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Decentralized K-User Gaussian Multiple Access
Channels

Selma Belhadj Amor and Samir M. Perlaza

Abstract In this paper, the fundamental limits of decentralized information trans-
mission in the K-user Gaussian multiple access channel (G-MAC), with K > 2, are
fully characterized. Two scenarios are considered. First, a game in which only the
transmitters are players is studied. In this game, the transmitters autonomously and
independently tune their own transmit configurations seeking to maximize their own
transmission rates, R1, . . . ,RK , respectively. On the other hand, the receiver adopts
a fixed receive configuration that is known a priori to the transmitters. The main
result consists of the full characterization of the set of rate tuples (R1, . . . ,RK) that
are achievable and stable in the G-MAC when stability is considered in the sense
of the η-Nash equilibrium (NE), with η > 0 arbitrarily small. Second, a sequential
game in which the two categories of players (the transmitters and the receiver) play
in a given order is presented. For this sequential game, the main result consists of
the full characterization of the set of rate tuples (R1, . . . ,RK) that are stable in the
sense of an η-sequential equilibrium, with η > 0 arbitrarily small.

1 Problem Formulation

1.1 K-User Centralized Gaussian Multiple Access Channel

Consider the K-user memoryless Gaussian multiple access channel (G-MAC) with
K > 2 users. Let n ∈ N be the blocklength. At each time t ∈ {1, . . . ,n} and for
any i ∈ {1, . . . ,K}, let Xi,t denote the real input symbol sent by transmitter i.
The receiver observes the real channel output Yt = ∑

K
i=1 hiXi,t +Zt , where hi, for

all i ∈ {1, . . . ,K}, is a constant nonnegative real channel coefficient. The noise
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terms Zt are independent and identically distributed (i.i.d.) realizations of a zero-
mean unit-variance real Gaussian random variable. Let Ri denote the information
transmission rate at transmitter i, for all i ∈ {1, . . . ,K}. The goal of the commu-
nication is to convey the message index Mi, uniformly distributed over the set
Mi , {1, . . . ,b2nRic}, from transmitter i, with i ∈ {1, . . . ,K} to the common re-
ceiver. The message indices (M1, . . . ,MK) are independent of each other and of
the noise terms Z1, . . . ,Zn. At each time t, the t-th symbol of transmitter i, for all
i ∈ {1, . . . ,K}, depends solely on its message index Mi, i.e., Xi,t = f (n)i,t (Mi), t ∈
{1, . . . ,n}, for some encoding functions f (n)i,t :Mi→R. The receiver produces an es-

timate (M̂(n)
1 , . . . ,M̂(n)

K ) = Φ (n)(Y1, . . . ,Yn) of the message-tuple (M1, . . . ,MK) via a
decoding function Φ (n):Rn→M1× . . .×MK , and the average probability of error
is given by

P(n)
error(R1, . . . ,RK), Pr

{
(M̂(n)

1 , . . . ,M̂(n)
K ) 6= (M1, . . . ,MK)

}
. (1)

The symbols Xi,1, . . . ,Xi,n satisfy an expected average input power constraint

1
n

n

∑
t=1

E
[
X2

i,t
]
6 Pi,max, i ∈ {1, . . . ,K}, (2)

where the expectation is over the message indices and where Pi,max denotes the max-
imum average power of transmitter i in energy units per channel use. This channel
is fully described by the signal to noise ratios (SNRs): SNRi, with i ∈ {1, . . . ,K},
which are defined as: SNRi , |hi|2Pi,max.

