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RNLp : Mixing Non-Local and TV-Lp methods
to remove impulse noise from images

Julie Delon� , Agn�es Desolneuxy , Camille Sutour� , and Agathe Vianoz

Abstract. We propose a new variational framework to remove random-valued impulse noise from images. This
framework combines, in the same energy, a non-localL p data term and a total variation regularization
term. The non-local L p term is a weighted L p distance between pixels, where the weights depend
on a robust distance between patches centered at the pixels. In a �rst part, we study the theoretical
properties of the proposed energy, and we show how it is related to classical denoising models for
extreme choices of the parameters. In a second part, after having explained how to numerically �nd a
minimizer of the energy thanks to primal-dual approaches, we show extensive denoising experiments
on various images and noise intensities. The denoising performances of the proposed methods are
on par with state of the art approaches, and the remarkable fact is that, unlike other successful
variational approaches for impulse noise removal, they do not rely on a noise detector.

Key words. Image denoising, impulse noise, variational methods, patch-based methods, convex optimization

AMS subject classi�cations. 68U10, 62F15

1. Introduction. Image denoising is one of the most studied inverse problems in image
processing. Given a noisy versionv of an original imagef , image denoising aims at recovering
f from the degraded observationv. In full generality, this inverse problem remains ill-posed,
and can only be managed thanks to well chosen priors on the noise distribution or on the
regularity of the original image.

The di�erent types of noise encountered in image processing result from random phenom-
ena happening during acquisition and transmission steps of a digital image. In this paper,
we focus on the case ofrandom-valued impulse noise. Assuming that the original unobserved
image f : 
 ! R is de�ned on a discrete rectangular domain 
, the degraded imagev can be
written

8i 2 
 ; v(i ) = (1 � b(i )) f (i ) + b(i )w(i );

where all the b(i ) and w(i ) are realizations of independent variables, following respectively a
Bernoulli distribution of parameter � 2 [0; 1] (called the intensity of the impulse noise) for
the b(i ), and a uniform distribution on the range of all possible gray-levels � = [ 
 0; 
 1] for the
w(i ).

Several strategies have been developed over the years to remove random-valued impulse
noise. The simplest methods rely on the median and its extensions [44], [30], and modify all
pixels indi�erently. More evolved methods usually make use of a well chosen noise detector
to avoid oversmoothing non corrupted pixels, and combine it with a restoration method re-
stricted to the set of corrupted pixels. The restoration approach can be based on �ltering [21]
or variational principles [40, 17], can be patch-based [49, 25, 14] or combine the last two ap-
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proaches via dictionary learning [48, 51], to name just a few. Several recent approaches are
also dedicated to the mixture of Gaussian and impulse noise [26, 49, 25, 48, 14]. In this paper,
we propose to study a variational approach combining the total variation with a well designed
non local \generalized" median.

Variational approaches. Variational methods for denoising an imagev usually consist
in the following optimization problem:

argmin
u2 R


Edata (u; v) + �E reg(u);

where Edata is related to the noise distribution, Ereg comes from a prior assumption on the
solution u (and is thus related to the image formation model) and� is a regularization weight
balancing both terms. In the case of impulse noise reduction, a natural choice forEdata should
rely on a L 0 norm. In order to keep a convex formulation, it is usually advocated to rely on a
L 1 �delity term instead. One of the �rst attempts to remove impulse noise with a L 1 �delity
term is due to Nikolova [40] in 2004. She proposes to solve the following minimization problem

argmin
u2 R


ku � vk1 + �
X

i

� (r u(i )) ;

where � is a convex and edge-preserving function, and whereku � vk1 =
P

i ju(i ) � v(i )j. The
speci�c case of aL 1 norm for � yields the famous (anisotropic) TV-L1 model

uTV-L1 2 argmin
u2 R


ku � vk1 + � TV( u);

with TV( u) =
P

i kr u(i )k1. This model, introduced in signal processing by Alliney [1] in
1992 and explored by Nikolova in image processing [39], has been studied extensively in the
last �fteen years, both from the theoretical and numerical points of view [18]. Let us also
mention that the same model can also be studied with a more isotropic total variation term,
replacing kr u(i )k1 by kr u(i )k2 in the previous sum.

If the TV-L1 model performs well on edges and is simple to use in practice, it does not
recover well textured areas, and it tends to produce piecewise constant regions in 
at areas, a
phenomenon which is known as the famousstaircasing e�ect. Di�erent directions have been
proposed to improve this model for impulse noise removal. A �rst possibility is to reduce the
number of pixels to be restored by relying on noise detectors. In 2004, Chan et al. [7] observe
that the results can be widely improved by �rst detecting corrupted pixels and restricting the
regularization to the detected locations. Several impulse noise detectors have been developed
in the literature for this detection task, such as the Adaptive Center-Weighted median Filter
(ACWMF) [10], the Rank Ordered Absolute di�erences (ROAD) [21] or the Rank Ordered
Logarithmic Di�erences (ROLD) [16]. As pointed out by Duval in his PhD thesis [18], the
Rank Ordered Absolute Di�erences (ROAD) usually yields the best detection performances
in terms of stability and sensitivity to outliers.

Another direction of improvement, proposed by Duval in [18], consists in spatially adapting
the value of � . Duval proposes to use large values of� for pixels detected as noisy, and very
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small values for the other pixels. The Total Variation hence plays its regularization role only
on pixels that are suspected to be corrupted.

As mentioned before, the TV-L1 model can actually be seen as a convex relaxation of the
non-convex TV-L0 model

uTV-L0 2 argmin
u2 R


ku � vk0 + � TV( u);

where ku � vk0 =
P

i 1u(i )6= v(i ) counts the non-zero entries ofu � v. This model ensures
sparsity but the minimization of this non-convex, non-continuous problem is known to be NP-
hard [38]. Various solutions have been investigated to compute good approximate or exact
solutions: convex relaxation [46, 9] (hence theL 1 minimization problem), greedy algorithms
such as Matching Pursuit and its variants [36], or continuous but non-convex approximations
such as theLog-Sum penalty [4], the Smoothly Clipped Absolute Deviation[19], or the L p

norms, 0 < p < 1 [20]. The latter problems are still not convex, but a global minimizer can
be computed using graph-cut techniques [31, 27] or functional lifting [42, 43].

Patch-based approaches. TV regularization works well to reconstruct an image con-
sisting of smooth regions and sharp edges, but it fails on �ne textures and image details. In
contrast, non-local approaches are very e�ective on repetitive patterns. These methods, in-
troduced about ten years ago, led to very signi�cant improvements in solving ill-posed inverse
problems by combining repeated structures in images. The �rst denoising algorithms based
on this idea appeared in 2005 with the NL-means [3] on the one hand, and UINTA �ltering [2]
and the DUDE algorithm [37] on the other hand. These non-local approaches have inspired
in the last ten years a considerable number of works in image denoising, most of them being
focused on Gaussian additive noise [28, 29, 32, 52, 50, 47]. An enthralling and enlightening
review of the recent advances on the subject is proposed in [33]. Di�erent extensions to other
noise models have been proposed, for instance in [12, 13].

