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Abstract. This paper presents a theoretical framework for exploring
temporal data, using Relational Concept Analysis (RCA), in order to
extract frequent sequential patterns that can be interpreted by domain
experts. Our proposal is to transpose sequences within relational con-
texts, on which RCA can be applied. To help result analysis, we build
closed partially-ordered patterns (cpo-patterns), that are synthetic and
easy to read for experts. Each cpo-pattern is associated to a concept ex-
tent which is a set of temporal objects. Moreover, RCA allows to build
hierarchies of cpo-patterns with two generalisation levels, regarding the
structure of cpo-patterns and the items. The benefits of our approach
are discussed with respect to pattern structures.

1 Introduction

Different approaches have been designed to explore datasets containing relational
data [10]. Relational Concept Analysis (RCA, [19]) classifies sets of objects de-
scribed by attributes and relations, allowing the discovery of knowledge patterns
and implication rules in relational datasets. RCA has been applied to various
data, e.g. for software model analysis and re-engineering [2,9]. The RCA result
is a family of interconnected concept lattices, where each lattice can have a
huge number of concepts. Consequently, in order to facilitate the analysis step
of the RCA output some special procedures for selecting relevant concepts or
facilitating the navigation are compulsory.

This paper focuses on exploring qualitative temporal data using RCA, relying
on its capability of classifying relational data and its hierarchical results which
facilitate the analysis step. Although there exist well-known methods for mining
temporal data, our aim is to explore the benefits of RCA, that structures the
temporal patterns in a lattice allowing the navigation amongst them. We present
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a theoretical framework for this purpose, that is based on a temporal data model
emphasizing a main lattice (i.e. containing the objects of interest) from the
RCA results. Any concept of the main lattice corresponds to a set of sequential
patterns that is synthesized into a closed partially-ordered pattern (cpo-pattern,
[6]) to ease the analysis step. Indeed, such patterns are compact, contain the
same information as the sets of sequential patterns they synthesize, and are easy
to interpret. On this basis, we proceed as follows (Fig. 1). Firstly, we apply
RCA on a relational context family containing the temporal data. Secondly, we
extract the sequential patterns starting from the main lattice concepts, and build
the cpo-patterns. Furthermore, thanks to the hierarchical structure of the RCA
output, more or less general patterns can appear, allowing the exploration of the
space of cpo-patterns from common to particular trends or vice versa without
extra processing being required.

Fig. 1: Analysis process schema

The result obtained can be compared to pattern structures [14], that allow
to build lattices on various data and especially graphs. As far as we know, this is
still an open question to connect graph pattern structures and the set of graphs
that can be built from the set of interconnected lattices of specific instantiations
of RCA (like we do). To answer the question in the general case, we must consider
the variety of scaling operators. Here we focus on the existential scaling operator.

The paper is structured as follows. Section 2 gives some theoretical back-
ground of our work. Section 3 introduces RCA relying on a simple temporal
example. Section 4 details the RCA properties allowing to extract and to or-
ganise cpo-patterns into a hierarchy, and discusses our approach with respect
to pattern structures. In addition, the whole method is described based on the
same simple example. Section 5 presents related work. Section 6 concludes and
gives a few perspectives of this work.

2 Background

Our approach relies both on sequential patterns and formal concept analysis
domains.
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2.1 Sequences, Sequential Patterns and PO-patterns

Let I = {I1, I2, ..., Im} be a set of items. An itemset IS is a non empty, un-
ordered, set of items, IS = (Ij1...Ijk) where Iji ∈ I. Let IS be the set of all
itemsets built from I. A sequence S is a non empty ordered list of itemsets, S =
〈IS1IS2...ISp〉 where ISj ∈ IS. The sequence S is a subsequence of another se-
quence S′ = 〈IS′

1IS
′
2...IS

′
q〉, denoted as S �s S

′, if p ≤ q and if there are integers
j1 < j2 < ... < jk < ... < jp such that IS1 ⊆ IS′

j1
, IS2 ⊆ IS′

j2
, ..., ISp ⊆ IS′

jp
.