1.2 Achievable Rates and Capacity Region

The K-tuple (R1, . . . ,RK) ∈RK
+ is said to be achievable if there exists a sequence of

encoding and decoding functions
{
{ f (n)1,t }n

t=1, . . . ,{ f (n)K,t }n
t=1,Φ

(n)
}∞

n=1 such that the
average error probability tends to zero as the blocklength n tends to infinity. That is,

limsup
n→∞

P(n)
error(R1, . . . ,RK)=0. (3)

The closure of the union of all achievable rate tuples is called the capacity region
and is denoted by C (SNR1, . . . ,SNRK). From [5, 14], it follows that

C (SNR1, . . . ,SNRK) =

{
(R1, . . . ,RK) ∈RK

+ :

∑
j∈U

R j 6
1
2

log2
(
1+ ∑

j∈U
SNR j

)
,∀U ⊆ {1, . . . ,K}

}
. (4)
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Note that C (SNR1, . . . ,SNRK) is a K-dimension polyhedron with K! corner points.
Each corner point corresponds to a decoding order among the users.

1.3 K-User Decentralized Gaussian Multiple Access Channel

In a decentralized K-user G-MAC, the aim of transmitter i, for all i ∈ {1, . . . ,K},
is to autonomously choose its transmit configuration si in order to maximize its in-
formation rate Ri. The transmit configuration si can be described in terms of the
information rates Ri, the block-length n, the channel input alphabet Xi, the encod-
ing functions { f (n)1,t }n

t=1, . . . ,{ f (n)K,t }n
t=1, etc. The receiver autonomously chooses a

receive configuration s0 in view of maximizing the sum-rate. Let PK denote the set
of all permutations (all possible decoding orders) over the set {1, . . . ,K}. For any
π ∈PK , the considered decoding order π(1),π(2), . . . ,π(K) is such that user π(1)
is decoded first, user π(2) is decoded second, etc. The receive configuration can be
described in terms of the decoding function Φ (n), which in this paper is restricted
to single-user decoding (SUD), successive interference cancelation (SIC(π)) with a
given order π ∈PK , or any time-sharing (TS) combination of the previous schemes.
However, the choice of the transmit configuration of each transmitter depends on
the choice of the other transmitters as well as the decoding scheme at the receiver.
The input signal of one transmitter is interference to the others. Thus, the rate
achieved by transmitter i depends on all transmit configurations s1, . . . ,sK as well
as the configuration of the receiver s0. The utility function of transmitter i, for all
i ∈ {1, . . . ,K}, is ui : A0× . . .×AK →R+ and it is defined as its own rate,

ui(s0, . . . ,sK) =

{
Ri(s0, . . . ,sK), if P(n)

error(R1, . . . ,RK)< ε

0, otherwise,
(5)

where ε > 0 is an arbitrarily small number and Ri(s0, . . . ,sK) denotes a transmis-
sion rate achievable with the configurations (s0, . . . ,sK). Often, the information rate
Ri(s0, . . . ,sK) is written as Ri for simplicity. However, every nonnegative achiev-
able information rate is associated with a particular transmit-receive configuration
(s0, . . . ,sK) that achieves it. It is worth noting that there might exist several transmit-
receive configurations that achieve the same tuple (R1, . . . ,RK) and distinction be-
tween the different transmit-receive configurations is made only when needed. The
utility function of the receiver is u0 : A0× . . .×AK → R+ and it is defined as the
sum-rate,

u0(s0, . . . ,sK) =

{
∑

K
i=1 Ri(s0, . . . ,sK), if P(n)

error(R1, . . . ,RK)< ε

0, otherwise.
(6)

In the absence of a central controller which dictates the transmit/receive configu-
rations to the various network components, only stable rate tuples are possible oper-
ating points of the network. Within this context, stability is considered in the sense
that none of the components is able to increase its utility by unilaterally changing
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its own transmit/receive configuration. From this perspective, in the capacity region
C (SNR1, . . . ,SNRK), any rate tuple (R1, . . . ,RK) for which

Ri <
1
2

log2

(
1+

SNRi

1+∑
K
j=1; j 6=i SNR j

)
, (7)

at least for one i ∈ {1, . . . ,K}, is not stable. This is true when the receiver is con-
strained to choose among the decoding strategies mentioned above (SUD, SIC, or
TS) because the considered transmitter can always increase its rate and achieve

