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Abstract

Seeking for quantitative tomographic images, it is of utmost importance to limit recon-

struction artifacts. Detector imperfections, inhomogeneity of the incident beam, as

classically observed in synchrotron beamlines, and their variations in time are a major

cause of reconstruction bias such as “ring artifacts”. The present study aims at propos-

ing a faithful estimate of the incident beam local intensity for each acquired projection

during a scan, without revisiting the process of data acquisition itself. Actual flat-fields

(acquired without specimen in the beam) and sinogram borders (when the specimen

is present), which are not masked during the scan, are exploited to construct a suited

instantaneous detector-wide flat-field. The proposed treatment is fast and simple. Its

performance is assessed on a real scan acquired at ESRF ID19 beamline. Different cri-

teria are used including residuals, i.e., difference between projections of reconstruction

and actual projections. All confirm the benefit of the proposed procedure.
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1. Introduction

Computed Tomography (CT) is a 3D imaging technique based on X-ray absorption

of materials that provides a 3D volume of a material from a collection of 2D X-

ray projections. To deal with the reconstruction procedure (i.e., an inverse Radon

transform), many algorithms are used such as Filtered Back Projection (FBP) or

algebraic methods (Kak & Slaney, 1988).

The quality of reconstructed volume in CT is affected (Vidal et al., 2005; Boas

& Fleischmann, 2012) for example by noise, phase contrast, beam-hardening (due

to polychromatic X-ray beam), unsteady beam intensity or defective pixels of the

detector. Because of the reconstruction technique, a systematic error on a detector

site will produce a trace over half a circle or a complete one depending on the range

of angles used (usually π-rotation for parallel beam tomography, whereas a full 2π

angular range for cone or fan beams). Such marks are called Ring Artifacts (RAs).

They are caused by different phenomena originating either from the detector (i.e.,

scintillator and camera), from spatial inhomogeneities of the beam itself or the optical

elements along the line (e.g., monochromator) (Antoine et al., 2002; Rack et al., 2011).

They are always present, although the increasing quality of the detectors, beamlines or

sources tend to make them less apparent. However, in the quest for faster tomography

or any other challenging specimen image acquisition (Baruchel et al., 2006) they tend

to reappear. When quantitative image analysis is to be performed (Maire & Withers,

2014) such artifacts may introduce a spurious image texture difficult to deal with

because of extended spatial correlations. Even if not perceived by bare eye, RA may

be revealed in residuals when digital volume correlation is used to follow the kinematics

of a specimen in time (Hild et al., 2011; Limodin et al., 2011). Let us stress that ring

artefacts are to be distinguished from “ringing artefacts”. The latter ones are the

manifestation of the Gibbs phenomenon (Hazewinkel, 2001) at sharp boundaries, and
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come from the band-limited nature of the representation of a signal.

Various procedures have been proposed to correct or reduce RAs, which are readily

available in most synchrotron facilities or lab tomographs (Stock, 2008). Corrections

are applied to the radiographs before reconstruction (Boin & Haibel, 2006; Münch

et al., 2009; Yousuf & Asaduzzaman, 2009; Sadi et al., 2010; Rashid et al., 2012)

where it is assumed that RAs are represented as vertical or horizontal lines in polar

coordinates. These lines are then to be filtered out. Corrections are also carried out

in a post-processing step after reconstruction (Antoine et al., 2002; Sijbers & Post-

nov, 2004; Axelsson et al., 2006). Yet, filtering RAs without degradation of the recon-

struction accuracy is still challenging. Another approach aiming at reducing RAs con-

sists in revisiting the experimental acquisition procedure (Davis & Elliott, 1997) but

it only concerns future acquisitions.

A good understanding of the origin of RAs is believed to offer strategies that should

outperform heuristic post-processing techniques. In particular, a detailed study of the

spatial and temporal inhomogeneity of the incident beam/detected signal (flat-field)

appears as promising (Titarenko et al., 2010b; Titarenko et al., 2010a; Baek et al.,

2015). However, when flat-field images are shot at different instants, they are observed

to vary with time (Davis & Elliott, 2006). A simple rescaling in time is not sufficient

and as discussed below even if time and space are naturally well-decoupled, different

modes are present. This observation was reported in particular by Van Nieuwenhove et

al. (Nieuwenhove et al., 2015) who propounded an elegant way of extracting those

modes from a Principal Component Analysis, or PCA (Abdi & Williams, 2010).

