tensor.

1. INTRODUCTION

Imaging spectroscopy [1] (a.k.a. hyperspectral imaging) is
concerned with the measurement, analysis, and interpretation
of spectra acquired from a given scene or object [2]. Given
a nonnegative hyperspectral image, X € Rf %L where N
denotes the number of pixels and L the number of spectral
bands, spectral unmixing (SU) aims at estimating the spec-
tral signatures of the materials present in the image and their
spatial distributions, known respectively as endmembers and
fractional abundances. This analysis ultimately permits a
sub-pixel resolution. Usually, a linear mixing model (LMM)
is considered:

X =®S" +E, ()

where S € RiXR denotes the matrix of endmembers, each
of the R columns representing the spectral signature of a
given macroscopic material, ® ¢ ]Rf *R denotes the ma-
trix of fractional abundances corresponding to each of the R
endmembers; and E € RV*L denotes additive noise. The
endmembers are usually extracted from the data using one of
the many endmember extraction algorithms available in the

This work has received funding from the European Research Council un-
der the European Community’s Seventh Framework Programme FP7/2007-
2013 Grant Agreement no. 320594, “DECODA”.

literature [3]. Then, the abundances are estimated by solving
an inverse problem. For instance, the full constrained least
squares unmixing (FCLSU) is defined as:

argmin | X — &S ||2,
w.r.t. @ 2)
st.® > 0,P1p =1y,

with 15 is an unitary vector of size K.

Sometimes, the LMM is insufficient, especially when the
macroscopic materials features spectral variabilities due to
illumination inhomogeneities, topography and other effects.
Recently, the extended LMM (ELMM) [4] was proposed to
address the spectral variability issue:

X=9f (S +E, (3)

The function f (-) is a mapping f : RE*H — REXE that
accounts for the spectral variability of the endmembers. The k
index of the spectral variability function accounts for different
flavours of the ELMM. For instance, the spectral variability
function could vary across the pixels.

We propose to use tensor analysis [5] (a.k.a. multiway or
multiarray analysis) to decompose the hyperspectral image in
a few rank-one terms, by means of the Canonical Polyadic
(CP) model [6], sometimes coined Candecomp/Parafac [7].
Recently, we have given evidence that the CP decomposi-
tion of hyperspectral time series and multiangle acquisitions
could be understood as the multilinear spectral unmixing of
the data [8]. However, it is not possible to apply this analysis
directly to a single hyperspectral image. Some authors have
proposed to consider the hyperspectral data cube as a tensor
representation of the data, where the two spatial dimensions,
i.e., rows and columns of the image, define two different ways
of the tensor [9, 10]. However, this representation is of lit-
tle use for the CP decomposition since the resulting tensor
is not low rank. Thus, we propose to build what we have
termed a patch-tensor representation of a hyperspectral image
by stacking small patches of the image. The resulting tensor,
X € RY*E*B ‘has a third way containing the B neighbour-
ing pixels of each of the N pixels of the image. In Sec. 2, we
provide a detailed explanation of the proposed patch-tensor
representation.

The nonnegative CP decomposition allows to decompose
the patch-tensor, X, into a multilinear combination of R non-



negative factor matrices A, B and C, of size N x R, L x R
and B x R, respectively, and :

R
Xijr = ZAirBjrC'kr, (€]

r=1

where the scaling of factors has been pulled in C'. The rank of
tensor X is defined as the minimal number R of terms nec-
essary for the equality above to hold exactly [5]. A shorter
expression can be employed to denote decomposition (4) us-
ing a diagonal tensor of ones, denoted Z, of size R X R X R,
ie. X = (A® B ® C)Z, where ® is the tensor product.

In practice, the data tensor is subject to modeling errors
or measurement noise, and it is convenient to find its best
rank-R approximation by minimizing the following objective
function

T(A,B,C)=|X-(A® Be C)I|, ®)

for some well chosen norm, instead of attempting to compute
the exact CP decomposition of X with, unavoidably, a large
rank. It is now known that tensors of order 3 or larger do not
always admit a best rank- R approximate when R > 1, espe-
cially in R or C. But fortunately, it has been shown in [11]
that this obstacle does no longer hold for nonnegative ten-
sors, and that the problem is well-posed in R™: best lower
rank nonnegative approximates always exist and are generi-
cally unique under mild conditions on R [12].

We show in Sec. 3, that the nonnegative CP decomposi-
tion of a hyperspectral patch-tensor is equivalent to solving
a blind regularized version of the ELMM model (3), where
rank-one factor estimates correspond to spatial abundances,
endmembers and local spectral variabilities. The CP decom-
position is a blind technique in the sense that no a priori infor-
mation is needed, i.e., the spectral signatures of the materials
in the image are assumed unknown. We further discuss on
some preliminary experimental results using synthetic data in
Sec. 4, and we finally give some conclusions in Sec. 5.

