Skip to Main content Skip to Navigation

Minimalistic CNN-based ensemble model for gender prediction from face images

Abstract : Despite being extensively studied in the literature, the problem of gender recognition from face images remains difficult when dealing with unconstrained images in a cross-dataset protocol. In this work, we propose a convolutional neural network ensemble model to improve the state-of-the-art accuracy of gender recognition from face images on one of the most challenging face image datasets today, LFW (Labeled Faces in the Wild). We find that convolutional neural networks need significantly less training data to obtain the state-of-the-art performance than previously proposed methods. Furthermore, our ensemble model is deliberately designed in a way that both its memory requirements and running time are minimized. This allows us to envision a potential usage of the constructed model in embedded devices or in a cloud platform for an intensive use on massive image databases.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01380573
Contributor : Grigory Antipov <>
Submitted on : Thursday, October 13, 2016 - 10:47:55 AM
Last modification on : Thursday, January 11, 2018 - 6:19:28 AM

Identifiers

Collections

Citation

Grigory Antipov, Sid-Ahmed Berrani, Jean Luc Dugelay. Minimalistic CNN-based ensemble model for gender prediction from face images. Pattern Recognition Letters, Elsevier, 2016, 70, pp.59-65. ⟨10.1016/j.patrec.2015.11.011⟩. ⟨hal-01380573⟩

Share

Metrics

Record views

169