The purpose of the present paper is to propose a treatment of the flat-fields in

a similar spirit, yet with some differences. Contrary to standard flat-field correction

methods, it is proposed to describe the beam intensity variation in time by a combina-

tion of the different acquired flat-fields. The method uses the borders of the projections
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that are not masked by the specimen during the test to find the correspondence with

the flat-field borders so that the beam intensity can be faithfully interpolated in the

region masked by the specimen. The procedure requires a less costly determination of

the time evolution, which does not rely on a specific assumption of the actual sam-

ple projections. Further, it can incorporate additional enrichment whenever necessary

without difficulty. After having introduced the notations in Section 2, a methodology

for handling flat-fields and estimating the incoming beam intensity at each instant

of time is proposed in Section 3. The procedure is illustrated in Section 4 on a case

study, namely, a cast iron specimen that is CT scanned at the European Synchrotron

Radiation Facility (ESRF) in Grenoble (France). Comparison with standard handling

of flat-fields shows the benefit of the proposed incident beam normalization.

2. Statement of the problem and notations

Reconstruction is based on the relative beam intensity attenuation for each detector

position r = (r, z) (where z is parallel to the specimen rotation axis, and r is per-

pendicular to it) and rotation angle φ. The actual collected intensity I(r, φ) at time t

when the rotation angle is φ(t) is to be normalized with the intensity I0(r, t) recorded

without the sample on the beamline

s(r, φ) = − log(I(r, φ(t))/I0(r, t)) (1)

Note that, in the sequel, rotation angle φ and time t are used equivalently through the

correspondence φ(t) as t mostly refers to the sequential ordering of data acquisitions.

The difficulty is that I and I0 cannot be acquired simultaneously. The assumption

that I0 does not vary with time is only an approximation and hence I0 fields have

to be estimated at each instant t, although they are not available. What is generally

accessible is the acquisition of so-called flat-fields, fi(r) = f(r, ti), i.e., projections
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captured when the imaged sample has been moved away from the beamline. This is

achieved before t = t0 or after t = tN (i.e., the scan is completed). In some cases, the

scan is interrupted at specific times, say every 100 acquisitions, to capture intermediate

flat-fields, but this interruption requires to move the sample away from the beam,

which causes some delay and calls for a very accurate repositioning of the sample to

be able to carry out the reconstruction. Hence the number of these manipulations is

to be kept to a minimum.

These flat-fields fi provide an estimate of I0(r, t) for arbitrary times. Various inter-

polation procedures are considered using either a piecewise constant or linear temporal

variation. The underlying assumption is that the beam intensity is well approximated

by such an interpolation scheme. However, in a synchrotron beamline where electrons

are to be re-injected in the ring (Willmott, 2011) such a procedure may be a crude

approximation. Moreover other artifacts take place, either in the beam shape itself,

the X-ray optical elements along the path, on the scintillator, or the end imaging

device optics/camera.

Very recently, a major step forward has been proposed by Van Nieuwenhove et al.

(Nieuwenhove et al., 2015). Based on the acquisition of a long series of flat-fields prior

to a scan, the authors proposed to account for the time evolution of these flat-fields, or

rather the deviation from their temporal mean f(r), through a Principal Component

Analysis (PCA) such that only a few spatial fields ϕn(r) are to be extracted and it is

assumed that those fields provide a good estimate of I0(r, t) = f(r) +
∑

wn(t)ϕn(r)

where the weights wn(t) are unknown. The authors further proposed to estimate

those amplitudes in order to minimize the total variation of the attenuation image

I0(r, φ(t))/I(r, t). Additional steps are proposed in their procedure (e.g., non-local

means, intensity rescaling) and the reader is referred to their original publication

for details. The philosophy for accounting for the flat-field variation, in particular
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through PCA is extremely well suited to the problem, and the discussed examples in

Ref. (Nieuwenhove et al., 2015) showed a drastic reduction in the ring artifacts at the

modest expense of the determination of the library of flat “modes” ϕn(r), and their

amplitude wn(t) in time.

The purpose of the present paper is to propose a treatment of the flat-fields in a

similar spirit. However, the resulting procedure will not make a direct usage of PCA,

and no specific assumption regarding the texture of the scanned specimen is to be

postulated (such as a minimal total variation in r of s(r, φ)).