Suppose now that there is a partial order on the items, (I,≤). Then the order
on itemsets is defined as follows: IS ⊆H IS′ if ∀Ij ∈ IS,∃Ij′ ∈ IS′, Ij′ ≤ Ij and
j 6= k → j′ 6= k′. The order on sequences is defined accordingly.

Sequential patterns have been defined by [1] as frequent subsequences found
in a sequence database. A sequential pattern is associated to a support, i.e. the
number of sequences containing the pattern. Formally, the support of a sequential
pattern M extracted from a sequence database DS is defined as:

Support(M) = |{S ∈ DS |M �s S}| (1)

Partially ordered patterns, po-patterns, have been introduced by [6], to syn-
thesise sets of sequential patterns. Formally, a po-pattern is a directed acyclic
graph G = (V, E , l). V is the set of vertices, E is a set of directed edges such
that E ⊆ V ×V, and l is a labelling function mapping each vertex to an itemset.
With such a structure, we can determine a strict partial order on vertices u and
v such that u 6= v, i.e. u < v if there is a directed path from u to v. However, if
there is no directed path from u to v, these elements are not comparable. Each
path of the graph is a sequential pattern as defined before. The set of paths in
G is denoted by PG. A po-pattern is associated to the set of sequences SG that
contain all paths of PG. Following Eq. 1, the support of a po-pattern is defined
as:

Support(G) = |SG| = |{S ∈ DS |∀M ∈ PG,M �s S}| (2)

Furthermore, let G and G′ be two po-patterns with PG and PG′ their sets of
paths. G′ is a sub po-pattern of G, denoted by G′ �g G, if ∀M ′ ∈ PG′ ,∃M ∈ PG

such thatM ′ �s M . A po-patternG is closed, denoted cpo-pattern, if there exists
no po-pattern G′ such that G ≺g G

′ with SG = SG′ .

2.2 FCA and Pattern Structures

Formal Concept Analysis (FCA, [15]) considers a formal context which is a set
of objects described by attributes, and builds from it a concept lattice used to
analyse the objects. Concisely, a formal context K is a 3-tuple (G,M, I), where G
is a set of objects, M a set of attributes, and I the incidence relation, I ⊆ G×M .
C = (X,Y ) where X = {g ∈ G|∀m ∈ Y, (g,m) ∈ I} and Y = {m ∈ M |∀g ∈
X, (g,m) ∈ I} is a formal concept built from K. X and Y are respectively the
extent and the intent of the concept. Let CK be the set of all formal concepts
that can be built on K. Let C1 = (X1, Y1) and C2 = (X2, Y2) be two concepts
from CK , the concept generalisation order �CK

is here defined by C1 �CK
C2 if



4 Nica et al.

and only if X1 ⊆ X2 (which is equivalent to Y2 ⊆ Y1). LK=(CK , �CK
) is the

concept lattice built from K. We denote by >(LK) the concept from LK whose
extent has all the objects, and by ⊥(LK) the concept from LK whose intent has
all the attributes.

FCA is designed to deal with binary contexts, whereas attributes can be of
various forms, e.g. intervals, multi-valued, etc. To generalise the FCA approach,
[14] proposed to use pattern structures. A pattern structure (G, (D,u), δ) gives
a description of a set of objects G by a set of descriptions (patterns) in D, which
is provided with a similarity operation u, such that (D,u) is a meet-semilattice.
δ : G→ D maps objects to their description and should verify that {δ(g)|g ∈ G}
is a complete subsemilattice of (D,u). Patterns can be of different types, such
as vectors of intervals [16], sequences [5] or labelled graphs [14].

3 Relational Analysis of Temporal Data

We propose a general temporal modelling of sequential datasets that allows the
assessment of relationships between qualitative temporal objects. Here, we use a
toy example from the medical domain, which is illustrated in Fig. 2, to explain
our general approach.