The speci�c adaptation to impulse noise is the subject of several recent works. The most
direct adaptation is a similar formulation to the NL-means developed in [8], leading to a
Non-Local-Median formulation, solution of

uNL-Med 2 argmin
u2 R


X

i 2 


X

j 2 


wi;j ju(i ) � v(j )j:

Several other papers adapt the NL-means approach to impulse noise removal. For instance
in [34] and [25], the authors modify the trilateral �lter of [21] and obtain a patch-based
weighted means �lter where the weights depend on the ROAD detector, the distance between
the pixels and the similarity between patches (that is aL 2 distance weighted by the detector
ROAD). In [49], the authors introduce a new \measure of outlyingness" and cluster pixels
in groups depending on this measure. They rely on this measure to develop a coarse to
�ne strategy for impulse noise detection and then apply the NL-means using a \reference
image". In [14], Delon and Desolneux propose a non-local approach that uses the maximum
likelihood estimator instead of the mean or the median, and which measures the similarity
between neighboring pixels thanks to a robust distance between patches. This method, called
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PARIGI, has good denoising performances (to test it online, see [15]) and does not use any
noise detector.

Hybrid methods. The idea to combine non-local approaches and variational methods
has been the subject of several works, often referred to ashybrid methods. An interesting
state of the art of such methods can be found in Section 6 of [45].

Inspired by the success of the NL-means algorithm for Gaussian noise removal, several
variational interpretations of non-local methods have been proposed in the past ten years.
In [22], Gilboa and Osher consider the non-local smoothness term

P

i 2 


P

j 2 

(u(i ) � u(j ))2! i;j , and

extend it to de�ne the non-local total variation (NLTV) in [23]. It is then used to de�ne a non-
local version of the classical ROF (Rudin-Osher-Fatemi) model. In an orthogonal direction,
Sutour et al. [45] propose a model where the non-locality is introduced in the data term, while
the regularization term is the total variation. This model is given by the energy

ERNL2 (u) =
X

i 2 


X

j 2 


wi;j (u(i ) � v(j ))2 + � TV( u);

where the weights are the non-local weights of NL-means. This is therefore equivalent to
an adaptive TV regularization of the NL-means functional to restore images corrupted by
Gaussian noise. The same authors propose a more general framework where the weightedL 2

term is replaced by the negative log-likelihood of the true pixel value given the observed noisy
value, and their framework then applies to various noise models belonging to the exponential
family: Gaussian, Gamma, Poisson, etc. Nonetheless, the impulse noise model requires a
speci�c framework.

Contributions. In this paper, we explore strategies inspired by the recent work [45]
to remove random-valued impulse noise from images. While some of the methods presented
above [23] express regularization terms as non-local, we propose here to keep a classic TV
regularization term and to express the non-locality in the data �delity term of the energy.
Our model can be written as minimizing the energy

ERNLp (u) =
X

i 2 


X

j 2 


wi;j ju(i ) � v(j )jp + � TV( u);

with p > 0, and where thewi;j are patch-based weights that measure the similarity between
the patches centered respectively ati and j . We discuss several possible choices for the weights
and for the power p, and we study the theoretical properties of the proposed energy. We also
show which algorithms can be developed to �nd a minimizer ofERNLp . Finally, we end with
extensive experiments to show the performances and the limits of this proposed hybrid model.
Let us emphasize that, unlike state-of-the-art impulse noise removal methods, this approach
does not rely on any impulse noise detector.

2. A common variational framework. In this section, we discuss some of the theoretical
properties of the energyERNLp and its possible links with similar energies.
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2.1. The model: The Regularized Non-Local-p-Median. Let v : 
 ! R denote the
noisy image. We propose here to study the hybrid model given by the energy

(1) ERNLp (u) =
X

i 2 


X

j 2 


wi;j ju(i ) � v(j )jp + � TV( u);

where � � 0 and where the weightswi;j are positive, but not necessarily normalized. These
weights measure a \similarity" between the pixels i and j . The di�erent possible choices for
these weights will be discussed in details in the following section. For this section, we assume
that the weights are �xed.

When p � 1, the energy might admit several minima. In the following, we will denote by
uRNLp one of the minimizers

uRNLp 2 argmin
u2 R


X

i 2 


X

j 2 


wi;j ju(i ) � v(j )jp + � TV( u):

2.1.1. Case � = 0 (NLp-Median). Let us �rst notice that if we take � = 0, then the
minimizers are the Non-Local-p-Median solutions de�ned as

uNLp 2 argmin
u2 R


X

i 2 


X

j 2 


wi;j ju(i ) � v(j )jp:

The complete energyERNLp is hence called the \Regularized Non-Local-p-Median" energy,
the regularization being performed thanks to the additional Total Variation term � TV( u).

When p = 1, the Non-Local-p-Median solutions are given by usual median values:

8i 2 
 ; uNL1 (i ) = uNL-Med (i ) = Median f (v(j ); wi;j ); j 2 
 g:

Here, assuming thex j are increasingly ordered, the notation Medianf (x j ; pj ); 1 � j � J g cor-
responds to any valuey in the interval [ x j 0 ; x j 0+1 ] wherej 0 is such that

P j 0
j =1 pj � 1

2

P J
j =1 pj �

P j 0+1
j =1 pj . The solution uNL1 turns out to be exactly the Non-Local-Median introduced in [8].

When p = 2, the NL2-Median is simply the weighted mean, and therefore the solutions
are given by

8i 2 
 ; uNL2 (i ) = Mean f (v(j ); wi;j ); j 2 
 g =

P
j wi;j v(j )
P

j wi;j
= uNL-Means (i )

and turns out to be exactly the solution computed by the NL-means algorithm, for the ap-
propriate choice of the weightswi;j [3].

When p = 0, the solutions are given by the modes of the set of valuesv(j ), weighted by
the values wi;j ,

8i 2 
 ; uNL0 (i ) = Mode f (v(j ); wi;j ); j 2 
 g:

Here, the notation Modef (x j ; pj ); 1 � j � J g means the valuex j 0 such that pj 0 is the max
of the pj . Such a j 0 is not necessarily unique. This mode estimator is closely related to
the method developed in the patch-based approach PARIGI [14]. Indeed, the authors of
PARIGI estimated a denoised value at pixel i as being the mode of the empirical histogram
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of the valuesv(j ) (only the n values with highest weightswij were kept), convolved with the
probability density of the noise model (a mixture of uniform and Gaussian law). Here, in the
NL0 approach, the framework is a bit di�erent: the weights wij are taken into account, and
there is no convolution with a parametric distribution.

2.1.2. RNLp or NLp-TV?. The authors of [45] consider the minimization problem

uRNL2 = argmin
u2 R


ERNL2 (u) = argmin
u2 R


X

i 2 


X

j 2 


wi;j (u(i ) � v(j ))2 + � TV( u):

An elementary computation shows that this solution can also be written as

uRNL2 = argmin
u2 R


ENL2-TV (u) = argmin
u2 R


X

i 2 


wi (u(i ) � uNL2 (i ))2 + � TV( u);

where wi =
P

j wi;j . The two energiesERNL2 and ENL2-TV are equal up to a constant inde-
pendent of u (it just depends on v and on the weightsw). Therefore, as noticed by Sutouret
al. in [45], �nding a minimizer of ERNL2 is equivalent to applying a spatially varying (with
adaptive weights) TV-L2 regularization to the Non-Local means uNL2 . We can wonder if the
situation is similar in our framework. Indeed, in a similar way, replacing the L 2 norm by the
L p one, we can consider the TV-Lp regularization of the Non-Local-p-MedianuNLp , that is
the energy

(2) ENLp-TV (u) =
X

i 2 


wi ju(i ) � uNLp (i )jp + � TV( u):

Now, whenp 6= 2, this energy can generally not be written asERNLp plus a constant, and more
generally one can show that the two energies may not admit the same minimizers, even for
di�erent values of � . This is the aim of the following proposition that presents an example. Let
us however remark that, as� goes to 0, the two energies have the same minimizersu = uNLp .

Proposition 1. When p 6= 2 , the two energiesERNLp (1) and ENLp -TV (2) do not necessarily
have the same minimizers.