3. Space-time representation

The exploited data are a series of flat-fields, fj(r), j = 1, ..., Nf , and the entire set of

projections I(r, t). The complete detector area is called Ξ in the following. When the

specimen is in the beamline, more than often, its transverse dimensions are smaller

than the detector itself. Hence left and right edge regions, Ωl and Ωr with Ω = Ωl∪Ωr,

are available since never masked by the sample. These regions may be extended to

the top of the surface detector if the specimen height is smaller than the detector (on

ex-situ tests for example). The restriction of pixels r ∈ Ξ to these regions is denoted

as ρ ∈ Ω. Those edges are very appealing for our purpose as they coincide precisely

with I0(ρ, t) and will be called control regions. Therefore, on the one hand, a complete

coverage in time is available but only over part of the detector (i.e., spatially). On the

other hand, the flat-fields fj(r) cover the entire image, but only at a few instants of

time, tj , as schematically shown in Figure 1.

It is assumed that the time modulation of the beam affects the flat-fields in propor-

tion to the intensity, so that a correction c(r, t) of a reference flat-field fR is sought

under a multiplicative form

I0(r, t) = fR(r)c(r, t) (2)

IUCr macros version 2.1.10: 2016/01/28



7

In the same spirit as Ref. (Nieuwenhove et al., 2015), space and time are assumed to

be decoupled, so that PCA can provide a faithful representation of the logarithm of the

correction through a set of spatial modes Φn(r) (i.e., independent of time) modulated

in time by weights wn(t),

log(c(r, t)) =
∑
n

wn(t)Φn(r) (3)

The strategy is to exploit f(ρ, t) and I(ρ, t) images to estimate Φn(r) and wn(t).

(Let us note that Nieuwenhove et al. (Nieuwenhove et al., 2015) propose an additive

correction to c rather than to log(c) as performed herein). Likewise, the above additive

decomposition is rephrased as a series of multiplicative terms

c(r, t) =
∏
n

exp (wn(t)Φn(r)) (4)

3.1. Control regions

Because the sinogram borders Ω are never masked by the specimen during the

acquisition, the incident beam intensity I0(ρ, t) is equal to the measured one I(ρ, t)

over Ω. At zeroth order, these intensities are close to any flat-field and hence one is

chosen as a reference, fR(x). This allows us to work only with corrections, c, that are

close to unity s

I(ρ, t) = I0(ρ, t) = fR(ρ)c(ρ, t) (5)

It was checked that choosing another flat-field as a reference does not lead to any

difference. PCA decomposition (Abdi & Williams, 2010) is classically obtained through

the minimization of the quadratic difference between the logarithm of the full data

I(ρ, t), normalized by the reference flat-field, G(ρ, t) = log(I(ρ, t))− log(fR(ρ)), and

its space and time mode representation

Γ2 =

∥∥∥∥∥G(ρ, t)−
∑
n

wn(t)Φn(ρ)

∥∥∥∥∥
2

Ω

(6)
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where the norm ‖...‖2Ω implies a summation over the control regions Ω and time.

Usually a Euclidian norm is chosen. However, it may not be the most appropriate

norm to correctly represent medium frequencies. Because the Euclidian norm can

equivalently be computed in Fourier space, all frequencies are given the same weight

and the standard white noise will contribute dominantly to the norm and hide medium

frequency features. Filtering of the images with a Gaussian convolution permits low

and medium frequencies to be emphasized. The characteristic width of the Gaussian

will be of the order of 1 to 2 pixels. This convolution is a direct product in Fourier

space, and hence this low-pass filter can also be seen as using a weighted norm in

Fourier space. Hence, it is proposed to convolve G with a Gaussian as a pre-processing

step and compute its separated space and time modal representation.

Using the conventional normalization

∫
wn(t)2 dt = 1, the minimization of Γ leads

to 
wn(t) =

1∫
Φn(ρ)2 dρ

∫
G(ρ, t)G(ρ, t′)wn(t′) dρdt′

Φn(ρ) =

∫
G(ρ, t)wn(t) dt

(7)

This equation is written using the covariance, CG(t, t′) =

∫
G(ρ, t)G(ρ, t′) dρ, and its

eigenvalues, λn ∫
CG(t, t′)wn(t′)dt′ = λnwn(t) (8)

This decomposition is exact and complete when N temporal modes are considered,

with N the number of instants t where a frame is available. However, the interest of

PCA is to retain only the dominant Nm modes and truncate the remaining ones. The

choice of Nm can be performed based on the ranking of the eigenvalues λn, keeping

the largest ones, and checking that the residual Γ when the sum is limited to those

modes becomes smaller than a threshold. A qualitative but insightful criterion may

also be given by spatial modes ΦNm+1(r), which should look like a white noise when

Nm is properly chosen.
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3.2. Control regions expressed as combinations of (border) flat-fields

The decomposition obtained in the previous section represents the intensity evo-

lution of control regions using the spatial and temporal modes Φn(ρ) and wn(t).