Ri =
1
2

log2

(
1+

SNRi

1+∑
K
j=1; j 6=i SNR j

)
−δ , (8)

with δ > 0 arbitrarily small. The remaining achievable rate tuples (R1, . . . ,RK) ∈
C (SNR1, . . . ,SNRK) which satisfy

Ri >
1
2

log2

(
1+

SNRi

1+∑
K
j=1; j 6=i SNR j

)
, ∀i ∈ {1, . . . ,K}, (9)

can be stable or not, depending on the actions of the receiver.
In the following, two games are considered. First, a game in which only the

transmitters are players is studied in Sec. 2. For this game, the set of stable rate
tuples is fully characterized when stability is considered in the sense of η-Nash
equilibrium [10], with η > 0 arbitrarily small. Second, a sequential game in which
the two categories of players (the transmitters and the receiver) play in a given order.
For this sequential game, the set of stable rate tuples in the sense of the η-sequential
equilibrium, with η > 0 arbitrarily small, is derived in Sec. 3.

2 Game I: Only the Transmitters are Players

Under the assumption that the receiver adopts a fixed receive configuration s̃0 that is
known a priori to all terminals, the competitive interaction of the K transmitters in
the decentralized G-MAC can be modeled by the following game in normal form:

G1 =
(
K ,{Ak}k∈K ,{uk}k∈K

)
. (10)

The set K = {1, . . . ,K} is the set of players, i.e., the transmitters. For all i ∈K ,
the set Ai is the set of actions of player i. An action si ∈Ai of player i is basically
its transmit configuration as described above. The utility function of transmitter i,
for all i ∈ {1, . . . ,K}, is ui defined in (5). Note that since the receiver is not a player,
its action s̃0 is kept fixed, but it remains being an argument of the utility function.

A formal definition of an η-NE is provided below.
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Definition 1 (η-NE [10]). In the game G1, under the fixed receive configuration s̃0,
an action profile (s̃0,s∗1, . . . ,s

∗
K) is an η-NE if for all i ∈K and for all si ∈ Ai, it

holds that

ui(s̃0,s∗1, . . . ,s
∗
i−1,si,s∗i+1, . . . ,s

∗
K)6ui(s̃0,s∗1, . . . ,s

∗
i−1,s

∗
i ,s
∗
i+1, . . . ,s

∗
K)+η . (11)

Under the fixed receive configuration s̃0, from Def. 1, it becomes clear that if
(s̃0,s∗1, . . . ,s

∗
K) is an η-NE, then none of the transmitters can increase its own rate by

more than η bits per channel use by unilaterally changing its own transmit config-
uration while keeping the average error probability arbitrarily close to zero. Thus,
at a given η-NE, every transmitter achieves a utility that is η-close to its maximum
achievable rate given the transmit configuration of the other transmitters. Note that
if η = 0, then the definition of NE is obtained [9].

Remark 1. Note that the definition of the utilities in (5) and (6) is parametrized by
the choice of the error probability threshold ε . Within this context, considering NE
instead of η-NE with an arbitrary slack η > 0 would require the difficult task of
deriving a coding scheme that achieves the optimal rate with exactly ε error proba-
bility. The slack η > 0, which can be made arbitrarily small, allows to remove this
difficulty [3] and [11]. Note also that there is a slight abuse of notation in the equal-
ities defining the utilities and it is assumed that the blocklength is sufficiently high
to neglect the asymptotically small slack due to the fixed blocklength.

The following investigates the rate region that can be achieved at an η-NE. This set
of rate tuples is known as the η-NE region.

Definition 2 (η-NE Region). Let η > 0 be arbitrarily small. An achievable rate
tuple (R1, . . . ,RK) ∈ C (SNR1, . . . ,SNRK) is said to be in the η-NE region of the
game G1 under the fixed receive configuration s̃0, if there exists an action profile
(s̃0,s∗1, . . . ,s

∗
K) ∈A0×A1× . . .×AK that is an η-NE and the following holds:

ui(s̃0,s∗1, . . . ,s
∗
K)=Ri, ∀i ∈ {1, . . . ,K}. (12)

The following section studies the η-NE region of the game G1, with η > 0 arbi-
trarily small, for several decoding strategies adopted by the receiver.