2. PATCH-TENSOR REPRESENTATION

Let us denote by ; € R%, the i-th pixel, 1 < i < N,
of a hyperspectral image. For each pixel x;, a patch is
defined by the matrix P; = [x;,,%i,,...,&i,], of B pix-
els x;, in the neighbourhood of x;, including ©; = x;,.
A neighbourhood of x; can be the set of pixels adjacent
to x; using a sliding window (see Fig. 1). Each matrix
P, € RiXB is stacked to define a slice of the patch-tensor,
X e RY*I*B. The above formulation of the patch-

tensor is equivalent to stacking B images X k) ¢ Rf <L
1 < k < B, obtained by shifting the original hyperspec-
tral image along the neighbourhood, i.e. a shifted image
is defined by x® = [:c(1+dk)7 ... ,:c(N+dk)]T, where dj,
denotes a spatial displacement from the center of the patch
to the position of the k-th element in the patch. This yields

zero-padding along the border of the hyperspectral image.
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Fig. 1. Example of a 5 x 5 patch using a sliding window cen-
tred in x;, and the corresponsing matrix patch, P;.

3. NONNEGATIVE CP DECOMPOSITION OF THE
PATCH-TENSOR

3.1. Compressed nonnegative CP decomposition

Given the patch-tensor, X € RY*%* its approximation by
a nonnegative CP decomposition (4) is formulated as:

argmin [|[X — (A® B® C)I||%
wrt. A, B,C (6)
st.A=0,B=0,C =0,

where || - || denotes the Frobenius norm. This problem is
highly non-convex, yet many algorithms provide rather pre-
cise but costly computation.

An approach to handle large tensor decomposition is
through the use of compression. The general idea is that the
original patch-tensor X can be equivalently represented by
a compressed version of it, X ., with reduced dimensions
N, x D, x T,. The compressed tensor is then decomposed
by solving

argminT = HXC* (Ac®Bc®Cc)I”2F @)
wrt. A., B, C.,

where A., B., C. are compressed versions of the original
factor matrices. Note that, after the compressed factors are
obtained, a decompression operation is carried out to recover
the factors in the original dimensions.

Authors in [13] provide two algorithms, a compressed
conjugate gradient (CCG) and a Projected and Compressed
Alternate Least Squares (ProCo-ALS) to solve (7) when the
compression is done using an approximate High Order Sin-
gular Value Decomposition (HOSVD):

Ne,De,Te
Xigm > UdVimWin [Xelj s ®)

lmn

or using the same notation as in the CP model
X~UoVoW)AX,, )

where U, V and W are matrices with orthogonal unit-norm
columns. These algorithms solve the optimization problem



defined in (7) enforcing the nonnegativity of the factors in the
unconstrained domain:

A~UA. >0, B=VB.>0, C=WC,_.>0.
(10)

Here, we make use of a modified version of ProCo-ALS to in-

clude the abundances sum-to-one physical constraint usually

employed in spectral unmixing:

Al =1y, an
as in (2). The modified ProCo-ALS algorithm works by pro-
jecting onto the unitary simplex instead of projecting onto the
nonnegative orthant.

3.2. Regularized extended linear mixing model (rELMM)
equivalence

Here, we show that the CP decomposition (6) of the patch-
tensor, X, is equivalent to a regularized version of an ELMM
formulation (3). Given the tensor slice, X, . , = X (k), where
the colon symbol denotes all the elements of the correspond-
ing way, its CP decomposition is given by:

R
X:,:,k ~ ZA:,TB;TTCk,r = AAk‘BTa

r=1

12)

Ay being a R x R diagonal matrix with entries diag (Ay) =
C'i... If we consider that factor matrices A and B are re-
spectively estimates of the abundance matrix ® and the set of
endmembers S, then the CP model in (12) is equivalent to:
*) ~ A S
XYW~ ®ALS . 13)
Thus, the nonnegative CP decomposition of the patch-
tensor X can be reformulated as a blind joint solution to the
following B ELMM models:
XM x~® f1(S), k=1,...,B, (14)
where the spectral variability function varies for each of the
B slices:

£ (S)=SAs, k=1,...,B. (15)

That is, the CP decomposition provides a blind solution to the
following optimization problem:

argmin [ X — @ 7 (S) |2+ ...+ | X — & [5(S) |3
wrt. ®, 5 Aq,...,Ap
st. P >0, Plp=15,5>0,A1 >0,...,A5 = 0.

(16)
The model in (16) corresponds to a regularized ELMM model
with the spectral variability given by a diagonal matrix of
scaling factors. The regularization imposes that, for each
pixel in the image, the pixels in its neighbourhood should
have the same materials and in the same proportions, up to
a modulation of their spectra given by different local scaling

factors. This suggests setting B to a small value, since the
regularization should be valid only for small neighbourhoods.
In practice, these constraints impose smoothness on the spa-
tial factors. Therefore, the scaling factors defined by the fac-
tor matrix C' could be understood as local patterns of spectral
variabilities affecting each material in the image.