In this example, we study the symptoms (S), e.g. fever, cough and fatigue,
that indicate the presence of viruses (V), e.g. influenza and hepatitis, in patients.
The symptoms and viruses are detected by medical examinations (ME) and viral
tests (VT), respectively. These physical examinations are identified by temporal
objects (Object, Date) where: Object represents the patient, and Date designates
the time when the physical examination was done. A patient can do several med-
ical examinations and viral tests. Symptoms, viruses, medical examinations and
viral tests are sets of objects. Viral tests are linked to viruses by some qualita-
tive binary relations has virus differentiated by the type of diagnosed virus, e.g.
A, B or C. Similarly, medical examinations are linked to symptoms by qualita-
tive relations has symptom (mS or hS) differentiated by the type of identified
symptoms, e.g. moderate or high. Viral tests/medical examinations and medical
examinations are linked by a temporal binary relation is preceded by (ipb) that
associates a viral test/medical examination to a medical examination if the viral
test/medical examination is preceded in time by the medical examination. There
is no temporal binary relation between viral tests since our aim is to study the
symptoms that prognosticate distinct types of viruses. In the following, based
on the relational character of the toy example, we apply RCA in order to mine
these qualitative temporal data.

RCA extends the purpose of FCA to relational data. RCA applies iteratively
FCA on a Relational Context Family (RCF). An RCF comprises a set K of
object-attribute contexts and a set R of object-object contexts. K contains n
object-attribute formal contexts Ki = (Gi,Mi, Ii) , i ∈ {1, ..., n}. R contains
m object-object relational contexts Rj = (Gk, Gl, rj) , j ∈ {1, ...,m}, where Gk

that we call the domain of the relation and Gl that we call the range of the
relation are respectively the sets of objects of Kk and Kl, and rj ⊆ Gk × Gl,
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with k, l ∈ {1, ..., n}. New attributes, called relational attributes, extend the
formal contexts by using object-object relations and already created concepts.
A relational attribute takes the syntactic form qrj (C), where q is a quantifier,
rj is a relation and C is a concept whose extent contains objects from the range
of rj . This paper uses the existential quantifier which, for a relational context
Rj = (Gk, Gl, rj), creates a relation ∃rj between an object o ∈ Gk and a concept
C = (X,Y ) of the lattice LKl

if rj (o)∩X 6= ∅. RCA process consists in applying
FCA first on each object-attribute context of an RCF, and then iteratively on
each object-attribute context extended by the relational attributes created using
the concepts from the previous step. The RCA result is obtained when the
families of lattices of two consecutive steps are isomorphic and the contexts are
unchanged.

Henceforth, we try to answer the following question by means of RCA: Can
outbreaks of Influenza A virus be recognised assessing the symptoms, e.g. FEVER
and COUGH, felt by patients?

Firstly, the RCA input (RCF) is built by following the temporal data model
illustrated in Fig. 2. Table 1 depicts an example of RCF on medical sequential
data collected during the last year. The three tables from the left hand side repre-
sent object-attribute contexts: KS (symptoms), KVT (viral tests) and KME (medical
examinations). For example, KME has no column, i.e. a medical examination is
described using qualitative binary relations, and the rows represent medical ex-
aminations identified by pairs such as P1 10/01, that is a medical examination
done by patient P1 on 10th of January. There is no object-attribute context of
viruses due to the set of viruses that contains only Influenza A virus. The four
tables from the right hand side represent object-object contexts: RVT-ipb-ME (vi-
ral test ipb medical examination), RME-ipb-ME (medical examination ipb medical
examination), RmS (medical examination detects a moderate symptom) and RhS

(medical examination detects a high symptom). For instance, RVT-ipb-ME has
viral tests as rows and medical examinations as columns. A cross indicates a link
between objects, e.g. the cell identified by the viral test P1 20/01 and the med-
ical examination P1 17/01 contains a cross since both are undergone by patient
P1 and 20/01 is preceded in time by 17/01.

Fig. 2: The modelling of the medical sequential dataset
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Table 1: RCF composed of object-attribute contexts: KS, KVT and KME; temporal
object-object contexts: RVT-ipb-ME and RME-ipb-ME; qualitative object-object
contexts: RmS and RhS.