However, the spatial modes are limited to the Ω region whereas it would be desir-

able to extrapolate them in the entire domain. The driving idea is now to use the

flat-fields in order to do this extrapolation. For this goal, it is needed to “translate”

the eigenmodes Φn(ρ) into their flat-field expressions. Thus, the flat-fields are first

clipped to the Ω region, and they constitute the second set of Nf fields fj(ρ). The

sought correspondence between both sets

Φn(ρ) =

Nf∑
j=1

αnjFj(ρ) (9)

with Fj(ρ) = log(fj(ρ)) − log(fR(ρ)), is computed in the least squares sense. Thus,

the amplitudes are written with the pseudo inverse

αn = [(F ⊗ F )Ω]−1 {(F · Φn)Ω} (10)

where

[(F ⊗ F )Ω]ij =

∫
Fi(ρ)Fj(ρ) dρ (11)

and

{(F · Φn)Ω}i =

∫
Fi(ρ)Φn(ρ) dρ (12)

Let us note that the method can easily be extended to incorporate any suitable enrich-

ment of the flat-field library fj(ρ) by adding extra fields (e.g., gradient, constant term)

before the minimization.
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3.3. Estimates of I0 over the entire image

Combining the previous results, the sinogram borders are approximated as

G(ρ, t) ≈
Nm∑
n=1

wn(t)

Nf∑
j=1

αnjFj(ρ)

≡
Nf∑
j=1

βj(t)Fj(ρ)

(13)

In order to ensure that the sinogram control regions have been accurately described,

the residuals

ξn(ρ) = Φn(ρ)−
Nf∑
j=1

αnjFj(ρ) (14)

are analyzed. When specific features are observed in those Nm fields, the residuals indi-

cate that the set of flat-fields is not sufficient for accounting for the relevant modes and

may suggest relevant enrichments such as left-right or up-down brightness gradients.

The very same formula is proposed to be extended over the entire detector

G(r, t) ≈
Nf∑
j=1

βjFj(r) (15)

It can be noticed from Equation (13) that the control region fields are directly

decomposed onto a combination of flat-fields. This decomposition provides the same

results. Thus, PCA indicates the “dimensionality” of the problem, i.e., the number

of basic fields to be considered. Similarly, the spectrum of eigenvalues of the pseudo-

inverse also gives the dimension of the effective space generated by the flat-fields.

This shows whether or not one should enrich and, if needed, how enrichment is to be

designed. Finally once the basis is chosen, the β coefficients are computed without

reference to w and α parameters. In a similar fashion to the decomposition of spatial

modes, the control region fields are decomposed, in a least squares sense, onto the

same filtered fields (in order to weight the medium frequencies as needed). s

The sum over the entire domain of the sinograms

∫
s(r, t)dr (for all t) should be

constant in time and equal to the total absorption, A, of the specimen. A possible
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extension of the proposed method is to strictly account for this constraint by normal-

izing the sinogram

∫
s(r, t)dr =

∫ Nf∑
j=1

γj(t)Fj(r)dr −
∫
G(r, t) dr = A (16)

This is achieved from the minimization of the following functional to obtain the new

γ coefficients (instead of the previous β parameters)

Γ2 =

∥∥∥∥∥∥G(ρ, t)−
Nf∑
j=1

γj(t)Fj(ρ)

∥∥∥∥∥∥
2

ρ

+κ(t)

Nf∑
j=1

γj(t)

∫
Fj(r)dr −

∫
G(r, t) dr −A

 (17)

where κ(t) is a Lagrange multiplier depending on time. Hence when deriving the above

functional, withB ≡
∫
G(r, t) dr, {FΞ}i =

∫
Fi(r)dr and {HΩ}i =

∫
Fk(ρ)Gik(ρ, t) dρ

{
{γ(t)}j = [(F ⊗ F )Ω]−1

ij ({HΩ}i + κ(t) {FΞ}i)
{γ(t)}j {FΞ}j = A+BΞ(t)

(18)

so that

κ(t) =
A+BΞ(t)− {HΩ}i [(F ⊗ F )Ω]−1

ij {FΞ}j
{FΞ}i [(F ⊗ F )Ω]−1

ij {FΞ}j
(19)

that can be injected in the expression of γ(t)

