On unique solvability of the full three-dimensional Ericksen-Leslie system
Gregory A. Chechkin, Tudor S Ratiu, Maksim S. Romanov, Vyacheslav N. Samokhin

To cite this version:

HAL Id: hal-01380992
https://hal.archives-ouvertes.fr/hal-01380992
Submitted on 13 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On unique solvability of the full three-dimensional Ericksen–Leslie system

Sur la solvabilité unique du système tridimensionnel complet d'Ericksen–Leslie

Gregory A. Chechkina,*, Tudor S. Ratiub,c, Maxim S. Romanova, Vyacheslav N. Samokhind

a Department of Differential Equations, Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
b Department of Mathematics, Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, 200240, China
c Section de mathématiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
d Moscow State University of Printing Arts, 2A, Pryanishnikova ul., Moscow 127550, Russia

\begin{abstract}
In this paper, we study the full three-dimensional Ericksen–Leslie system of equations for the nematodynamics of liquid crystals. We announce the short-time existence and uniqueness of strong solutions for the initial value problem in the periodic case and in a bounded domain with Dirichlet- and Neumann-type boundary conditions.
\end{abstract}

\begin{resume}
Dans cet article, nous étudions le système tridimensionnel complet des équations d'Ericksen–Leslie décrivant la néméodynamique des cristaux liquides. Nous donnons la formulation des théorèmes d'existence en temps court et d'unicité des solutions fortes pour le problème de valeur initiale dans le cas périodique et dans un domaine borné avec conditions au bord de types Dirichlet et Neumann.
\end{resume}
1. Introduction

Mathematical models of the behavior of liquid crystals (see Fig. 1), attract much attention of scientists. The mathematical models of the hydrodynamics of incompressible, homogeneous nematic liquid crystals were firstly developed in the 1960s by J. Ericksen and F. Leslie (see, for instance, [1,2]).

In this paper, we consider the full Ericksen–Leslie system of equations (see, for instance, [3]). In our previous papers, we investigated plane periodic model [4,5] and plane problem in a bounded domain [6,5], homogenization of micro inhomogeneous nematic liquid crystals ([7] for periodic, [8] for random) in the case of a zero molecular moment of inertia, and two-dimensional nematodynamics in the case of a non-zero molecular moment of inertia [6]. We study the existence and uniqueness of solutions to the following Ericksen–Leslie system

\[
\begin{align*}
\dot{\mathbf{u}} - \mu \Delta \mathbf{u} &= -\nabla p - \frac{\partial}{\partial x_j} \left(\frac{\partial \mathcal{F}}{\partial n_{ij}} \cdot \nabla n_j \right) + \mathbf{F} \quad \text{div} \mathbf{u} = 0 \\
J \dot{\mathbf{n}} - 2 q \mathbf{n} + \mathbf{h} &= \mathbf{G}, \quad \|\mathbf{n}\| = 1
\end{align*}
\]

(1)

where summation on repeated indices is understood and \(n_{ij} := \frac{\partial}{\partial x_j} n_i \). Here, \(\mathbf{u} \) is the Eulerian, or spatial velocity vector field, \(\mathbf{n} \) is the director field, the constant \(\mu > 0 \) is the viscosity coefficient, the constant \(J > 0 \) is the moment of inertia of the molecule, \(\mathbf{F}(x, t) \) and \(\mathbf{G}(x, t) \) are given external forces, and the overdot \(\dot{\cdot} := \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \) is the material derivative. The function \(\mathcal{F}(\mathbf{n}, \nabla \mathbf{n}) \) is the Oseen–Zöcher–Frank free energy and is defined by

\[
\mathcal{F}(\mathbf{n}, \nabla \mathbf{n}) := \frac{1}{2} \left(K_1 (\text{div} \mathbf{n})^2 + K (\| \mathbf{n} \times \nabla \mathbf{n} \|^2 + \| \mathbf{n} \times \nabla \mathbf{n} \|^2) \right)
\]

where \(K, K_1 \) are real positive constants. The molecular field \(\mathbf{h} \) is defined by

\[
\mathbf{h} := \frac{\partial \mathcal{F}}{\partial \mathbf{n}} - \frac{\partial}{\partial x_j} \left(\frac{\partial \mathcal{F}}{\partial n_{ij}} \right)
\]