4. EXPERIMENTAL VALIDATION
4.1. Synthetic images

We chose two sets, of three reference endmembers each, cor-
responding to signatures of minerals from the United States
Geological Survey (USGS) spectral library, comprising 224
spectral bands in the visible and near-IR. The first dataset, S7,
presents no correlated endmembers, while the second dataset,
S, has two endmembers that are highly correlated. For each
dataset, we simulated 10 synthetic hyperspectral images as
follows. We generated 200 x 200 abundance maps using
Gaussian Fields complying with the abundances sum-to-one
constraint. Note that these abundance maps comprise only
one pure pixel for each material, and around 5% of the pixels
have an abundance coefficient superior to 0.9 for any material.
We also generated spectral variability maps for each endmem-
ber using mixtures of Gaussians. Then, the pixel-dependent
endmember instances were generated by multiplying the ref-
erences by the corresponding spectral variability scaling fac-
tors (the achievable values are chosen so that no reflectance
value becomes higher than 1, and so that the scaling factors
range from 0.75 to 1.25). Then for each pixel, the mixture
was performed using the linear mixing model (1), and finally
we added a 30dB white Gaussian noise to the image. The
patch-tensor is built using a 5 x 5 sliding window, that is,
B = 25.

4.2. Methodology and results

For each dataset and synthetic image, we run 20 Monte Carlo
runs of the ProCo-ALS algorithm on the patch tensor, ensur-
ing random initial factors hold the nonnegativity and, for the
spatial factor, the abundances sum-to-one constraint. For the
sake of comparison, we also run 20 Monte Carlo runs of the
Vertex Component Analysis [14] endmember extraction algo-
rithm to estimate the spectral signatures from the original im-
age, keeping the ones with highest volume. Then, we solved
the FCLSU (2) to estimate the abundances. We compared
the results to the actual endmembers and abundances, using
the angular distance and the average root mean squared error,
respectively. In Fig. 2, we compared the worst case ProCo-
ALS and VCA/FCLSU results. The VCA is not very affected
by the spectral variability, and since there are pure pixels in
the image, the estimated endmembers are very close to the
actual ones. However, the abundance estimates obtained by
FCLSU could be seriously affected yielding to poor results.
The ProCo-ALS obtains better estimates of the abundances,
with a small loss in accuracy in the endmembers estimation.



The effect of the endmembers correlation is clear when look-
ing at the results for the two datasets, S; and So. On one hand,
the presence of correlated endmembers yields reduced depen-
dency on the initialization conditions. On the other hand,
abundance estimates are better when data have no correlated
endmembers.

Fig. 3 shows a comparison of the best results obtained by
the ProCo-ALS among the 20 random initializations to the
VCA/FCLSU, in terms of either endmembers or abundances
estimation accuracy for the uncorrelated dataset, .S;, and the
correlated one, Ss. For the former, the estimation of the abun-
dances is always good, and the estimation of the endmembers
is good enough (less than 5 degrees). For the latter, the accu-
racy of abundances depends on the accuracy of endmember
estimation, and in some cases, the high correlation of the ac-
tual endmembers makes their accurate estimation a too diffi-
cult problem for a completely blind approach.

4.3. Discussion

Preliminary results show the potential of the proposed CP de-
composition of hyperspectral patch-tensors for solving a blind
spectral unmixing, in the presence of spectral variability. Still,
some issues should be further addressed. The presence of cor-
related endmembers reduces the capacity of the CP decom-
position to correctly identify the materials and estimate their
fractional abundances. Also, it is not clear how to choose
the best solution among many random initializations in prac-
tical situations, since the tensor reconstruction error appears
to be uncorrelated to endmember and abundance estimation
accuracy. Moreover, we are working on a modification of the
proposed method to relax the regularization terms in (16), and
to propose a semi-blind CP decomposition, where the spectral
factors are regularized to improve their identifiability.

5. CONCLUSIONS

The present paper introduces two contributions. On one hand,
we have proposed a patch-tensor representation of hyperspec-
tral images, by stacking patches of the image in the third way
of the tensor. On the other hand, We showed the equivalence
between the CP decomposition of the proposed hyperspec-
tral patch-tensor to a regularized version of the extended lin-
ear mixing model (ELMM) for spectral unmixing. Thus, the
proposed approach aims at solving a blind spectral unmixing
problem in the presence of spectral variability. We provided
some preliminary results using synthetic data, and highlighted
some issues and possible solutions. Further work will focus
on relaxing the regularization terms of the CP decomposition
equivalent ELMM, a semi-blind approach, and on providing
a criterion to choose a good initialization. Also, we are work-
ing on giving evidence using realistic synthetic images and
real datasets.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock,
“Imaging spectrometry for earth remote sensing,” Science,
vol. 228, no. 4704, pp. 1147-1153, 1985.