Proof:
We will here produce examples where the two energies have di�erent minimizers (when

p 6= 2), even for di�erent values of � . We will need the following lemma, whose proof is simple
and therefore left to the reader.

Lemma 2. Let ! and c be strictly positive real numbers. Letp � 0. Then the minimum of
the function f de�ned on [0; c] by

8x 2 [0; c]; f (x) = jxjp + ! jc � xjp

is achieved, whenp > 1 at

x � =
c! �

1 + ! � ; where � = 1=(p � 1):
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When p � 1, f is concave and the minimum is achieved at

x � = 0 if ! < 1 and at x � = c if ! > 1:

When ! = 1 and p = 1 , f is constant on [0; c], and when ! = 1 and p < 1, 0 and c are both
minimizers of f .

Let us �rst consider the case p > 1. When p = 2, these two energies are equal up to a
constant, and have therefore the same minimizers. Now, this is the onlyp for which these two
energies are equivalent. Indeed, consider the following one dimensional example:

1 � i � 5; v = (0 ; 0; 1; 0; 0) and w = ( wij )1� i;j � 5 =

0

B
B
B
B
@

2=3 1=3 0 0 0
1=3 1=3 1=3 0 0
0 1=3 1=3 1=3 0
0 0 1=3 1=3 1=3
0 0 0 1=3 2=3

1

C
C
C
C
A

:

The TV( u) term is de�ned as

TV( u) =
4X

i =1

ju(i + 1) � u(i )j:

We can then compute that uNLp is given by

uNLp = (0 ; cp; cp; cp; 0); where cp =
1

1 + 2 � ; with � = 1=(p � 1):

The energy ENLp-TV is thus

ENLp-TV (u) = ju(1)jp +
4X

i =2

ju(i ) � cpjp + ju(5)jp + � TV( u):

Whereas the energyERNLp is

ERNLp (u) = ju(1)jp + ju(5)jp +
1
3

4X

i =2

ju(i ) � 1jp +
2
3

4X

i =2

ju(i )jp + � TV( u):

For symmetry reasons,ENLp-TV and ERNLp are both minimized for signalsu of the form

u = ( a; b; b; b; a) with 0 � a � b � 1 (or cp for ENLp-TV ):

We then can write

ERNLp (u) = 2 ap + 2bp + (1 � b)p + 2 � (b� a) and ENLp-TV (u) = 2 ap + 3( cp � b)p + 2 � (b� a):

When � > 2p then a 7! ERNLp (u) is decreasing andb 7! ERNLp (u) is increasing, therefore
ERNLp is minimized for a = b. The same result holds forENLp-TV .
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As a consequence, when� is large, the two energies will both be minimized for constant
signals, but the constant is not the same forERNLp and ENLp-TV . Indeed, the constant signal
that minimizes ERNLp has value

a =
1

1 + 4 � :

Whereas the constant signal that minimizesENLp-TV has value

ea =
cp3�

2� + 3 � =
3�

(1 + 2 � )(2 � + 3 � )
:

The two constants a and ea are di�erent as soon asp 6= 2. Indeed we have

a = ea () 3� (1 + 4 � ) = (1 + 2 � )(2 � + 3 � ) () 3� + 12 � = 2 � + 4 � + 3 � + 6 �

() 6� = (1 + 2 + 3) � = 1 + 2 � + 3 � () � = 1 () p = 2 :

When p � 1, we consider the samev but di�erent weights w. More precisely, we consider

1 � i � 5; v = (0 ; 0; 1; 0; 0) and w = ( wij )1� i;j � 5 =

0

B
B
B
B
@

1=3 0 2=3 0 0
1=6 0 2=3 0 1=6
0 1=3 0 2=3 0
0 0 2=3 0 1=3
0 2=3 0 1=3 0

1

C
C
C
C
A

:

We can then compute that uNLp is given, whatever the value ofp � 1, by

uNLp = (1 ; 0; 1; 0; 1):

And with the same reasoning as above, we have that, when� is large enough, the minimizers
of ERNLp and ENLp-TV are constants. And a simple computation, using Lemma 2, shows that
the minimizer of ERNLp is the constant 0, whereas the minimizer ofENLp-TV is the constant
1. Notice also that for any � > 0, ERNLp (0; 0; 0; 0; 0) = 2 and ERNLp (1; 1; 1; 1; 1) = 3 while
ENLp-TV (1; 1; 1; 1; 1) = 2 and ENLp-TV (0; 0; 0; 0; 0) = 3, so the minimizer of the �rst energy
will never be a minimizer of the second one, and vice versa, even for a di�erent value of� .

�

The above theoretical di�erence between the minimizers of the two energies can also be
checked from an experimental viewpoint. This is illustrated on Figure 1, with p = 1. For the
same value of� , the minimizers of the energiesERNL1 and ENL1-TV are clearly di�erent. We
have also tried using di�erent values of � for the second energyENL1-TV . The minimizer, for
an optimal choice of � becomes very similar to the one of the �rst energy, but is however still
di�erent.

2.2. The choice of the weights. In this section we discuss some possible choices for the
weights in ERNLp .
� A �rst very simple choice would be

w�
i;j = 1I i = j :

In this case, the energyERNLp boils down to a simple TV-L p model.
8



Figure 1: Comparison betweenERNL1 and ENL1-TV . First line: left, the original image (a part
of the Simpson image); right, the noisy image v, with an impulse noise of intensity � = 0 :2.
Second line: left, the NL-Median uNL1 obtained with weights wij of Equation (4) (see next
subsection) with h = 0 :8; right, minimizer uRNL1 of the energy ERNL1 with � = 0 :5. Third
line: left, minimizer uNL1-TV of the energyENL1-TV with � = 0 :5 and right, minimizer u(0:95)

NL1-TV

of the energyENL1-TV with � = 0 :95. This value of � is the one such thatku(� )
NL1-TV � uRNL1 k2

is the smallest. The PSNR values are 30:9 for uNL1 , 37:22 for uRNL1 , 34:63 for uNL1-TV , and
36:87 for u(0:95)

NL1-TV .
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A second possibility considered in this paper is to use patch-based weights. To this aim,
we need to de�ne a distance between patches which remains robust in the presence of impulse
noise. In the following, we write Pi for a square patch in v centered at pixel i . In the
previous work [14], the di�erent possible distances between patches were studied in details.
The conclusion was that a distance able to take small values only for similar patches despite
the presence of impulse noise was given by

(3) d(Pi ; Pj )2 =
(2s+1) 2

X

k=1

B((2s + 1) 2; k; (1 � � )2) jPi � Pj j2(k) ;

where (2s + 1) 2 is the number of pixels in the patches (the half-patch size iss), jPi � Pj j(1) �
jPi � Pj j(2) � � � � � j Pi � Pj j(2s+1) 2 are the values obtained by ordering the (2s + 1) 2 values of
the di�erences jPi (z) � Pj (z)j for z 2 [� s; s]2, � is the impulse noise intensity andB denotes
the tail of the binomial distribution given for all 0 � k � n integers andq 2 [0; 1] by

B(n; k; q) =
nX

i = k

�
n
i

�
qi (1 � q)n� i :

Notice in particular that when � = 0, the distance d(Pi ; Pj ) is simply the L 2 distance between
the two patches. The idea underlying the distance in Equation (3) is the following property:
if P and Q are two independent random patches obtained from the same original patch
P0 = Q0, the probability that the kth di�erence jP � Qj(k) stems from two untouched pixels
is B((2s + 1) 2; k; (1 � � )2) (with the approximation that the smallest distances correspond to
untouched pixels). Observe that this distance requires to know or to estimate the impulse
noise intensity � . In this paper, for the sake of simplicity, we assume that� is known, but
a rather precise estimation could be obtained with a noise estimator [14]. From the robust
distance between patches, one can obtain di�erent possible weights. We will here consider
three of them:
� In a way similar to the NL-means, replacing theL 2 distance by the robust distance, we can

de�ne the weights

(4) ewP
i;j =

1
Z i

e� d(Pi ;Pj )2=2h2
;

where h > 0 is a �ltering parameter that has to be tuned, and Z i =
P

j e� d(Pi ;Pj )2=2h2
is a

normalizing factor that ensures that
P

j ewP
i;j = 1.