{γ(t)}j = {β(t)}j + [(F ⊗ F )Ω]−1
ij

BΞ(t) +A− {β(t)}k {FΞ}k
{FΞ}l [(F ⊗ F )Ω]−1

lk {FΞ}k
{FΞ}i (20)

4. Test case

To illustrate the above treatment, a cast-iron sample scanned on a synchrotron beam-

line (i.e., ID19 at ESFR) inside of an in-situ testing machine (Buffière et al., 2010) is

chosen. The specimen shape is a parallelepiped, 1.6× 0.8 mm2 in cross sectional area

and 10 mm long. The voxel size is equal to 5.1 µm. The complete scan consists of 600

projections captured at equally spaced angles ranging over half a revolution. Seven

IUCr macros version 2.1.10: 2016/01/28



12

flat-fields have been acquired, interrupting the scan every 100 projections and moving

the testing machine, and labeled by t = [0, 100, . . . , 600] as shown in Figure 1(a). One

dark-field is also acquired before the experiment.

4.1. Flat-fields

Figure 2(a) shows the first flat-field acquired at time t = 0. The beam intensity

displays a significant vertical gradient (roughly a factor of two in intensity). A few

bright spots are also observed. Figure 2(b) is the pixel-to-pixel ratio between the first

and second flat-fields. First, it appears that the average value is not 1, meaning that the

overall beam intensity has changed by about 1 %. For applications seeking the sample

motion, it is to be observed that an inaccurate correction for the beam intensity could

lead to a spurious vertical motion (exploiting the intensity gradient). More generally,

any bad account for flat-fields may induce false contrast on radiographs that can be

mis-interpreted in the reconstruction or the analysis of the sample kinematics. It is

therefore very important to be as accurate as possible. Second, in Figure 2(b) the

bright spots seen in the initial flat-field can still be distinguished. Thus, they are not

simply scaled by the overall beam intensity. This observation implies in particular that

several modes should be introduced in PCA. Figure 2(c) shows a dark-field composed

of 4 quadrants (due to the detector technology) and with a low intensity amplitude.

4.2. Control regions modes

PCA has been performed based on the borders of the sinogram, where the left

and right regions Ωl,r have been stacked together to create the I0(ρ, t) set of images.

Figure 3 shows the five main spatial modes Φn(ρ) describing most of the variations

of the beam intensity normalized by the third flat-field (acquired in the middle of

the experiment). The two areas Ωl and Ωr are clearly seen on those modes (as they

are in I0(ρ, t)). The control region areas represent 1/7 of the total surface, Ξ, (512×
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512 pixels). As can be seen in Figure 1(c), the border regions are kept 10 pixels away

from the projected boundary of the specimen, in order to keep clear from the influence

of X-ray diffraction or scattering.

Figure 4(a-e) displays the corresponding temporal amplitudes for the 600 time steps

wn(t). Modes with n > 5 are, spatially and temporally, close to white noise, and are

therefore discarded in the following. The former fields can roughly be interpreted in

words as a global intensity variation of the X-ray beam (mode 1), a vertical and

horizontal intensity gradient (modes 2 and 3-4) and few spots with different intensity

changes (mode 5). The first ten eigenvalues are plotted in Figure 5.

The number of modes is used to estimate the number of degrees of freedom of the

intensity variations. However, consideration of eigenvalues only may not be sufficient

for selecting the relevant modes, as some highly concentrated in space may have a low

eigenvalue and yet a large effect, while others that are more uniformly distributed may

have a large power, and yet a modest detrimental influence. In the present case, even

if modes 2 to 5 have small eigenvalues, λn (Equation (8)), the temporal variations are

significant and the maximum intensity variation could be compared (i.e., the temporal

amplitude times the gray level amplitude for each mode).

4.3. Projection of modes onto flat-fields

The above five eigen-modes are now translated into their flat-field expression to

allow for a faithful extrapolation to the entire domain. Because modes 2 and 3 present

a clear uniform vertical and horizontal gradient, two such simple fields (i.e., homoge-

neous intensity gradients) are generated and added to the set of flat and dark-fields as

enrichments. Finally, to allow for an overall gray-level offset, a uniform field (valued 1)

is also added. This enriched set now consists of 10 different fields shown in Figure 6.

The decomposition onto the ten fields revealed not to be very accurate for high
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order modes. To give a larger weight to medium and low spatial frequencies (spots)

than on the very high spatial frequency where noise has a higher power, a Gaussian

filter with a modest characteristic length of two pixels has been applied to the spatial

modes Φn(ρ) and to the normalized flat-fields Fj(ρ). Last, the reconstruction has been

performed with the initial noisy images.