The pressure \(p \) and the Lagrange multiplier \(2q \) are determined, respectively, by the conditions \(\text{div} \mathbf{u} = 0 \) and \(\|\mathbf{n}\| = 1 \). In this case, the \(i \)th component of the molecular field has the expression

\[
h_i = (K - K_1) n_{ik} n_{k} - K n_{ik} n_{k} + q^i n^i
\]

where \(q^i \) is a scalar function depending on \(\mathbf{n} \) and its derivatives. Define the linear differential operator \(\mathcal{L} \) by

\[
\mathcal{L} \mathbf{v} := (K - K_1) \nabla (\text{div} \mathbf{v}) - K \Delta \mathbf{v}
\]

(2)

Given the Ericksen–Leslie system (1), define the new vector field (first introduced in [9])

\[
\mathbf{v} := \mathbf{n} \times \dot{\mathbf{n}} \in \mathcal{F}(D, \mathbb{R}^3)
\]

With all these hypotheses and notations, system (1) becomes

\[
\begin{align*}
\dot{\mathbf{u}} - \mu \Delta \mathbf{u} &= -\nabla p + (\mathcal{L} \mathbf{n} \cdot \nabla \mathbf{n}) + \mathbf{F}, \quad \text{div} \mathbf{u} = 0 \\
J \dot{\mathbf{v}} &= \mathcal{L} \mathbf{n} \times \mathbf{n} + \mathbf{n} \times \mathbf{G} \\
\dot{\mathbf{n}} &= \mathbf{v} \times \mathbf{n}
\end{align*}
\]

(3)-(5)

with unknowns \(\mathbf{u}, \mathbf{v}, \mathbf{n} \). Thus, the Ericksen–Leslie system (1) implies the new first-order system (3)-(5). Conversely, if the initial conditions of the first order system (3)-(5) satisfy the identities

\[
\|\mathbf{n}(x, 0)\| = 1, \quad \mathbf{n}(x, 0) \perp \mathbf{v}(x, 0)
\]
2. Solutions in a periodic domain

Let \(Q_T := (0, T) \times \mathbb{T} \), where \(\mathbb{T} = \mathbb{R}^3 / \mathbb{Z}^3 \) is the 3-dimensional flat torus. We study the system (3)–(5) in \(Q_T \) with initial conditions

\[
\begin{align*}
\mathbf{u}(0, x) &= \mathbf{u}_0, & \mathbf{v}(0, x) &= \mathbf{v}_0, & \mathbf{n}(0, x) &= \mathbf{n}_0
\end{align*}
\]

Here \(\mathbf{u}, \mathbf{v}, \mathbf{n} \) are unknown vector fields, \(p \) is an unknown scalar function, and \(J > 0, K_i > 0, \mu > 0 \) are given constants.

Throughout the paper we use the following notations:

- \(\dot{f} := \frac{df}{dt} \) is the material time derivative of \(f \);
- \(\mathbf{b} \) denotes a 3-dimensional vector \(\mathbf{b} = (b_1, b_2, b_3) \), or a vector field with values in \(\mathbb{R}^3 \);
- \(L^p(\mathbb{T}) \) is the Sobolev space of functions on \(\mathbb{T} \) having \(m \) distributional derivatives in \(L^2(\mathbb{T}) \);
- for any \(\mathbf{v} \in W^{m,p}(\mathbb{T}) \), \(m \in \mathbb{N} \), define

\[
\|D^m \mathbf{v}\|_2^2 := \sum_{i_1 + i_2 + i_3 = m} \left\| \frac{\partial^m \mathbf{v}}{\partial x_1^{i_1} \partial x_2^{i_2} \partial x_3^{i_3}} \right\|_2^2
\]

- \(\text{Sol}(\mathbb{T}) := \{ \mathbf{v} : \mathbb{T} \to \mathbb{R}^3 | \mathbf{v} \in C^\infty(\mathbb{T}), \text{div} \mathbf{v} = 0 \} \);
- \(\text{Sol}(Q_T) := \{ \mathbf{v} \in C^\infty(Q_T) | (\mathbf{v}(t, \cdot), \mathbf{v}(0, \cdot)) \in \text{Sol}(\mathbb{T}), \forall t \in (0, T) \} \);
- \(\text{Sol}_0(\mathbb{T}) \) is the closure of \(\text{Sol}(\mathbb{T}) \) in the norm \(L^2(\mathbb{T}) \);
- \(\text{Sol}_0^p(\mathbb{T}) \) is the closure of \(\text{Sol}(\mathbb{T}) \) in the norm \(W^p(\mathbb{T}) \).