2.1 η-NE Region With Single User Decoding (SUD)

The η-NE region of the game G1 when the receiver uses SUD, denoted by
NSUD(SNR1, . . . ,SNRK), is described by the following theorem.

Theorem 1 (η-NE Region With SUD). Let η > 0 be arbitrarily small. Then, the
set NSUD(SNR1, . . . ,SNRK) of η-NEs of the game G1 contains only the nonnegative
rate tuple (R1, . . . ,RK) that satisfies

Ri =
1
2

log2

(
1+

SNRi

1+∑
K
j=1; j 6=i SNR j

)
,∀i ∈ {1, . . . ,K}. (13)
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Proof: The proof of Theorem 1 is provided in [1].

2.2 η-NE Region With Successive Interference Cancelation (SIC)

The η-NE region of the game G1 when the receiver uses SIC(π) with a fixed de-
coding order π ∈PK , denoted by NSIC(π)(SNR1, . . . ,SNRK), is described by the
following theorem.

Theorem 2 (η-NE Region of the Game G1 With SIC(π)). Let η > 0 be arbitrarily
small and let π ∈PK be a fixed decoding order. Then, the set NSIC(π)(SNR1, . . . ,
SNRK) contains only the nonnegative rate tuple (R1, . . . ,RK) satisfying:

Rπ(i) =
1
2

log2

(
1+

SNRπ(i)

1+∑
K
j=i+1 SNRπ( j)

)
,∀i ∈ {1, . . . ,K}. (14)

Proof: The proof of Theorem 2 is provided in [1].

Remark 2. Note that for every decoding order π ∈PK , the region contains a unique
rate tuple. When considering SIC at the receiver under any decoding order, the η-NE
region NSIC(SNR1, . . . ,SNRK) contains K! rate tuples and is given by

NSIC(SNR1, . . . ,SNRK) =
⋃

π∈PK

NSIC(π)(SNR1, . . . ,SNRK). (15)

2.3 η-NE Region With Time-Sharing (TS)

Let N (SNR1, . . . ,SNRK) denote the η-NE region of the game G1 when the receiver
might use any time-sharing between the previous decoding techniques. This region
is described by the following theorem.

Theorem 3 (η-NE Region of the Game G1). Let η > 0 be arbitrarily small. Then,
the set N (SNR1, . . . ,SNRK) equals the convex hull of

NSUD(SNR1, . . . ,SNRK)∪
( ⋃

π∈PK

NSIC(π)(SNR1, . . . ,SNRK)
)
. (16)

Proof: The proof is based on Theorem 1, Theorem 2, and a time-sharing ar-
gument. The details are omitted.

If the receiver performs any time-sharing combination between any of the con-
sidered decoding strategies, then the transmitters can use the same time-sharing
combination between their corresponding η-NE strategies to achieve any point in-
side N (SNR1, . . . ,SNRK). Note that every time-sharing strategy of the receiver
induces a unique rate tuple inside N (SNR1, . . . ,SNRK). However, several time-
sharing schemes might achieve the same rate tuple.
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3 Game II: A Sequential Game

In this section, the decentralized information transmission in the K-user G-MAC
is modeled as a sequential game in which there are two groups of players: one
group, the leaders, in which all players play simultaneously before the players of
the other group, the followers. The followers, simultaneously play after the leaders
under the assumption that the actions of the leaders are perfectly known by all the
followers. Let {K21,K22} be a partition of K ∪{0}, such that K21 is the set of
leaders and K22 is the set of followers. The competition between the different users
(the transmitters and the receiver) in the G-MAC can be modeled as follows:

G2 =
(
K ∪{0},{K21,K22},{Ak}k∈K ,{uk}k∈K

)
. (17)