Figure 7 shows the obtained reconstruction of the previous modes (Figure 3). The

analysis of the residuals essentially shows uniform noise without spots, meaning that

the modes have been described in a satisfactory manner.

Finally, the extrapolation to the entire detector area is now straightforward, keeping

the same weights. These modes are displayed in Figure 8.

The participation of the dark-field is negligible compared to other flat-fields con-

tributions (two orders of magnitude). This means that the usual dark-field correction

can be omitted.

5. Comparison of different reconstructions

It is now possible to compute the ratio of the measured intensity I(r, t) during the scan

with the above derived beam intensity at the corresponding time I0(r, t). From the

corrected sinogram, s(r, φ), a tomographic reconstruction is performed to produce the

3D image of the specimen. In order to assess the relevance of the proposed algorithm,

different standard inferred choices for I0(r, t) have been implemented to normalize

I(r, t).

5.1. Standard flat-field corrections

Two different standard flat-field normalization methods have been considered. The

mostly used approach is to choose the average IStep0 of the flat-fields acquired before

and after the experiment (Chen et al., 2012; Weitkamp et al., 2011) (or the series of

IUCr macros version 2.1.10: 2016/01/28



15

scans acquired in a row). In the test case, the six acquisition phases are corrected

by the arithmetic average of the two flat-fields acquired just before, k(t), and after,

k(t) + 1, the considered group of 100 projections

IStep0 (r, t) ≡
(fk(t) + fk(t)+1)

2
(21)

Another option consists in choosing a linear interpolation ILin0 of the flat-fields acquired

before and after the experiment (Hammersley, 2001). In the test case, the six acqui-

sition phases are corrected by the linear interpolation of the two flat-fields nearest in

time, i.e., with a weight p proportional to the time delay via p(t) = (t− t(k))/(t(k +

1)− t(k))

ILin0 (r, t) ≡ (1− p(t))fk + p(t)fk+1 (22)

These two choices are challenged with the proposed estimate, IProp0 . The change of

the mean intensity of these different methods is plotted in Figure 9.

5.2. Comparison with the proposed procedure

In order to compare the different options for the normalization of the sinograms,

three different procedures have been considered:

Proc. 1: Comparison of sinograms normalized by the three previous estimates of I0.

Proc. 2: Comparison of reconstructed volumes from the three sinograms. The recon-

structions are computed using the ASTRA tomography toolbox (Van Aarle

et al., 2015) and a SIRT algorithm.

Proc. 3: Comparison of projections of the reconstructed volumes with initial corrected

radiographs. The projections at 0 and π/2 angles (i.e., nothing but the mere

line-sum of all pixels) were first considered because they did not introduce any

bias due to the interpretation of partly intercepted pixels by a ray.
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5.2.1. Proc. 1: Comparison of the sinograms It is seen that the sinogram normalized

with an average flat-field (Figure 10(a)) has vertical stripes corresponding to intensity

variations. For t = 300 and t = 500, two red arrows point at these global intensity

changes that hold for the whole image. These stripes are also visible in Figure 10(d) and

Figure 9, at the same abscissa where there is an important gap between the intensity of

the image and the intensity of the proposed normalizing I0. These variations are also

perceived in Figure 10(e) but their amplitude is much smaller. These global intensity

variations are corrected with the first mode of the proposed method.

Another feature to be noted is the presence of horizontal lines (blue arrow) in

Figure 10(d,e). The slice of the sinogram has been chosen to cut few spots. One such

intersection is seen in slice z = 114 pixel at r = 300 pixel (Figure 8). These spots

give rise to horizontal lines and are not well corrected with the first two normalization

methods IStep0 and ILin0 .

Constant absorption criterion: as earlier noted, the sum over space of the sino-

gram

∫
s(r, φ) dr = A should be constant in time and equal to the total absorption,

A, of the specimen. The change of this absorption is shown in Figure 11. It is observed

that the proposed reconstruction is much steadier (amplitude of 2 %) than the stan-

dard correction procedure (amplitude of 7 %) especially for high frequencies. The main

intensity variation at t = 61 corresponds to a projection angle where the longitudinal

axis of the rectangular cross-section sample is perfectly aligned with the beam. When

the constant absorption constraint is introduced, the mean intensity is constant (the

very small variation may originate from defective pixels and the positivity constraint

of the radiographs).