Object-attribute contexts Object-object contexts

KS F
E
V
E
R

C
O
U
G
H

FEVER ×
COUGH ×

KVT

P1 20/01
P1 28/12
P2 30/02
P2 15/07

KME

P1 17/01
P1 10/01
P1 25/12
P2 28/02
P2 20/02
P2 11/07

RVT-ipb-ME P
1
1
7
/
0
1

P
1
1
0
/
0
1

P
1
2
5
/
1
2

P
2
2
8
/
0
2

P
2
2
0
/
0
2

P
2
1
1
/
0
7

P1 20/01 × ×
P1 28/12 ×
P2 30/02 × ×
P2 15/07 ×

RME-ipb-ME P
1
1
7
/
0
1

P
1
1
0
/
0
1

P
1
2
5
/
1
2

P
2
2
8
/
0
2

P
2
2
0
/
0
2

P
2
1
1
/
0
7

P1 17/01 ×
P1 10/01
P1 25/12
P2 28/02 ×
P2 20/02
P2 11/07

RmS F
E
V
E
R

C
O
U
G
H

P1 17/01 × ×
P1 10/01
P1 25/12 ×
P2 28/02 × ×
P2 20/02
P2 11/07 ×

RhS F
E
V
E
R

C
O
U
G
H

P1 17/01
P1 10/01 ×
P1 25/12 ×
P2 28/02
P2 20/02 ×
P2 11/07 ×

Secondly, RCA is applied on the RCF shown in Table 1 and the result is given
in Fig. 3. There is a lattice for each object-attribute context: LKME (medical exam-
inations), LKS (symptoms) and LKVT (viral tests). LKME and LKVT are modified dur-
ing the iterative steps due to the temporal and qualitative object-object contexts
that have the domain KME and KVT, respectively. Each concept is represented by
a box structured from top to bottom as follows: concept name, simplified in-
tent, simplified extent. The representation of each lattice is simplified as every
attribute/object is top-down/bottom-up inherited. Thus, an attribute/object is
shown only in the highest/lowest concept where it appears. For example, the in-
tent of concept CKME 4 from LKME contains the relational attributes ∃RmS(CKS 3)
and ∃RhS(CKS 3) inherited from concepts CKME 10 and CKME 9, respectively; the
extent contains the objects P1 25/12 and P2 11/07 inherited respectively from
concepts CKME 3 and CKME 2. The arrows represent the generalisation order. The
navigation amongst these lattices follows the concepts used to build relational
attributes, e.g. the aforementioned ∃RhS(CKS 3) allows us to navigate from the
concept CKME 4 from LKME to concept CKS 3 out of LKS.

4 Extracting CPO-patterns from RCA Result

We focus here on lattices built on temporal objects. Furthermore, let us recall
that we consider a main lattice, which contains the objects of interest (in the
toy example, the viral tests allowing the diagnosis on a patient). In addition,
concepts in these lattices contain two types of relational attributes: 1) qualita-
tive relational attributes and 2) temporal relational attributes. The range of a
qualitative attribute is a concept which represents parameters (e.g. virus, symp-
tom). The range of a temporal attribute is a concept that represents temporal
observations (e.g. medical examinations).

4.1 Proposition

In this section we give some useful properties of RCA results that help the
extraction process of cpo-patterns. A temporal object in the extent of a concept
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CKME_0
 
 

CKME_5
∃RME-ipb-ME(CKME_0)
∃RME-ipb-ME(CKME_9)
∃RME-ipb-ME(CKME_6)

P1_17/01
P2_28/02

CKME_7
∃RmS(CKS_2)

 

CKME_8
∃RmS(CKS_1)

 

CKME_1
*
 

CKME_2
∃RhS(CKS_1)

P2_11/07

CKME_3
 

P1_25/12

CKME_9
∃RhS(CKS_3)

 

CKME_6
∃RhS(CKS_2)

P1_10/01
P2_20/02

CKME_4
 
 