� Now, there is no obligation to have normalized weights. Indeed, some patches may be rare,
in the sense that there are not many patches that are close to them for the distanced, and
we may not want to take them too much into account. Therefore, we can also consider the
non-normalized weights given by

(5) wP
i;j = e� d(Pi ;Pj )2=2h2

:

� Finally, as it is also sometimes done in variants of NL-means, we can consider then nearest
patches to Pi for the distance d, and denoting by V d

n (i ) the set of central pixels of these
patches, we can set

wNN
i;j = 1I j 2 V d

n (i ) :
10



Note that in each case, the computation of the weights can be restricted to a search windowN i

centered around each pixeli , by setting wi;j = 0 for j =2 N i . This allows to reduce the amount
of computations, as well as the number of possibly not relevant candidates. In practice here
we always restrict the search window to a square neighborhood of half-size 7, while the patch
half-size is always set tos = 3. The di�erent choices for the weights will be further discussed
in the experimental Section 4.

3. Algorithms. In this section, we present di�erent algorithms that can be used to �nd
a minimizer of the energy ERNLp given by Equation (1) when p � 1. For p > 1, the energy
is the sum of a di�erentiable function and the total variation, and can be minimized with a
forward-backward splitting algorithm [11]. However, choosingp > 1 in the data term makes
little sense in the presence of impulse noise. Forp = 1, the formulation is still convex and
can be e�ciently minimized thanks to the primal-dual algorithm of Chambolle and Pock [5],
although some work is necessary to compute the proximal operator of the non-local data term.
For p 2 (0; 1) though, the formulation is not convex anymore and its minimization requires
more tools. When p � 1, observe that the energyERNLp might have several global minima.

3.1. Case p = 1 . When p = 1, we rely on the primal-dual algorithm of Chambolle and
Pock [5] to minimize ERNLp e�ciently. We �rst recall the general setting of this algorithm,
then we explain how it can be adapted to our problem. The energy we deal with can be
written as

E(u) = G(u) + F (Ku );

where in our setting: u 2 Rj 
 j , Ku = � r u, F (q) =
P

i jq(i )j for q 2 Rj 
 j � Rj 
 j (since we use
the anisotropic version of the total variation), and G(u) =

P
i 2 


P
j 2N i

wi;j ju(i ) � v(j )j: For
the discrete gradient, we use �nite di�erences: for a discrete imageu of sizenr � nc,

r u(1) (i x ; i y) =

(
u(i x + 1 ; i y) � u(i x ; i y) if i x < n r

0 else

r u(2) (i x ; i y) =

(
u(i x ; i y + 1) � u(i x ; i y) if i y < n c

0 else.

In the following, we will denote by F � the convex conjugate ofF , given by

F � (q) = � C(q) =
�

0 if q 2 C;
+ 1 if q =2 C;

where C = f q =( q(1) ; q(2) ) 2 Rj 
 j � Rj 
 j ; jq(k) (i )j � 1 8k 2 f 1; 2g; 8i 2 
 g:

Let K � denote the dual operator of the linear operatorK , given by

K � (q) = � � div(q);
11



Algorithm 1 Chambolle-Pock Primal-Dual Algorithm

Parameters: �; �; �; N iter .
Initialization: u0 = u0; q0

for n = 1 to N iter do
Dual Step: qn+1 = prox �F � (qn + �K un );
Primal Step: un+1 = prox �G (un � �K � qn+1 );
un+1 = un+1 + � (un+1 � un );

where div is the (discrete) divergence operator, de�ned as the adjoint of the discrete gradient:

div(q)( i x ; i y) =
8
><

>:

q(1) (i x ; i y) � q(1) (i x � 1; i y) if 1 < i x < n r

q(1) (i x ; i y) if i x = 1

� q(1) (i x � 1; i y) if i x = nr

+

8
><

>:

q(2) (i x ; i y) � q(2) (i x ; i y � 1) if 1 < i y < n c

q(2) (i x ; i y) if i y = 1

� q(2) (i x ; i y � 1) if i y = nc

:

Our convex but non smooth energy can be minimized thanks to the algorithm of Chambolle
and Pock, summarized in Algorithm 1.

This algorithm uses proximal operators. We recall that they are de�ned in the following
way. For ' : RN ! R, its proximal operator is prox ' : RN ! RN given by

prox' (x) = argmin
y2 RN

' (y) +
1
2

ky � xk2
2:

In particular, since F � is the indicator function of a convex set, prox�F � is the orthogonal
projection on this set for any � > 0:

prox�F � (q) i = prox F � (q) i =
�

q(1) (i )
max(1 ;jq(1) (i ) j)

; q(2) (i )
max(1 ;jq(2) (i ) j)

�
:

Now, we also need to compute the proximal operator ofG that is a sum of L 1 terms.
When there is just one term in the sum, the proximal operator is well-known, it is the soft
thresholding:

8� > 0; 8x 2 R; prox� j�j (x) = max
�

0; 1 �
�

jxj

�
x;

which can also be reformulated as a median of three values

8� > 0; 8x 2 R; prox� j�j (x) = Median f 0; x � �; x + � g:

This result can be generalized for a sum ofL 1 norms, as shown by the following proposition.

Proposition 3. Assume that the datav and the weightsw are given. Let G : Rj 
 j ! R be

G(u) =
X

i 2 


X

j 2N i

wi;j ju(i ) � v(j )j;
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where for all i , N i is a set of pixelsj such thatwi;j > 0. For each i , assuming thatN i contains
J pixels, we sort thef v(j )gj 2N i in a sequence

vj 1 � � � � � vj J :

Then, for all � > 0, the proximal operator of �G is:

8u 2 Rj 
 j ; prox�G (u) i = Median f vj 1 ; : : : ; vj J ; u(i ) + �W 0; : : : ; u(i ) + �W J g;

where Median denotes here the usual median value of a set (no weights), and where

8k = 0 ; : : : ; J; Wk = �
X

l � k

wi;l +
X

k+1 � l � J

wi;l :

Proof: The proof is an adaptation of a more general result shown by Li and Osher in [35].
Their result is more generic since it gives a formula to �nd the minimizer of a function that
is a weighted sum ofL 1 terms plus a di�erentiable strictly convex function. For the sake of
completeness, we still provide the proof in our simpler framework.

Let us �rst notice that Wk � Wk� 1 = � 2wi;k < 0 and therefore

WJ < W J � 1 < : : : < W 0:

Computing the i th coordinate of the prox of �G , with � 2 R+ , at u is equivalent to �nd

y� = argmin
y2 R

1
2

(u(i ) � y)2 + �
JX

l=1

wi;l jy � vj l j:

Let us denote y 7! Au;�G (y) the right-hand side function. It is a strictly convex function
of y and there is thus a unique minimizery� .