Definition 2.1. A quadruple \((\mathbf{u}, \mathbf{v}, \mathbf{n}, \nabla p)\) is a strong solution to problem (3)–(6) in the domain \(Q_T \) if

(i) \(\mathbf{u} \) is a time-dependent vector field in \(L^2((0, T); \text{Sol}_0^2(\mathbb{T})) \), \(\mathbf{u}_t \in L^2(Q_T) \);
(ii) \(\mathbf{v} \) is a vector field in \(L^\infty((0, T); W^2(\mathbb{T})) \), \(\mathbf{v}_t \in L^\infty((0, T); L^2(\mathbb{T})) \);
(iii) \(\mathbf{n} \) is a vector field in \(L^\infty((0, T); W^2(\mathbb{T})) \), \(\mathbf{n}_t \in L^\infty((0, T); W^1(\mathbb{T})) \);
(iv) \(\nabla p \in L^2(Q_T) \);
(v) \(\mathbf{u}, \mathbf{n}, \mathbf{v} \) satisfy the initial conditions (6), i.e. \((\mathbf{u}, \mathbf{n}, \mathbf{v}) \to (\mathbf{u}_0, \mathbf{n}_0, \mathbf{v}_0) \) in \(L^2(\mathbb{T}) \) as \(t \to 0 \);
(vi) Eqs. (3)–(5) hold almost everywhere.

The following assertion is valid.

Theorem 2.2. Suppose \(\mathbf{u}_0 \in \text{Sol}_0^2(\mathbb{T}) \), \(\mathbf{v}_0 \in W^2(\mathbb{T}) \), \(\mathbf{n}_0 \in W^2(\mathbb{T}) \), \(F \in L_2((0, T); W^1(\mathbb{T})) \), \(G \in L_1((0, T); W^2(\mathbb{T})) \). Then there is a \(T > 0 \) such that the solution to problem (3)–(5), (6) (as given in Definition 2.1) does exist.

Let \((\mathbf{u}_1, \mathbf{v}_1, \mathbf{n}_1, p_1)\) and \((\mathbf{u}_2, \mathbf{v}_2, \mathbf{n}_2, p_2)\) be solutions to problem (3)–(6) in the domain \(Q_T \). Then, for some \(0 < T_0 \leq T \)

\[
(\mathbf{u}_2, \mathbf{v}_2, \mathbf{n}_2, \nabla p_2) = (\mathbf{u}_1, \mathbf{v}_1, \mathbf{n}_1, \nabla p_1)
\]

almost everywhere in \(Q_{T_0} \).

The proof is based on Galerkin-type approximations.
3. Solutions with Dirichlet-type boundary conditions

Let Ω be a bounded domain in \mathbb{R}^3 and consider nematic liquid crystal flow in the cylinder $\Omega \times \mathbb{R}$.

We study Eqs. (3)–(5) in the domain $(0, T) \times \Omega$ with initial conditions (6) and additional boundary conditions

$$u_{|\partial \Omega} = 0, \quad n - n_1|_{\partial \Omega} = 0, \quad \psi_{|\partial \Omega} = 0 \quad \text{for any} \quad t > 0 \quad (7)$$

where n_1 is a given vector field on Ω.

Condition $u_{|\partial \Omega} = 0$ means that the domain has impenetrable boundary and that the fluid moves without slipping; $n - n_1|_{\partial \Omega} = 0$ describes the director position at the boundary. The third condition comes from the original Ericksen–Leslie system and means that $n = 0$ at the boundary.