5.2.2. Proc. 2: Comparison of reconstructed volumes The SIRT reconstruction from

the ASTRA tomography toolbox (Van Aarle et al., 2015) is used to compute the recon-
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structed volume f(x). The three reconstructions and their differences are displayed in

Figure 12.

In order to show the ring artifacts in the reconstruction, a zoom focusing on x ∈

[200, 300] pixels and y ∈ [200, 300] pixels is shown in Figure 13. It is seen that ring

artifacts are reduced from (a) to (c) although not completely suppressed with the

proposed normalization.

Entropy of reconstruction: a possible criterion to judge the relevance of the

correction procedure is to study the Shannon entropy of the reconstructed volume.

The gray level histogram p(f) (i.e., probability of observing a gray level equal to f)

of the reconstructed specimen is computed, and Shannon entropy (i.e., relative to a

uniform measure) S = −
∫
p(f) log(p(f)) df is evaluated. Because cast iron consists

of few phases, Shannon entropy is expected to be low when the reconstruction is

accurate, and hence judging flat-field normalization quality can be carried out aiming

at the lowest entropy. In the present case, entropy is based on an 8-bit digitization of

the gray levels and is restricted to the specimen volume. The value of S normalized

by that of SStep, measured for normalization by the piecewise constant of I0 is shown

in Table 1. The proposed normalization has a markedly smaller value than the two

standard procedures. Enforcing a constant absorption is the most efficient with respect

to the present criterion as it achieves the lowest entropy score.

5.2.3. Proc. 3: Comparison of projections of the reconstructed volumes with initial

corrected radiographs The “reconstruction residual,” i.e., the difference between the

projection of the reconstruction and the original sinogram has been studied. Figure 14

shows a cross-section of the residual for t = 300 for the three reconstruction methods.

The residual is homogeneously distributed over the image and does not display any

region with significantly higher residuals.
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The norm of these residual fields is plotted for every angle in Figure 15 for the

four methods (i.e., piecewise constant (a), linear (b), proposed (c), and proposed with

absorption constraint (d) estimates of the incoming beam intensity I0). Procedure (c)

provides a good estimate and interestingly it seems to provide a smooth lower envelope

of the other residuals (a) and (b). The constraint on the total absorption shows the

best results.

Because the reconstructed volume does provide a constant absorption, the com-

puted norm is expected to be strongly correlated with the single angle estimate of

the absorption shown in Figure 11 as observed here. The peaks that clearly appear at

t = 61 and for some results at t = 361 correspond to the alignment of the specimen

cross section principal axes (i.e., respectively length and width) with the X-ray beam.

Hence they may be attributed to phase contrast effects. When the constant absorp-

tion criterion is enforced in the reconstruction, it is observed that the norm of the

projection residual reaches even lower values and is more evenly spread over angles.

In this experimental procedure, the in-situ testing machine is moved away from

the beam in order to acquire the flat-fields. The PMMA tube that constitutes the

frame of this machine has a different projection on the flat-fields and on the scans

during acquisition. This difference introduces a bias, particularly for standard correc-

tion techniques that only use flat-fields as reference. The final results (d) show a low

frequency residual that may originate from the off-centered position of the tube with

respect to the rotation axis and an intermittent residual that may be attributed to

scratches on the tube of the testing device (Buffière et al., 2010) and give temporally

(angular-wise) incoherent residuals.

5.2.4. Perspectives One challenge of the presented experiment is that the specimen

has to be moved away from the beam at several instances in order to acquire the
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full flat-fields and has to be accurately repositioned (e.g., 5 times for the reported

experiment). These steps may not be extremely precise and may degrade the quality

of the reconstruction especially if high spatial resolutions are sought. With the enrich-

ment of the flat-field library thanks to the PCA decomposition, only two flat-fields

acquired before and after the experiment can be used and supplemented by additional

uniform fields. Such a direction has been explored and it provides reconstructions

of high quality. The Shannon entropy (again normalized by the standard piecewise

constant procedure) for example gives 144 % if the normalization is performed with

only 2 flat-fields and 94.4 % with the proposed method using the same 2 flat-fields

and 3 enrichment fields. Thus the intermediate acquisition of flat-fields — at least

for acquisitions comparable to the tested example — may be omitted, saving time

without prejudice on the quality of reconstruction.

