Mixing Non-Local and TV-L1 methods to remove impulse noise from images

Abstract : We propose here a new variational framework to remove random-valued impulse noise from images. This framework combines, in the same energy, a non-local median data term and a total variation regularization term. The non-local median term is a weighted L 1 distance between pixels, where the weights depend on a robust distance between patches centered at the pixels. In a first part, we study the theoretical properties of the proposed energy, and we show how it is related to classical denoising models for extreme choices of the parameters. In a second part, after having explained how to numerically find a minimizer of the energy thanks to a primal-dual approach, we show extensive denoising experiments on various images and various noise intensities. The denoising performances of the proposed method are on par with state of the art approaches, and the remarkable fact is that, unlike other succesful variational approaches for impulse noise removal, it does not rely on a noise detector.
Type de document :
Pré-publication, Document de travail
MAP5 2016-29. 2016
Liste complète des métadonnées

Contributeur : Agnès Desolneux <>
Soumis le : jeudi 13 octobre 2016 - 22:23:59
Dernière modification le : samedi 18 février 2017 - 01:20:22


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01381063, version 1


Julie Delon, Agnès Desolneux, Agathe Viano. Mixing Non-Local and TV-L1 methods to remove impulse noise from images. MAP5 2016-29. 2016. <hal-01381063>



Consultations de
la notice


Téléchargements du document