In this section, we let $Q_T := (0, T) \times \Omega$ and introduce the function spaces

- $\overset{\circ}{\text{Sol}}(\Omega) := \{ \psi : \Omega \to \mathbb{R}^3 \mid \psi \text{ has compact support, } \nabla \psi = 0 \}$
- $\overset{\circ}{\text{Sol}}(Q_T) := \{ \psi \in C^\infty(Q_T) \mid \psi(t, \cdot) \in \overset{\circ}{\text{Sol}}(\Omega), \forall t \}$
- $\overset{\circ}{\text{Sol}}^n(\Omega)$ is the closure of $\overset{\circ}{\text{Sol}}(\Omega)$ in the norm $W^n(\Omega)$

The definition of a solution to the Ericksen–Leslie equations is the natural modification for the case of a bounded domain with boundary of the one given in Definition 2.1.

Definition 3.1. The quadruple $(u, v, n, \nabla p)$ is a strong solution to problem (3)–(6), (7) in the domain Q_T if

- u is a vector field in $L_2((0, T); \overset{\circ}{\text{Sol}}^1(\Omega)) \cap L_2((0, T); W^2_2(\Omega)), \ u_t \in L_2(Q_T)$;
- v is a vector field in $L_\infty((0, T); \overset{\circ}{\text{Sol}}^1(\Omega)) \cap L_\infty((0, T); W^2_2(\Omega)), \ v_t \in L_\infty((0, T); L_2(\Omega))$;
- $n - n_1$ is a vector field in $L_\infty((0, T); W^1_2(\Omega)) \cap L_\infty((0, T); W^2_2(\Omega))$, where n_1 is a given constant vector field, and $n_1 \in L_\infty((0, T); W^1_2(\Omega))$;
- $\nabla p \in L_2(Q_T)$;
- u, n, v satisfy initial conditions (6), i.e. $(u_0, n_0, v_0) \to (u_0, n_0, v_0)$ in $L_2(\Omega)$;
- Eqs. (3)–(5) hold almost everywhere.

The following result is proved in the same way as Theorem 2.2, with natural modifications.

Theorem 3.2. Assume that for all $x \in \partial \Omega$ the boundary is the graph of a C^2-function in some neighborhood of x. Let $n_1 = \text{const}, \ n_0 \in W^2_2(\Omega), \ v_0 \in W^2_2(\Omega)$, $u_0 \in \overset{\circ}{\text{Sol}}^1(\Omega) \cap W^2_2(\Omega), \Delta u_0|_{\partial \Omega} = 0$, and assume that, for some $d > 0$, we have

$$n_0(x) = \text{const}, \quad v_0(x) = 0 \quad \text{if} \quad \text{dist}(x, \partial \Omega) < d$$

Assume also that $F \in L_2((0, T); W^1_2(\Omega)), \ G \in L_1((0, T); W^2_2(\Omega)), \ G$ equal to zero in a neighborhood of $\partial \Omega$. Then problem (3)–(6), (7) has a unique solution in Q_T for some $T > 0$.

Instead of (3)–(5), we consider the system

$$\dot{u} - \mu \Delta u = -\nabla p + (L n \cdot \nabla n) \Psi, \quad \text{div} \ u = 0 \quad (8)$$

$$J(\psi_t + \Psi \ u^i \nabla_{x_i}) = (L n \times n) \Psi \quad (9)$$

$$\n_t + \Psi \ u^i \nabla_{x_i} \psi = (\psi \times n) \Psi \quad (10)$$

where $\Psi(x) \in C^\infty(\Omega)$ is a given smooth non-negative function with compact support.

Theorem 3.3. Fix $u \in L_2((0, T); \overset{\circ}{\text{Sol}}^1(\Omega)) \cap L_2((0, T); W^2_2(\Omega))$ and $\Psi \in C^\infty(\Omega)$ with compact support, $0 \leq \Psi \leq 1$. Consider Eqs. (9), (10) for this given vector field u.

