Initial-boundary value problem for the heat equation - A stochastic algorithm

Madalina Deaconu 1, 2 Samuel Herrmann 3
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : The initial-boundary value problem for the heat equation is solved by using an algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Dirichlet problem for Laplace’s equation, its implementation is rather easy. The construction of this algorithm can be considered as a natural consequence of previous works the authors completed on the hitting time approximation for Bessel processes and Brownian motion [Ann. Appl. Probab. 23 (2013) 2259–2289, Math. Comput. Simulation 135 (2017) 28–38, Bernoulli 23 (2017) 3744–3771]. A similar procedure was introduced previously in the paper [Random Processes for Classical Equations of Mathematical Physics (1989) Kluwer Academic]. The definition of the random walk is based on a particular mean value formula for the heat equation. We present here a probabilistic view of this formula. The aim of the paper is to prove convergence results for this algorithm and to illustrate them by numerical examples. These examples permit to emphasize the efficiency and accuracy of the algorithm.
Type de document :
Article dans une revue
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (3), pp.1943-1976. 〈10.1214/17-AAP1348〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01380365
Contributeur : Samuel Herrmann <>
Soumis le : mercredi 12 octobre 2016 - 22:17:52
Dernière modification le : jeudi 11 octobre 2018 - 01:19:43
Document(s) archivé(s) le : samedi 4 février 2017 - 20:49:36

Fichiers

space-time-dirichlet-HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Madalina Deaconu, Samuel Herrmann. Initial-boundary value problem for the heat equation - A stochastic algorithm. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (3), pp.1943-1976. 〈10.1214/17-AAP1348〉. 〈hal-01380365〉

Partager

Métriques

Consultations de la notice

614

Téléchargements de fichiers

289