CKME_10
∃RmS(CKS_3)

 

(a) LKME

CKS_3
 
 

CKS_2
FEVER
FEVER

CKS_0
 
 

CKS_1
COUGH
COUGH

(b) LKS

CKVT_0
∃RVT-ipb-ME(CKME_0)
∃RVT-ipb-ME(CKME_9)
∃RVT-ipb-ME(CKME_10)

 

CKVT_5
∃RVT-ipb-ME(CKME_5)

P1_20/01
P2_30/02

CKVT_7
∃RVT-ipb-ME(CKME_6)
∃RVT-ipb-ME(CKME_8)

 

CKVT_6
∃RVT-ipb-ME(CKME_7)

 

CKVT_1
∃RVT-ipb-ME(CKME_1)

 

CKVT_2
∃RVT-ipb-ME(CKME_2)

P2_15/07

CKVT_3
∃RVT-ipb-ME(CKME_3)

P1_28/12

CKVT_4
∃RVT-ipb-ME(CKME_4)

 

(c) LKVT

Fig. 3: The concept lattice family obtained by applying RCA on the RCF given
in Table 1. The ∗ symbol represents all the relational attributes of KME

from the main lattice is associated to a temporal sequence (e.g. the sequence of
medical examinations before the final viral test). A concept extent represents
thus a set of sequences. Navigating the relational attributes allows to reveal
sequential patterns contained in all these sequences, as explained below.

Property 1. Each temporal relational attribute in a concept intent of the main
lattice allows to extract at least one sequential pattern. On the contrary, if there
is no temporal relational attribute in a concept intent, this concept represents
no sequential pattern.

Indeed, let C be a concept of the main lattice and ∃t(C1) a temporal relational
attribute of its intent. If C1 intent contains a qualitative attribute ∃q(C2) then
C1 reveals an itemset of qualitative values (e.g. Feverhigh); if C1 intent contains
a temporal attribute ∃t(C2) then C1 leads to another itemset in the sequential
pattern, depending on C2 intent. The temporal relational attributes reveal the
position of the itemset (in the sequential pattern). If C1 intent contains no
temporal attribute, the sequential pattern is finished.

A naive approach to extract sequential patterns out of a concept intent takes
into account all its qualitative and temporal relational attributes. Nevertheless,
some properties of the RCA results can be used to improve the extraction pro-
cess. In the following, properties 2 and 3 are introduced to reduce redundancy
by considering only the relational attributes pointing the most specific concepts,
and to prune temporal relational attributes that can be deduced by transitivity.
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Property 2. Let C1 = (X1, Y1) ∈ LK and C2 = (X2, Y2) ∈ LK be two concepts
such that C1 �CK

C2. Let C = (X,Y ) be a concept which intent has two
relational attributes ∃r(C1) and ∃r(C2) (derived from the same relation r). Then
∃r(C1)→ ∃r(C2).

Proof. ∃r(C1) ∈ intent(C)↔ ∀o ∈ X, r(o)∩X1 6= ∅. Since C1 �CK
C2, X1 ⊆ X2,

and thus r(o) ∩X2 6= ∅ ↔ ∃r(C2) ∈ intent(C).

Hence, the relational attributes are ordered and ∃r(C2) is redundant in the
interpretation of C.

Property 3. Let t be the temporal relation. Let C, C1 and C2 be three con-
cepts such that {∃t(C1),∃t(C2)} ⊆ intent(C), and ∃t(C2) ∈ intent(C1). Then
∃t(C2) ∈ intent(C) can be deduced from ∃t(C1) ∈ intent(C).

Proof. The property 3 is directly obtained from the transitivity of the t relation.

In order to facilitate the analysis step the sets of sequential patterns extracted
from the RCA result are then converted into cpo-patterns. We use therefore the
pruning and merging steps proposed by [12].

Property 4. Let C be a concept of the main lattice whose intent contains at
least one temporal attribute. Then C can be associated to a cpo-pattern that
summarises the set of sequential patterns deriving from C. Conversely, the cpo-
pattern is associated to the extent of C and its support is |extent(C)|.