We consider two cases. The �rst case isy� =2 f vj 1 ; : : : ; vj J g. Then, Au;�G is di�erentiable
at y� and its derivative is equal to 0 at this point. This implies that

0 = y� � u(i ) + �
JX

l=1

wi;l sgn(y � vj l ):

Let us denote by l � 2 f 0; 1; : : : ; J g the integer such that

(6) vj 0 < v j 1 < : : : < v j l � < y � < v j l � +1 < � � � < v j J ;

with the convention that vj 0 = �1 and vj J +1 = + 1 . This implies that

y� = u(i ) � �
JX

l=1

wi;l sgn(y � vj l ) = u(i ) + �W l � :

And therefore

(7) u(i )+ �W J < : : : < u (i )+ �W l � +1 < y � = u(i )+ �W l � < u (i )+ �W l � � 1 < � � � < u (i )+ �W 0:
13



Combining Equations (6) and (7), we conclude that y� belongs to the setf vj 1 ; : : : ; vj J ; u(i ) +
�W 0; : : : ; u(i ) + �W J g, that is has J + 1 values below it and J + 1 values above it in this set.
This shows that

y� = Median f vj 1 ; : : : ; vj J ; u(i ) + �W 0; : : : ; u(i ) + �W J g:

Now, we have to consider a second case: there existsl � 2 f 1; : : : ; J g such that y� = vj l � .
Then Au;�G is not di�erentiable at y� , but it admits a subdi�erential at this point. The
condition that y� is the point of minimum of Au;�G becomes

0 2 @Au;�G (y� ) = y� � u(i ) + �
X

k6= l �
wi;k sgn(y � vj k ) + �w i;l � [� 1; 1]:

This is equivalent to
u(i ) + Wl � < y � = vj l � < u (i ) + Wl � � 1:

As in the �rst case we again conclude that y� belongs to the set f vj 1 ; : : : ; vj J ; u(i ) +
�W 0; : : : ; u(i ) + �W J g, and that it is moreover the median value of this set. �

3.2. Case p 2 (0; 1). Minimizing ERNLp for p 2 (0; 1) is not obvious since the energy is
not convex anymore. Nonetheless, the energy belongs to the class of minimization problems
with a non-convex data term and TV regularization, and global solutions can be computed
by lifting the problem to a higher dimensional space where the formulation becomes convex,
following the ideas of [43, 42]. We recall in the following the main steps of this approach in a
continuous setting.

3.2.1. A convex formulation of a non-convex problem. Let us consider the continuous
variational problem

(8) min
u

G(u) + � TV( u) := min
u

Z


 0

g(u(x); x) + � jr u(x)jdx;

whereu : 
 0 ! � 0 is an image de�ned on a continuous image domain 
0 � R2, � 0 = [ 
 0; 
 1] is
the range of image intensities andg : 
 0 ! R+ is a non-negative, non-convex function. It can
be seen as the continuous analog to (1) where we noteg(u(x); x) =

R

 0

w(x; y)ju(x) � v(y)jpdy.
The key idea to deal with such a non-convex formulation is to lift the functional using the

level set representation given as follows:

� : 
 0 � � 0 ! f 0; 1g

� (x; 
 ) = 1u>
 (x) =
�

1; if u(x) > 
;
0; otherwise.

The authors of [43] showed that problem (8) is equivalent to the following problem:

(9) min
� 2 D

Z


 0 � � 0

� jr x � (x; 
 )j + g(
; x )j@
 � (x; 
 )j dxd
;
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Algorithm 2 Primal-Dual Algorithm for (11)

Parameters: �; � > 0, N iter

Initialization: � 0 = �� 0 = 0 ; q0 = 0
for n = 1 to N iter do

� k+1 = PC
�
� k + � divqk

�

qk+1 = PK
�
qk + � r �� k+1

�

�� k+1 = 2 � k+1 � � k

return � � = � k+1 , compute the binary solution 1� � >� and the �nal estimate u� using (10).

where r x � denotes the spatial bi-dimensional gradient of � , and D =
f � : 
 0 � � 0 ! f 0; 1g j � (x; 
 0) = 1 and � (x; 
 1) = 0 g is the feasible set of such level
set functions � .

Note that the original image u can be recovered from� using the following formula:

(10) u(x) = 
 0 +
Z

� 0

� (x; 
 ) d
:

Interestingly here, the non-convex functiong in (9) is now only a function of (
; x ) and not
(
; u (x)), thus this formulation gets rid of the non-convex part in u. This problem is however
still not convex, due to the constraint � 2 D . Hence, one can relax the problem and consider
the following convex formulation:

min
� 2 C

Z


 0 � � 0

� jr x � (x; 
 )j + g(
; x )j@
 � (x; 
 )j dx d
;(11)

with C = f � : [
 0 � � 0] ! [0; 1] j � (x; 
 0) = 1 and � (x; 
 1) = 0 g:

This time the set C is convex, so the global minimizer of problem (11) can be computed.
It is then shown in [43] that for a given � � 2 C solution of (11), a global minimizer of the
binary problem (9) can be obtained by computing the characteristic function 1� � >� for almost
every threshold � 2 [0; 1].

3.2.2. Implementation. Problem (11) can be written equivalently in the following primal
dual formulation:

min
� 2 C

max
q2 K

Z


 0 � � 0

r � � q;

where r denotes the three-dimensional gradient and

K =
n

q =
�

q(1) ; q(2) ; q(3)
�

: 
 0 � � 0 ! R3 j jq(1) j � �; jq(2) j � �; and jq(3) j � g
o

:

Note that the inequalities are meant point-wise, e.g., for all (x; 
 ) 2 
 0 � � 0; jq3(x; 
 )j �
g(x; 
 ). Based on this formulation, one can then derive a primal-dual iteration scheme where
the updates for the primal and dual variables are given in Algorithm 2. The projectionsPC

and PK are respectively the projections onto the setsC and K . The former is simply obtained
15



by truncating the iterate � to the interval [0 ; 1] and by setting � (:; 
 0) = 1 and � (:; 
 1) = 0.
The latter is a point-wise projection of the dual variable q computed as follows:

PK (q) =

 
q(1)

max
�
jq(1) j=�; 1

� ;
q(2)

max
�
jq(2) j=�; 1

� ;
q(3)

max
�
jq(3) j=g;1

�

!

:

Discretization. Similarly to the case p = 1, we use �nite di�erences to de�ne the discrete
gradient and divergence operators. We de�ne the lifted image� on a discrete Cartesian grid
of sizenr � nc � nt , and we get the following discrete gradient operator:

r � (1) (i x ; i y ; i z) =

(
� ( i x +1 ;i y ;i z )� � ( i x ;i y ;i z )

hr
if i x < n r ;

0 else.

r � (2) (i x ; i y ; i z) =

(
� ( i x ;i y +1 ;i z )� � ( i x ;i y ;i z )

hc
if i y < n c;

0 else.

r � (3) (i x ; i y ; i z) =

(
� ( i x ;i y ;i z +1) � � (i x ;i y ;i z )

ht
if i z < n t ;

0 else.

Then the discrete divergence operator is computed as follows:

div(q)(i x ;i y ;i z ) =

8
>><

>>:

q(1) (i x ;i y ;i z )� q(1) (i x � 1;i y ;i z )
hr

if 1 < i x < n r
q(1) (i x ;i y ;i z )

hr
if i x = 1

� q(1) (i x � 1;i y ;i z )
hr

if i x = nr

+

8
>><

>>:

q(2) (i x ;i y ;i z )� q(2) (i x ;i y � 1;i z )
hc

if 1 < i y < n c
q(2) (i x ;i y ;i z )

hc
if i y = 1

� q(2) (i x ;i y � 1;i z )
hc

if i y = nc:

+

8
>><

>>:

q(3) (i x ;i y ;i z )� q(3) (i x ;i y ;i z � 1)
ht

if 1 < i z < n t
q(3) (i x ;i y ;i z )

ht
if i z = 1

� q(3) (i x ;i y ;i z � 1)
ht

if i z = nt

:

For the spatial components of the gradient it is common to use discretization stepshr =
hc = 1, however for the third coordinate it depends on the discretization of the intensity
range. When dealing with a third dimension, for example time, it is not always clear how
to deal with regularity and discretization in this third dimension [24]. In our case, we have
chosen to considernt = 256 gray levels and a discretization stepht = 1

100 which matches
the spatial regularity and allows for a regularization parameter � of the same range as in
the convex formulation when p = 1. Note that in order to accelerate the computation, one
can subsample the intensity range by a factor� , in which case the discretization step then
becomesht � � .