A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile,
L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel,
P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and
G. Trianni, “Recent advances in techniques for hyperspectral
image processing,” Rem. Sens. of Env., vol. 113, Supplement
1, pp. 110-122, 2009.

J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente,
D. Qian, P. Gader, and J. Chanussot, “Hyperspectral unmix-
ing overview: Geometrical, statistical, and sparse regression-
based approaches,” IEEE J. Sel. Topics Appl. Earth Observ.,
vol. 5, no. 2, pp. 354-379, Apr. 2012.

M.A. Veganzones, L. Drumetz, G. Tochon, M. Dalla Mura,
A. Plaza, J. Bioucas, and J. Chanussot, “A new extended linear
mixing model to address spectral variability,” in 6th IEEE-
WHISPERS, 2014.

P. Comon, “Tensors : A brief introduction,” IEEE Sig. Proc.
Mag., vol. 31, no. 3, pp. 44-53, May 2014.

F. L. Hitchcock, “The expression of a tensor or a polyadic as a
sum of products,” J. Math. Physics, vol. 6, no. 1, pp. 165-189,
1927.

H. A. L. Kiers, “Towards a standardized notation and termi-
nology in multiway analysis,” J. Chemometrics, pp. 105122,
2000.

M.A. Veganzones, J.E. Cohen, R. Cabral Farias, J. Chanussot,
and P. Comon, “Nonnegative tensor cp decomposition of hy-
perspectral data,” IEEE Trans. Geosci. Remote Sens., 2015, to
appear.

L. Zhang, L. Zhang, D. Tao, and X. Huang, “Tensor discrim-
inative locality alignment for hyperspectral image spectral—
spatial feature extraction,” IEEE Trans. Geo. Rem. Sens., vol.
51, no. 1, pp. 242-256, 2013.

S. Bourennane, C. Fossati, and A. Cailly, “Improvement of
classification for hyperspectral images based on tensor mod-
eling,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp.
801-805, 2010.

L.-H. Lim and P. Comon, ‘“Nonnegative approximations of
nonnegative tensors,” J. Chemometrics, vol. 23, no. 7-8, pp.
432-441, 2009.

Y. Qi, P. Comon, and L.-H. Lim, “Uniqueness of nonnegative
tensor approximations,” IEEE Trans. Inf. Theory, 2016, to
appear, arxiv:1410.8129.

J.E. Cohen, R.C. Farias, and P. Comon, “Fast decomposi-
tion of large nonnegative tensors,” Signal Processing Letters,
IEEE, vol. 22, no. 7, pp. 862-866, July 2015.

J.M.P. Nascimento and J.M. Bioucas Dias, “Vertex component
analysis: a fast algorithm to unmix hyperspectral data,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, April
2005.



T T T T T T T T
20 T [Fp—— Ry [T p———
18 H + |
H
—
16 1
4
14 18
= — =
& + "
@12k — N
£ H + H g
] H H
g 1o H P E
@ H - - H 2
- | H H H 2
k] H H
= 8 : . 1%
: =
6| |
af - |
H
—
H
21 L H 4510721 8
H —
— o o o o —~ . P
ol | | | | | | | | |
0 2 k4 T h:t kit k4 k-4 0 10 1 2 3 4 5 6 7 B 9 10
Synthetic images Synthetic images
(a) (b)
T 0.5F ! B
20| 1
045 B
18F * 1
—— —
o 04F + 1
16 : 1
H
+ H
; 0351 g
z 2
ST N 1% 031 1
2 10 |8 025 B
E E
Kl sk 12 o02f ]
2 M
M ]
+ -
6l — _ | oasf g
- —_— — =]
4 - B 0.1 1
—— H
2F E 451072 B
— e
0 1 L V — 0 L Il Il L Il L | L L L
1 2 3 4 5 6 7 s 9 10 1 2 3 4 5 6 7

Synthetic images

(©)

Synthetic images

(d)

Fig. 2. . Box plot of the 20 runs worst case results of the CP decomposition using ProCo-ALS and random initializations,
compared to the results obtained by VCA/FCLSU (in black): (a) Spectral angular distance for Si, (b) Abundances average
RMSE for S, (c) Spectral angular distance for So, and (b) Abundances average RMSE for Ss.
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Fig. 3. Abundances accuracy versus endmembers accuracy for the best CP results among the 20 random initializations, using
ProCo-ALS, in terms of abundances accuracy (red squares) and endmembers accuracy (green diamonds), compared to the
VCA/FCLSU (blue dots): (a) Uncorrelated dataset .Sy, (b) Correlated dataset Ss.