Proof. A set of sequential patterns can be transformed into po-patterns [6]. A po-
pattern associated to a concept is closed since the corresponding set of sequences
is maximal or equivalently the concept extent is maximal.

Property 5. The set of cpo-patterns associated to the main lattice is ordered
according to the inclusion on extents. This order corresponds to the subsumption
on graphs �g (cf. Section 2).

Proof. Let G and G′ be two cpo-patterns with PG and PG′ their sets of paths.
Suppose G (resp. G′) is associated to a concept C = (X,Y ) (resp. C ′ = (X ′, Y ′))
and X ⊆ X ′. Then Y ′ ⊆ Y ↔ ∀a ∈ Y ′, a ∈ Y . Then ∀M ′ ∈ PG′ ,∃M ∈
PG,M

′ �s M → G′ �g G.

4.2 Characterising CPO-patterns

To characterise the items in the extracted sequential patterns, the qualitative
relational attributes are analysed. To this end, we define two types of relational
attributes, depending on the generality or specificity of the concept they point
to.

Definition 1 (Vague/Defined Relational Attribute). The relational at-
tribute ∃r(C1), where C1 is a concept of lattice LK , is called Vague if C1 ≡
>(LK), respectively it is Defined if C1 ≺CK

>(LK).
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Relying on the taxonomy of items revealed by RCA, we define three types of
items that disclose abstract and concrete information from the analysed data as
follows:

– let C be a concept whose intent has no qualitative relational attribute, e.g.
CKME 0, see Fig. 3. Then the extracted item is an abstract item, denoted
by ”??”. The abstract item describes a collection of objects which point out
the occurrence of dissimilar parameters having dissimilar qualities;

– let C be a concept whose intent contains a vague qualitative relational at-
tribute ∃quality(>) (e.g. CKME 10). The extracted item is an abstract qual-
itative item, denoted by ”?quality”. The abstract qualitative item describes a
collection of objects which point out the occurrence of dissimilar parameters
having the same quality;

– let C be a concept whose intent contains a defined qualitative relational
attribute ∃quality(C1), with extent(C1) = {value} (e.g. CKME 7). The ex-
tracted item is a concrete qualitative item, denoted by ”valuequality”.
The concrete qualitative item describes a collection of objects which point
out the occurrence of the same concrete parameter having the same quality.

These types of items allow us to define the partial order (I,≤) on the ex-
tracted items. For every value from the parameter set and every quality from
the qualitative relations the relation ≤ is defined as follows:

– valuequality ≤ ?quality
– ?quality ≤ ??
– valuequality ≤ ??
– valuequality ≤ valuequality .

The various extracted items allow us to introduce three new types of cpo-
patterns.

Definition 2 (Abstract/Hybrid/Concrete cpo-pattern). A cpo-pattern is
as follows:

– Abstract if it contains only abstract and/or abstract qualitative items;
– Hybrid if it contains abstract and/or abstract qualitative items and concrete

qualitative items;
– Concrete if it contains only concrete qualitative items.

Hybrid patterns can be characterised using a measure of precision referred
to as accuracy.

Definition 3 (Accuracy(υ)). Let G be a cpo-pattern and IG the multiset of
items labelling the nodes of G (∀I ∈ IG, I ∈ I). Let IcG be the subset of IG
containing the concrete qualitative items. The accuracy of G is defined as the
ratio of the number of items in IcG to the total number of items in IG.

υ(G) =
|IcG|
|IG|

∈ [0, 1] (3)

If G is abstract, υ(G) = 0; if G is concrete υ(G) = 1.



10 Nica et al.

4.3 RCA based CPO-patterns vs. Pattern Structures

In a previous work [12], cpo-patterns were directly extracted from sequences,
using a sequential pattern mining algorithm. In these cpo-patterns, there is no
order on the set of items I, i.e. there are only concrete items. The resulting set
of cpo-patterns, D, with the intersection operation on graphs u allows to build
a pattern structure (G, (D,u), δ) where G is the set of objects described by the
cpo-patterns, through the δ relation.