Convergence and acceleration. The convergence of the algorithm has been proven pro-
vided that the stepsizes in Algorithm 2 ful�ll the condition ��L 2 < 1, where L = krk is
the norm of the (three-dimensional) gradient operator. The convergence is assumed when the
primal-dual residual gets below a certain convergence tolerance� .

However, since in this speci�c problem the data term is locally adaptive, based on the
non-local weights, the value of the data-term g is greatly spatially-dependent. This makes
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the constraint on the dual variable q really local, which results in a non-spatially uniform
convergence. Indeed, we have observed that the primal-dual residual might be really close to
zero in most areas, while in some localized regions, where the data termg is high, a satisfying
convergence might not be reached.

To remedy this behavior, we have investigated the use of diagonal preconditioning [41, 6].
We denote by n the number of elements of the variable� , i.e. n = nc � nr � nt , and m = 3n
the size of the dual variable. Then, given a sequence of stepsizes (~� i )1� i � n and (~� j )1� j � m and
� 2 [0; 2], the diagonal matricesT = diag( � i ) and � = diag( � j ), with

� i =
~� iP m

j =1 ~� j jr j;i j2� � ; and � j =
~� jP n

i =1 ~� i jr j;i j �
;

satisfy the convergence criterionk� 1=2r T1=2k � 1.
In order to take into account the local adaptivity of our problem, we have found that the

following sequences provide an e�cient accelerated and uniform convergence:

~� = 1 Rn ; and ~� = [1 Rn 1Rn g];

where g 2 Rn is the vector of the evaluation of the data-term g on the grid 
 � �:

g(
; i ) =
X

j 2 


wi;j j
 � v(i )jp; i 2 
 ; 
 2 � :

The practical implementation however requires a lot of memory if the image sizej
 j and the
gray level grid j� j are large.

4. Experimental analysis. In this section, several experiments are performed to analyze
the in
uence of the di�erent parameters and weights proposed in Section 2. We �rst study in
Section 4.1 the in
uence of the �ltering parameters h and � in the di�erent models with p = 1.
Section 4.2 is devoted to the choice of the weights inERNL1 . Finally, Section 4.3 illustrates
the in
uence of the power p in the RNLp data term. All these experiments are carried out
on two subimages ofSimpson and Barbara (see Figure 3 for these subimages and Figure 2 for
the complete images). In this section, the noise level is always set to� = 30%. Results are
provided both under the form of PSNR tables and restored images. Recall that the PSNR is
a way to measure the quality of a restored image ^u in comparison to an uncorrupted oneu0.
It is given by the formula

PSNR(u0; û) = 10 log10

 2

1 j
 j
P

i 2 
 (u0(i ) � û(i ))2 ;

where j
 j is the size of the support ofu0 and 
 1 the maximum intensity of u0 (typically,

 1 = 255). More systematic denoising results for di�erent complete images and di�erent noise
levels are provided in Section 5.

4.1. In
uence of the parameters h and � . Figures 3, 4 and 5 show the denoising results
obtained by minimizing ERNL1 with exponential weights (given by Equation (5)) for di�erent
values of the parametersh and � . Recall that for a given value of h, the parameter � controls
the amount of smoothing of the total variation term. The in
uence of h is more subtle since
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Figure 2: Images used in the experiments. From top to bottom, left to right : Baboon,
Barbara, Boat, Bois, Bridge, Cameraman, Converse, Goldhill, Lena, Peppers, SanFrancisco
and Simpson.

it both controls the number of similar patches taken into account in the restoration and the
balance between the Non-Local-Median and the TV regularization.

Note that for a given value of h, when � tends toward 0, the energyERNL1 converges to
ENL1 . On the contrary, when � is �xed and h decreases toward 0, thenERNL1 with (normalized
or not) exponential weights tends toward ETV-L1 . Both models can thus be seen as limits of
ERNL1 for particular values of � and h.

On Figures 4 and 5, we observe that for� = 0 and for small values of h, residual impulse
dots are still present in the denoised images. For these small values of the �ltering parameter
h, the number of patches that are taken into account in the Non-Local Median is too small
at some points, particularly in rare or textured areas. This can be corrected by choosing a
larger value for h. This is indeed necessary to restore properly the texture onBarbara, but at
the cost of oversmoothing the details. This is less important on the much more regular image
Simpson. As a consequence, the optimal value for the parameterh is larger on Barbara.

Another solution to remove the remaining impulse dots is to increase� , which usually
allows to smooth out the residual impulse noise not discarded by the Non-Local-Median. It is
particularly useful for regular regions, like those ofSimpson, but results in very poor texture
recovery. Observe on Figure 3 that the value of� giving the best performance is usually
smaller for textures than for smooth regions, illustrating the more contrasted behavior of the
TV regularization on such areas.
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Figure 3: In
uence of h and � on the results of ERNL1 . On each line, the original extract
image is shown the left, and the PSNR results are on the right. The vertical axis of the table
represents the values of� 2 [0:1 : 0:1 : 3] and the horizontal axis represents the values of
h 2 [0:1 : 0:1 : 2]. The impulse noise intensity is� = 0 :3.

4.2. Choosing the weights. We now discuss the choice of judicious weights in the RNL1
model. We consider all the weights de�ned in Section 2:

� the weights w� , in which case the model boils down to TV-L1,
� the exponential weights wP between patches,
� the normalized exponential weights ewP ,
� the weights wNN that take only into account the nearest neighbors of each patch.

4.2.1. The weights w� . The energy ERNL1 with weights w� is equal to ETV-L1 . As
explained before, this energy can also be seen as a limit ofERNL1 with exponential weights
wP when the parameterh tends toward 0. The results are thus very similar to those displayed
on the �rst columns of Figures 4 and 5 obtained with h = 0 :1. The TV-L1 model is unable
to handle textures properly and has a tendency to turn them into molten areas, resulting in
very poor PSNR results on such regions. On the contrary, the model is much better suited
for a regular image such asSimpson.
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� = 0, h = 0 :1 � = 0, h = 0 :8 � = 0, h = 2

� = 0 :4, h = 0 :1 � = 0:4, h = 0:8 � = 0 :4, h = 2

� = 2, h = 0 :1 � = 2, h = 0 :8 � = 2, h = 2

Figure 4: In
uence of � and h on the results of ERNL1 , with an impulse noise intensity
� = 0 :3. On this �gure, we show the e�ect of varying the smoothing parameter � and the
parameter h used in the exponential weights. It can be seen that these two parameters have
a signi�cant impact on the denoising results. In the middle, we show the result (and the
corresponding values ofh and � ) that has the best PSNR.
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� = 0, h = 0 :1 � = 0, h = 0 :4 � = 0, h = 2

� = 0 :6, h = 0 :1 � = 0:6, h = 0:4 � = 0 :6, h = 2

� = 1 :9, h = 0 :1 � = 1 :9, h = 0 :4 � = 1 :9, h = 2

Figure 5: In
uence of � and h on the results of ERNL1 , with an impulse noise intensity
� = 0 :3. On this �gure, we show the e�ect of varying the smoothing parameter � and the
parameter h used in the exponential weights. It can be seen that these two parameters have
a signi�cant impact on the denoising results. In the middle, we show the result (and the
corresponding values ofh and � ) that has the best PSNR.
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Figure 6: In
uence of normalization. Each �gure displays the PSNR as a function of� 2 [0:1 :
0:1 : 3] on the vertical axis and ofh 2 [0:1 : 0:1 : 2] on the horizontal axis. On the �rst line,
extract of Barbara and extract of Simpson on the second line. Left: unnormalized weights.
Right: normalized weights.

