Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

THE BV ALGEBRA IN STRING TOPOLOGY OF CLASSIFYING SPACES

Abstract : For almost any compact connected Lie group $G$ and any field $\mathbb{F}_p$, we compute the Batalin-Vilkovisky algebra $H^{*+\text{dim }G}(LBG;\mathbb{F}_p)$ on the loop cohomology of the classifying space introduced by Chataur and the second author. In particular, if $p$ is odd or $p=0$, this Batalin-Vilkovisky algebra is isomorphic to the Hochschild cohomology $HH^*(H_*(G),H_*(G))$. Over $\mathbb{F}_2$, such isomorphism of Batalin-Vilkovisky algebras does not hold when $G=SO(3)$ or $G=G_2$.
Complete list of metadatas

Cited literature [38 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01380391
Contributor : Luc Menichi <>
Submitted on : Thursday, October 13, 2016 - 8:48:52 AM
Last modification on : Monday, March 9, 2020 - 6:15:53 PM
Document(s) archivé(s) le : Saturday, February 4, 2017 - 8:53:32 PM

Files

loop_coproducts_onBG10.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01380391, version 1
  • ARXIV : 1610.03970

Collections

Citation

Katsuhiko Kuribayashi, Luc Menichi. THE BV ALGEBRA IN STRING TOPOLOGY OF CLASSIFYING SPACES. 2016. ⟨hal-01380391⟩

Share

Metrics

Record views

193

Files downloads

164