The resulting lattice can be compared to the hierarchy of cpo-patterns built in
our RCA-based approach. Firstly, in our approach, the hierarchy is built directly
from the RCA result. Secondly our approach produces a hierarchy of items and
thus more general cpo-patterns than in [12]. Finally, the RCA-approach allows
both to navigate along the sequences and to synthesize them within cpo-patterns.

4.4 Implementation with the Toy Example

To illustrate our method, let us examine the concept CKVT 6 of LKV T (Fig.
3(c)). Its intent contains four temporal relational attributes, the most specific
being ∃RVT-ipb-ME(CKME 7) and ∃RVT-ipb-ME(CKME 9). On the contrary, the
intents of concepts CKME 7 and CKME 9 (Fig. 3(a)) contain no temporal rela-
tional attribute. Accordingly, the chains of concepts starting from CKVT 6 are
〈(CKVT 6)(CKME 7)〉 and 〈(CKVT 6)(CKME 9)〉 as shown in Fig. 4. From these chains
two sequential patterns can be extracted, denoted respectively S1CKVT 6 and
S2CKVT 6.

Relying on the aforementioned types of items, the itemsets of S1CKVT 6 and
S2CKVT 6 can be defined. Both extracted chains of concepts begin with CKVT 6 that
by default represents the concrete qualitative item ”InfluenzaA”. The intent of
concept CKME 7 contains both types of qualitative relational attributes: the vague
∃RmS(CKS 3) and the defined ∃RmS(CKS 2). CKS 2 ≺CKS

CKS 3 (Fig. 3(b)), there-
fore the interpretation of CKME 7 is based on ∃RmS(CKS 2) that represents the
concrete qualitative item ”FEVERmoderate”. Accordingly, the extracted sequen-
tial pattern is S1CKVT 6 = 〈(InfluenzaA)(FEVERmoderate)〉. Following the same
principle, the intent of CKME 9 has only the vague qualitative relational attribute
∃RhS(CKS 3) that represents the abstract qualitative item ”?high”. Consequently,

Fig. 4: The set of concept intents/extents used to interpret the concept CKVT 6
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the extracted sequential pattern is S2CKVT 6 = 〈(InfluenzaA)(?high)〉. The full set
of concept intents and extents navigated by our approach is shown in Fig. 4. The
cpo-pattern summarising the two sequential patterns is depicted in Fig. 5 (b).

Fig. 5: An excerpt from the hierarchy of cpo-patterns obtained for the RCF out
of Table 1. The (d) cpo-pattern is extracted by adding new medical examinations
to the RCF

Following our method, i.e. extracting one cpo-pattern for each concept of the
main lattice (Fig. 3(c)), a hierarchy of cpo-patterns is obtained. In Fig. 5, the
abstract, hybrid and concrete cpo-patterns represent respectively the intent of
concepts CKVT 0, CKVT 6 and CKVT 7. The abstract cpo-pattern (Fig. 5(a)) sub-
sumes a group of cpo-patterns that share the less accurate common trend: often
before Influenza A virus patients felt in any order a high symptom and another
moderate symptom. The hybrid cpo-pattern (Fig. 5(b)) subsumes a subgroup of
the aforementioned group, i.e. it is a specialisation of the abstract pattern (Fig.
5(a)). This subgroup encapsulates individual cpo-patterns that share the more
or less accurate common trend: less often before Influenza A virus patients felt
in any order moderate FEVER and another high symptom. The concrete cpo-
pattern (Fig. 5(c)) is another specialisation of the abstract pattern (Fig. 5(a)).
This pattern subsumes a subgroup of individual cpo-patterns that share the ac-
curate common trend: less often before Influenza A virus patients felt in any
order moderate COUGH and high FEVER. The concrete cpo-pattern depicted
in Fig. 5(d) is extracted if new medical examinations are added to the RCF from
Table 1. This pattern highlights the two generalization levels of the extracted
hierarchy. Firstly, the structure of this pattern is more specific than the struc-
ture of the ancestors of the pattern, i.e. this pattern contains more vertices and
more edges. Secondly, the generalisation of items is illustrated. For instance, the
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pattern reveals the rule {COUGHmoderate ,FEVERhigh} ⇒ {InfluenzaA} that is
a specialisation of the rule {FEVERhigh} ⇒ {InfluenzaA} revealed by Fig. 5(c).