4.2.2. In
uence of normalization: wP or ewP ?. Figure 6 illustrates the in
uence of nor-
malizing the exponential weights in the energy. With normalized weights, the regularizing
power of � becomes similar everywhere, since it is balanced by a non-local term whose total
weight is always one. On the contrary, with unnormalized weights, � will have a stronger
in
uence on singular regions with few similar patches. On an image of uniform regularity, like
Simpson, both models seems to provide similar results, probably because the sum of weights
at each pixel is close to a constant. On a more complex image likeBarbara, normalizing the
weights reduces the denoising performance of the model.

This is also illustrated on Figure 7, which shows the optimal results of RNL1 on the extract
of Barbara with 30% of impulse noise. On the left, the optimal result with unnormalized
weights is obtained forh = 0 :8 and � = 0 :4. In the middle, the optimal result with normalized
weights is obtained with h = 0 :8 and � = 0 :1. Observe that both results are quite similar on
regular areas but that some impulse dots are still present when the weights are normalized.

4.2.3. Exponential weights or �xed number of neighbors?. Our last experiment in this
section compares exponential weights with binary weights taking into account a �xed number
of neighbors for each image patch. The corresponding PSNR tables are shown on Figure 8.
Note that when the number of neighbors is �xed for each point, the relative weights of the data
term and of the smoothing term are identical everywhere. The quantitative results obtained
on these subimages with a �xed number of neighbors are similar or slightly better than those
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Figure 7: Results of RNL1 on the extract of Barbara with 30% of impulse noise. Left, with
unnormalized weights, h = 0 :8 and � = 0 :4. Middle, with normalized weights, h = 0 :8 and
� = 0 :1. Right, with a �xed number of n = 11 of neighbors and � = 0 :7. All parameters
are chosen to optimize the PSNR. Observe that the three results are quite similar on regular
areas but that some impulse dots are still present on the middle and on the right images.

Figure 8: Same experiment with a �xed number of nearest neighbors instead of exponential
weights. The x-axis represents the number of nearest neighbors in the range [5:35]. On the
left, extract of Barbara. On the right, extract of Simpson.

obtained with exponential weights. However, we observed that in practice, �xing the same
number of neighbors for each pixel results in the same artifact than normalizing the weights
(see Figure 7, right).

4.3. In
uence of the power p in RNLp. As advocated in [14], the choicep = 0 provides
good results in the NLp-Median setting, in particular for strong impulse noise. Together with
optimization considerations, this motivates the choice for a rather non-convex though continu-
ous model with 0< p < 1. Figures 9 and 10 illustrate the performance of the RNLp model for
di�erent values of p on the two test images corrupted by impulse noise with parameter� = 0 :3
and 0:5 respectively. For a low noise level, all methods e�ciently remove noise. TheSimpson
image bene�ts from good results with all three settings, andBarbara has better preserved
textures on the scarf with p < 1, while with a lower p some residual noise remains on the �ne
textures. The same observations seem to apply to a higher noise level. The non-convex model
with p < 1 o�ers slightly better performance, in particular for the smooth image Simpson.
However for Barbara, more residual noise on the scarf can be observed forp = 0 :2. All in all,
a power p = 0 :5 seems to o�er overall good performance, as it acts as a compromise between
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RNL1 RNLp , p = 0 :5 RNLp, p = 0 :2

PSNR = 27.90 PSNR = 27.91 PSNR = 27.62

PSNR = 35.91 PSNR = 36.69 PSNR = 36.11

Figure 9: Denoising ofBarbara and Simpsoncorrupted with 30% of impulse noise, using the
RNLp model with p = 1 (left), p = 0 :5 (middle) and p = 0 :2 (right).

the non-convex model which o�ers good behavior for strong impulse noise, while behaving
more smoothly. Note also that for smaller values ofp, the non-convexity gets more important,
hence convergence is harder to achieve.

5. Denoising results.

5.1. RNL1.. This section gathers experiments comparing RNL1 with the classical models
TV-L1 and NL-Median. We also provide a comparison with the recent algorithm PARIGI [14].
Tables 2 and 3 illustrate the PSNR performances of the di�erent models for several images,
displayed on Figure 2. All images have the same size (512� 512), with the exception of
Simpson, whose size is 1024� 1024. All results of the models RNL1, TV-L1 and NL-Median
are obtained by optimizing the parameters� and h. Figures 11 and 12 show a zoom on the
results of the di�erent algorithms on Simpson, Baboon, Barbara and Bois when � = 20% and
� = 40%.

First, observe that the results of TV-L1 and NL-Median are complementary. The vari-
ational model gives excellent results on smooth images, while the non-local model performs
much better on textured images. This is especially visible on an image likeBarbara (see
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RNL1 RNLp , p = 0 :5 RNLp, p = 0 :2

PSNR = 23.64 PSNR = 24.16 PSNR = 22.44

PSNR = 30.37 PSNR = 32.54 PSNR = 30.39

Figure 10: Denoising ofBarbara and Simpson corrupted with 50% of impulse noise, using
the RNLp model with p = 1 (left), p = 0 :5 (middle) and p = 0 :2 (right).

Figures 11 and 12) where the TV-L1 model is clearly not able to handle the texture properly,
while the Non-Local Median restores them almost perfectly. At the same time, the Non-Local
Median shows a tendency to oversmooth the details and �ne regions. Most of the time, TV-L1
gives better results for small amounts of noise, but its performances decrease faster when the
noise level� increases. The gap between the two models also tends to decrease with the level
of noise, and they appear to be more or less equivalent (PSNR-wise) for most images when
� = 50%. The RNL1 model can be seen as a generalization of both TV-L1 and NL-Median,
since it boils down to the NL-Median when � = 0 and is equivalent to TV-L1 when the
parameter h tends toward 0. It follows that good choices of these two parameters always
permit to reach better restoration results with RNL1 than with those two models. Observe
on Figures 11 and 12 how RNL1 is able to handle textures properly while preserving much
more image details than the NL-Median.

For most images, the PSNR results of RNL1 are on par with the results of the recent
PARIGI algorithm [14], even if the restored images are visually quite di�erent. PARIGI can
be seen as a re�nement of the NL-Median. It is also purely patch-based, without additional
regularization, but instead of a non-local median it computes a Maximum Likelihood at each

25



TV-L1 NL-Median PARIGI RNL1 RNLp,
(1 it.) p = 0 :5

Baboon
� = 20%
� = 40%

24.17
21.56

22.89
21.42

25.04
21.96

24.96
22.24

25.05
22.01

Barbara
� = 20%
� = 40%

25.71
23.48

29.83
27.13

34.16
29.47

30.89
27.49

30.57
27.67

Bois
� = 20%
� = 40%

23.99
21.40

22.69
21.41

23.19
21.32

24.82
22.25

24.88
22.32

Simpson
� = 20%
� = 40%

37.85
33.08

35.98
33.25

39.55
35.83

39.65
35.73

38.92
36.23

Table 1: PSNR results of di�erent restoration methods for the 512� 512 imagesBaboon,
Barbara and Bois, and for the 1024� 1024 imageSimpson. All results of RNLp, RNL1,
TV-L1 and NL-Median are obtained by optimizing the parameters � and h.

pixel and happens to be more robust for large values of� . In practice, this algorithm proves to
be very e�ective and far better than other approaches on very textured images likeBarbara.
However, if it performs very well quantitatively, we can see on Figures 11 and 12 that its
restoration results tend to present the same artifacts (loss of details, oversmoothing) as the
NL-Median, even if to a lesser extent. In practice, we think that images restored with RNL1
present a better balance between texture preservation, restoration of smooth regions and detail
recovery, especially for small values of� .