Suppose, in addition, that for some $1 < \alpha \leq \infty$ and for all i, j, there are constants $m > 0, M > 0$ such that the vector field u satisfies

$$\| \text{esssup} \ |u^i_j(x, t)| \|_{L_\infty(0, T)} \leq M \quad \text{and} \quad \| u(x, t) \| \leq m, \quad \forall (x, t) \in Q_T$$

Assume also that the initial conditions n_0 and v_0 of (9), (10), with this given vector field u, are such that ∇n_0 and v_0 vanish for $\| x - x_0 \| < r$. Then there exist constants $m', t_0 > 0$ such that ∇n and v are equal to zero for all (x, t) satisfying

$$\| x - x_0 \| < r - m't, \quad t < t_0.$$
Remark 1. A similar result, with identical proof, holds in a periodic domain. In this case, we assume \(u \in L_2((0, T); \text{Sol}_1^2(T)) \cap L_2((0, T); W_2^2(T)) \) and take \(\Psi = 1 \).

Corollary 3.4. Consider a solution \((u, v, n, p)\) of the problem (3)–(5), (6) in the periodic domain, as given in Definition 2.1.

Assume also that the initial conditions \(n_0 \) and \(v_0 \) are such that \(\nabla n_0 \) and \(v_0 \) vanish for \(\|x - x_0\| < r \). Then there exist constants \(m^* \) to \(> 0 \) such that \(\nabla n \) and \(v \) are equal to zero for all \((x, t)\) satisfying

\[
|x - x_0| < r - m^*t, \quad t < t_0
\]

If \((u, v, n, p)\) is the solution to problem (3)–(6), (7) in a bounded domain, we need to assume, in addition, that \(v, \nabla n \) vanish in some neighborhood of the boundary \(\partial \Omega \).

4. Solutions with Neumann-type boundary conditions

The problem considered in Section 3 has an important drawback: the director vector field is assumed to be constant near the boundary. As shown below, this condition can be neglected if we change the boundary conditions.

Suppose that \(K_1 = K = K \) and consider the domain \(\Omega \) as being a cuboid, i.e. \(\Omega = \prod_{i=1}^{3} (a_i, b_i) \), where \(-\infty < a_i < b_i < \infty\).

The equations of motion are (3)–(5) with initial conditions (6), but instead of the boundary conditions (7), we require

\[
u_i N_i^\perp \bigg|_{(0, T) \times \partial \Omega} = 0 \quad \forall r \perp N = 0
\]

The boundary condition on the director field \(n \) and the variable \(v \) are

\[
\nu_i N_i^\perp \bigg|_{(0, T) \times \partial \Omega} = 0 \quad \text{and} \quad \nu_n N_i^\perp \bigg|_{\partial \Omega} = 0
\]

Definition 4.1. The quadruple \((u, v, n, \nabla p)\) is a strong solution to problem (3)–(6), (11), (12) in the domain \(Q_T \) if

- \(u \) is a vector field in \(L_2((0, T); \text{Sol}_1^2(\Omega) \cap L_2((0, T); W_2^2(\Omega)), u_t \in L_2(Q_T) \);
- \(v \) is a vector field in \(L_\infty((0, T); W_2^2(\Omega)), v_t \in L_\infty((0, T); L_2(\Omega)) \);
- \(n \) is a vector field in \(L_\infty((0, T); W_2^2(\Omega)), n_1 \) is a given constant vector field, and \(n_t \in L_\infty((0, T); W_2^2(\Omega)) \);
- \(\nabla p \in L_2(Q_T) \);
- \(u, n, v \) satisfy the initial conditions (6), i.e. \((u, n, v) \rightarrow (u_0, n_0, v_0) \) in \(L_2(\Omega) \);
- Eqs. (3)–(5) and boundary conditions (11), (12) hold almost everywhere.

Theorem 4.2. Assume that \(\Omega \) is the cuboid \(\prod_{i=1}^{3} (a_i, b_i) \) with \(-\infty < a_i < b_i < \infty \). Let \(n_0 \in W_2^2(\Omega), \nu_n N_i^\perp \bigg|_{\partial \Omega} = 0, v_0 \in W_2^2(\Omega), u_0 \in \text{Sol}_1^2(\Omega) \cap W_2^2(\Omega), u_0^3 N_i^\perp \bigg|_{\partial \Omega} = 0 \). Suppose also that \(F \in L_2((0, T); W_2^2(\Omega)), G \in L_1((0, T); W_2^2(\Omega)), \) and \(C^i N_i^\perp \bigg|_{\partial \Omega} = 0 \).

Then problem (3)–(6), (11), (12) has a unique solution in \(Q_T \) for some \(T > 0 \).

References