5 Related Work

To our knowledge, this is the first time that RCA is used to explore sequential
datasets. There are, however, various related FCA approaches, e.g. [22] intro-
duced Temporal Concept Analysis where objects are characterised with a date
and a state (i.e. a set of attributes). Data are merged into a single context, and
the resulting concept lattice is analysed thanks to the date element in the con-
cepts, so that temporal relations between concepts are actually revealed by the
analyst. This approach has been used to analyse sequential data about crime
suspects [18]. In our RCA approach, the temporal relation between dates is con-
sidered as an object-object relation and it links concepts from several lattices.
In [13], sequential datasets are processed without involving any partial order. In
[6], closed subsequences are mined and then grouped in a lattice similar to an
FCA lattice. In [4], sequential data are mapped onto pattern structures whose
projections are used to build a pattern concept lattice. The authors combine the
stability of concepts and the projections of pattern structures in order to select
relevant patterns.

Besides, there exist various methods to explore qualitative sequential data.
Indeed, sequential pattern mining is an active research area, in relation to the
exponential growth of temporal and spatio-temporal databases. Sequential pat-
terns have been introduced by [1] and used for different purposes, e.g. classifi-
cation [7] or prediction [21]. Such an approach has been developed within the
Fresqueau project and focused on cpo-patterns, which were selected through
various measures [11]. Sequential pattern mining approaches are more efficient
from a scalability point of view, but RCA enables to deepen the result analysis
by navigating within the lattice family. Moreover it reveals a taxonomy from the
data, that can be used to organise the cpo-patterns. Such results can be related
to [20], where generalized sequential patterns are extracted based on a user-given
taxonomy. RCA allows to discover this taxonomy.

Some authors proposed to combine RCA and pattern structures. In [8] RCA
is adapted to integrate a description of G1, a set of source objects with descrip-
tors (coming from a pattern structure (G1, (D,u), δ)) and relational attributes
to a set of concepts on a target formal context (G2,M2, I2). The relational at-
tributes are built for a relation r ⊆ G1 × G2 and the usual scaling operators,
like ∃ or ∀∃. This is formalized as a ”heterogeneous pattern structure”. An ap-
plication to Information Research domain is described, where source objects are
documents, descriptors are vectors of intervals of LV values, target objects are
terms grouped into concepts when they have same meaning (represented by a
synset), and the relation r connects documents to their included terms. LV are
Latent Variables that abstract hidden topics spread over the documents. Finally,
there is no extraction of complex graph patterns as in our case, since there is only
one relation and descriptors in the initial pattern structure are interval vectors.
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6 Conclusion

In this paper, we have presented a theoretical framework for exploring tempo-
ral data using RCA. Our work proposes a comprehensive process for exploring
sequential datasets which spans: 1) the relational analysis step that relies on a
temporal data model which allows to emphasize the objects of interest in the
study and 2) the extraction step of cpo-patterns from the RCA result.

The result is a hierarchy of cpo-patterns associated to sets of temporal ob-
jects, that can be compared to a lattice of pattern structures. With respect to
pattern structures, the proposed approach, thanks to RCA, allows both to nav-
igate along the sequences and to build a set of cpo-patterns including various
levels of generalisation.

Our method was applied to sequential datasets, dealing with biological and
physico-chemical parameters sampled in waterbodies [3]. Data were collected
from french databases during the ANR 11 MONU 14 Fresqueau project. Results
showing the effectiveness of our approach on large datasets are presented in [17]
and are available at a website3.

In the future, we will test our approach on other relational data such as spatial
data, where various relations can be considered together (topology, distance,
orientation).
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