A possible re�nement proposed in the PARIGI algorithm (but not used in the results of
Table 2 and Table 3) consists in applying the algorithm twice after mixing the original noisy
image and the restoration result thanks to a map of detected noisy pixels. Such a re�nement
could also be considered for RNL1. Observe also that none of the models studied in this paper
make use of an explicit noise detection (such as the ROAD or ROLD detectors). The detection
is only weakly contained in the robust distance presented in Section 2. It goes without saying
that taking into account the result of external noise detectors could in practice improve the
di�erent denoising results. However, let us point out here that the goal of this paper is not
to yield the best possible denoising results but rather to thoroughly compare and understand
the advantages and weaknesses of di�erent models in presence of impulse noise.

5.2. RNLp. Due to the heavy computations involving the non-convex optimization when
p < 1, we have devoted the comparisons to a selected number of images. Note that the
performance of the method forp < 1 depends on the discretization of the gray level set �, i.e.,
on the number of gray levels chosen to represent the level sets. In order to limit the amount of
required memory and computation time, we have chosen to consider only 128 gray levels for
the full size images and 64 for the largerSimpsonimage (i.e. a subsampling factor� = 2 and
4 respectively, see Section 3.2). The results could be improved with a �ner intensity range.
Figures 11 and 12 include the result obtained with RNLp, with p = 0 :5. The PSNR results
for these images are also compared to the above studied methods in Table 1. These results
show that the RNLp model is on par with RNL1.
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TV-L1 NL-Median PARIGI (1 it.) RNL1
� = 10% 26.59 24.01 26.92 27.51
� = 20% 24.17 22.89 25.04 24.96

Baboon � = 30% 22.64 22.18 23.40 23.44
� = 40% 21.56 21.42 21.96 22.24
� = 50% 20.69 20.55 20.72 21.09
� = 10% 28.59 31.03 36.84 32.67
� = 20% 25.71 29.83 34.16 30.89

Barbara � = 30% 24.45 28.65 31.75 29.25
� = 40% 23.48 27.13 29.47 27.49
� = 50% 22.54 24.97 27.07 25.23
� = 10% 32.00 28.46 34.40 34.05
� = 20% 29.61 27.64 31.97 31.33

Boat � = 30% 27.99 26.89 29.84 29.55
� = 40% 26.28 25.84 27.62 27.81
� = 50% 24.61 24.55 25.44 25.85
� = 10% 26.31 23.63 24.50 27.24
� = 20% 23.99 22.69 23.19 24.82

Bois � = 30% 22.63 21.99 22.31 23.45
� = 40% 21.40 21.41 21.32 22.25
� = 50% 20.20 20.28 20.21 20.75
� = 10% 28.76 25.27 29.33 30.22
� = 20% 26.41 24.38 27.25 27.61

Bridge � = 30% 24.79 23.80 25.70 25.93
� = 40% 23.28 22.81 24.07 24.27
� = 50% 21.77 21.54 22.55 22.56
� = 10% 35.62 31.60 37.48 38.02
� = 20% 32.82 30.80 34.60 35.19

Cameraman � = 30% 30.36 29.60 32.03 32.75
� = 40% 28.11 28.29 29.31 30.44
� = 50% 25.04 25.92 26.45 27.30

Table 2: PSNR results of di�erent restoration methods for the 512� 512 imagesBaboon,
Barbara, Boat, Bois, Bridge and Cameraman. All results of RNL1, TV-L1 and NL-Median
are obtained by optimizing the parameters� and h.

6. Conclusion. In this paper, we have shown that a hybrid model composed of a Non-
Local Median data term and a TV regularization could be a solid basis for impulse noise
reduction. Other hybrid models had been studied in the literature, especially with non-local
regularization term. However, to the best of our knowledge, this is the �rst study making use
of a non-local L p data term, with p � 1, adapting the recent work of Sutour et al. [45]. We
have shown how to minimize this non-smooth model in practice, both in the convex (p = 1)
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TV-L1 NL-Median PARIGI (1 it.) RNL1
� = 10% 25.94 25.22 25.73 28.73
� = 20% 23.03 23.37 24.04 26.01

Converse � = 30% 21.40 22.00 22.16 24.02
� = 40% 19.99 20.64 20.51 22.06
� = 50% 18.28 18.77 18.52 19.68
� = 10% 33.24 29.72 32.89 35.53
� = 20% 30.84 29.07 31.76 32.76

Goldhill � = 30% 29.51 28.6 30.81 31.12
� = 40% 27.94 27.78 29.50 29.45
� = 50% 26.33 26.35 27.91 27.55
� = 10% 36.63 32.25 35.46 37.26
� = 20% 33.10 31.43 34.18 34.91

Lena � = 30% 30.96 30.49 32.60 32.85
� = 40% 29.12 29.34 31.01 31.04
� = 50% 27.27 27.80 28.98 29.03
� = 10% 34.38 32.12 34.97 36.01
� = 20% 31.95 30.00 33.68 33.38

Peppers � = 30% 30.25 28.98 32.55 31.26
� = 40% 28.26 27.76 30.77 29.28
� = 50% 25.86 26.32 28.77 27.20
� = 10% 25.96 24.99 25.42 28.71
� = 20% 23.11 23.26 23.70 25.94

SanFrancisco � = 30% 21.61 22.18 22.66 24.14
� = 40% 20.17 20.74 20.76 22.20
� = 50% 18.80 19.19 18.94 20.38
� = 10% 40.90 36.93 41.48 41.83
� = 20% 37.85 35.98 39.55 39.65

Simpson � = 30% 35.62 35.00 37.90 37.93
� = 40% 33.08 33.25 35.83 35.73
� = 50% 30.17 30.85 33.36 32.34

Table 3: PSNR results of di�erent restoration methods for the 512� 512 imagesConverse,
Goldhill, Lena, Peppers, SanFrancisco and the 1024� 1024 imageSimpson. All results of
RNL1, TV-L1 and NL-Median are obtained by optimizing the parameters � and h.

and non-convex (p < 1) cases. It is illustrated on several experiments that this approach
permits to attain state of the art denoising performance for di�erent type of images and
di�erent levels of noise. The proposed model, using adaptive weights, is generic enough to
include external additive information on the image to be restored or on the noise, such as a
precomputed noise map for instance.
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Figure 11: Zooms of comparative results onSimpson, Baboon, Barbara and Bois with � =
20% of random-valued impulse noise. From top to bottom: original images, noisy images,
minimizers of ETV -L1 , of ERNL1 , of ERNLp (p = 0 :5), of ENL1 and the results of PARIGI.
Images should be seen at full resolution on the electronic version of the paper.



Figure 12: Zooms on comparative results onSimpson, Baboon, Barbara and Bois with � =
40% of random-valued impulse noise. From top to bottom: original images, noisy images,
minimizers of ETV -L1 , of ERNL1 , of ERNLp (p = 0 :5), of ENL1 and the results of PARIGI.
Images should be seen at full resolution on the electronic version of the paper.
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