Backward induction is used in order to characterize a sequential equilibrium of this
game. First, the leaders simultaneously play knowing that the followers will simul-
taneously play their best responses. Instead of seeking an exactly optimal solution,
each player allows a tolerance η > 0 and seeks a strategy that is η-close to the op-
timal reward. The set of these η-close optimal strategies of player k is given by its
best η-response set defined as follows:
Definition 3 (Set of Best η-Response of Player k). The set of best η-responses of
a given player k ∈ {0,1, . . . ,K} is

BR(η)
k (s−k) =

{
sk ∈Ak : uk(sk,s−k)> max

s̃k∈Ak
uk(s̃k,s−k)−η

}
. (18)

Definition 4 (η-Sequential Equilibrium (η-SE)). Let η > 0 be arbitrarily small.
In the game G2, an action profile (s†

0, . . . ,s
†
K) is an η-SE if it satisfies:

1. ∀i ∈K21, s†
i ∈ BR(η)

i

(
s†
K21\{i}

)
with

BR(η)
i

(
s†
K21\{i}

)
,
{

si ∈Ai : ui(si,s†
K21\{i},sK22)> max

s̃i∈Ai
ui(s̃i,s†

K21\{i}, s̃K22)−η

subject to sK22 ∈ BR(η)
K22

(
si,s†

K21\{i}
)

and s̃K22 ∈ BR(η)
K22

(
s̃i,s†

K21\{i}
)}

,

with BR(η)
K22

(
si,s†

K21\{i}
)
, ∏

j∈K22

BR(η)
j

(
sK22\{ j},si,s†

K21\{i}
)
.

2. ∀ j ∈K22, s†
j ∈ BR(η)

j

(
s†
K22\{ j},s

†
K21

)
.

Note that when η = 0 and when for all the action profile sK21 ∈ AK21 of the lead-
ers, the set BR(0)

K22
(sK21) is unitary, the definition of a Stackelberg equilibrium [13]

is obtained. Note also that the η-SE in Def. 4 can be seen as a generalization of
the sequential Stackelberg equilibrium in [4] for two-person games and it results
in a two-stage η-NE. A first η-NE is established among the leaders under the as-
sumption that the followers are playing their η-best responses and second η-NE is
observed among the followers under the assumption that the actions played by the
leaders are perfectly known by the followers.
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Definition 5 (η-Sequential Equilibrium Region). An achievable rate tuple (R1, . . . ,
RK) is said to be in the η-SE region of the game G2, if there exists an action profile
(s†

0, . . . ,s
†
K) ∈A0× . . .×AK that is an η-SE and such that

ui(s
†
0, . . . ,s

†
K) = Ri, ∀i ∈ {1, . . . ,K}, (19)

u0(s
†
0, . . . ,s

†
K) =

K

∑
i=1

Ri. (20)

3.1 η-Sequential Equilibrium Region With the Receiver as Leader

Consider the game in which the receiver chooses first a receive configuration (is the
leader) and the transmitters adapt their transmit configurations to the choice of the
decoding rule in order to maximize their utilities (are the followers), i.e., K21 = {0}
and K22 = {1, . . . ,K}. Let SR(SNR1, . . . ,SNRK) denote the η-SE region of the
game G2 when the receiver is the leader and is described by the following theorem.

Theorem 4 (η-SE Region of the Game G2 With the Receiver as Leader). The set
SR(SNR1, . . . ,SNRK) contains all nonnegative rate tuples (R1, . . . ,RK) satisfying

K

∑
i=1

Ri =
1
2

log2

(
1+

K

∑
i=1

SNRi

)
. (21)

Proof: The proof of Theorem 4 is provided in [1].

3.2 η-Sequential Equilibrium Region With Transmitter i as Leader

Consider the game in which transmitter i, for a given i ∈ {1, . . . ,K}, chooses first
its transmit configuration and the receiver and the remaining transmitters follow,
i.e., K21 = {i} and K22 = {0, . . . ,K} \ {i}. Let η > 0 be arbitrarily small and let
Si(SNR1, . . . ,SNRK) denote the η-SE region of the game G2 when the transmitter
i is the leader. This region is described by the following theorem.

Theorem 5 (η-SE Region of the Game G2 With Transmitter i as Leader). The
set Si(SNR1, . . . ,SNRK) contains all tuples (R1, . . . ,RK) ∈ RK

+ satisfying

Ri =
1
2

log2 (1+SNRi) , (22)

K

∑
j=1; j 6=i

R j =
1
2

log2

(
1+

K

∑
j=1

SNR j

)
− 1

2
log2 (1+SNRi) . (23)

Proof: The proof of Theorem 5 is provided in [1].



Decentralized K-User Gaussian Multiple Access Channels 9

Fig. 1 η-NE and η-SE re-
gions, with η > 0 arbitrarily
small, for the games G1 and
G2 in the two-user G-MAC.
Here πi refers to the decoding
order in which transmitter i is
decoded first, ∀i ∈ {1,2}. The
η-NE regions in Theorems 1-
3 are plotted in red and the
η-SE regions in Theorems 4-5
are plotted in green.

R1 [bits/ch.use]

R2 [bits/ch.use]

R1 [bits/ch.use]

R2 [bits/ch.use]

1

2
log2(1 + SNR2)

1

2
log2(1 + SNR1)

1

2
log2(1 +

SNR1

1 + SNR2
)

1

2
log2(1 +

SNR2

1 + SNR1
)

SR(SNR1, SNR2)

C(SNR1, SNR2)

S1(SNR1, SNR2)

NSUD(SNR1, SNR2)

NSIC(⇡1)(SNR1, SNR2)

NSIC(⇡2)(SNR1, SNR2)

S2(SNR1, SNR2)

4 Example and Observations

In the two-user G-MAC, the regions described in Theorems 1-5 are illustrated in
Fig. 1, with the capacity region plotted as a reference.

Existence of η-NE and η-SE: For any nonnegative SNR1, . . . ,SNRK , the exis-
tence of an η-NE and an η-SE, with η arbitrarily small, is always guaranteed as the
regions in Theorems 1-5 are nonempty. Note in particular that
NSUD(SNR1, . . . ,SNRK) 6= /0 and NSIC(π)(SNR1, . . . ,SNRK) 6= /0 for any π ∈PK .
Thus, N (SNR1, . . . ,SNRK) 6= /0, which ensures the existence of at least one action
profile (s̃0,s∗1, . . . ,s

∗
K) that is an η-NE, under any fixed receive strategy s̃0.

Cardinality of η-NE and η-SE: In both games G1 and G2, the unicity of a
given η-NE or η-SE is not ensured even in the case in which the cardinality of the
equilibrium region is one. This is mainly due to the fact that a given rate tuple can
be achieved by various transmit and receive configurations. When the set of actions
is more restricted, i.e., power control, then the unicity is ensured [8].

Optimality: In G1, depending on the choice of the receiver, the η-NE rate tuples
are not necessarily Pareto-optimal. On the other hand, in G2, the η-SE rate tuples are
Pareto-optimal. This suggests that, under the assumption that the players are able to
properly choose the operating equilibrium action profiles for instance via learning
algorithms, there is no loss of performance in the decentralized G-MAC case with
respect to the fully centralized case. Furthermore, in G2, the utility of the leader is
always maximized, and thus it is always better to move first. Note that the definition
of the sequential games in this paper allows for a non-unitary set of leaders. Even
though the analysis here is restricted only to the game with unitary sets of leaders,
the above statement continues to hold for non-unitary sets of leaders.

Potential Games: The definition of the utilities of the transmitters and the re-
ceiver in (5) and (6), respectively, does not impose any restriction on the action
sets, which can be complex objects. From this perspective, it is hard to cast the
games presented here as potential games. If the actions of the players are restricted
for instance to power allocation policies, the results on power allocation games in
[8, 2, 7, 6, 12] can be seen as special cases of the results presented in this paper.
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