6. Conclusion

A flat-field intensity normalization procedure is proposed, which aims at enhanced

tomographic reconstruction quality (through artifact reduction). A suited flat-field is

estimated for every acquisition angle (e.g., time) using the borders of the sinogram

called control regions. Because these areas are never masked by the scanned specimen,

they provide a link between flat-fields acquired at specific scan interruptions and

the current projection. Studying the different inhomogeneous beam variations with a

space-time decomposition, the principal modes are extracted. The modes are further

decomposed onto flat-fields, enriched by some additional modes, in order to extrapolate

them over the entire detector area.

The method is applied to a synchrotron tomography scan acquired at ESRF (ID19

beamline). The proposed normalization by the reconstructed flat-field has been com-

pared with alternative standard procedures at different stages considering i) the sino-
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gram, ii) the reconstruction, or iii) the projection residual (difference between projec-

tion of reconstruction and acquired projection).
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Fig. 1. (a) Flat-field captured between t = 300 and t = 301 (the spatial inhomogeneity
of the flat-field is quite pronounced with bright spots and an overall intensity gra-
dient). (b) Raw projection at t = 300, where the two regions Ωl and Ωr are the blue
shaded rectangles, and the central darker region is caused by the specimen absorp-
tion. (c) In a space-time (r−t) diagram (sliced at a given height, z = 256 pixels) full
flat-fields, f , are shown as red lines to indicate that they cover the entire detector
but are captured only at some interruptions of the scan and sinogram borders Ωl
and Ωr shown in blue to highlight that they are available at all times but only over
a limited portion of the detector

(a) (b) (c)

Fig. 2. (a) Flat-field acquired at time t = 0. (b) Pixel-to-pixel ratio of two flat-fields
(f1/f3). The mean intensity is observed to vary with time and inhomogeneous
patterns (bright spots) are observed and are not well described by the intensity
rescaling. (c) Dark-field at t = 0
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(a) (b) (c) (d) (e)

Fig. 3. From (a) to (e): spatial modes Φn(ρ) for n = 1 to 5. The first spatial mode
(a) has the highest eigenvalue λ1 and essentially represents the image intensity, (b)
and (c-d) correspond to a vertical and horizontal gradient and (e) is a spot mode

Fig. 4. From (a) to (e): temporal modes wn(t)/600 for n = 1 to 5 associated with the
spatial modes shown in Figure 3

Fig. 5. The ten highest eigenvalues in a log scale. The first 5 are selected for the
proposed procedure
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Fig. 6. Enriched flat-field library Fj(ρ) normalized with the third flat-field. The first
six fields are Fj(ρ), image 7 is the dark-field normalized with the third flat-field
and the last three are added fields to help accounting for horizontal and vertical
gradients and uniform intensity offset

Fig. 7. First row: decomposition of the five filtered modes onto enriched flat-fields
(Equation (13)). Second row: residual (Equation 14)
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Fig. 8. The five spatial modes reconstructed over Ξ from an enriched flat-field set
(Equation (15))

Fig. 9. Average intensity for the three compared techniques: (a) piecewise constant
average flat-field, (b) piecewise linear, (c) the proposed estimate and (d) proposed
correction with a constant absorption constraint
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Fig. 10. Step 1. First row: sinogram (x, t) slice at z = 114 pixel corrected with

(a) IStep0 , (b) ILin0 , (c) IProp0 . Second row: difference between the sinogram slice
at z = 114 pixel: (d) proposed − step, (e) proposed − linear. The constant absorp-
tion constraint has not been plotted because it cannot be distinguished from (c)

Fig. 11. Normalized sum over space of the radiographs. (a) Average correction, (b) lin-
ear correction, (c) proposed correction, and (d) proposed correction with constant
absorption constraint
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Fig. 12. Step 2. First row: SIRT reconstruction slice at z = 114 pixel normalized

with (a) IStep0 , (b) ILin0 , (c) IProp0 . The red rectangle shows the ROI. Second row:
difference between the reconstructed slice at z = 114 pixel (d) proposed-step,
(e) proposed-linear

Fig. 13. ROI on the center of the reconstructed volume (red square in Figure 12(c))

normalized with (a) IStep0 , (b) ILin0 , (c) IProp0 .

Table 1. Variation of entropy for different normalizations: (a) piecewise constant,

(b) piecewise linear, (c) proposed method, (d) proposed method enforcing constant absorption

Normalization (a) (b) (c) (d)
Normalized entropy S/SStep 100 % 99.8 % 95.7 % 92.3 %
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Fig. 14. Residual field of the projected reconstruction and the original sinogram at
t = 300 (a) average correction, (b) linear correction, (c) proposed correction.

Fig. 15. Norm of the residual fields for every angles with different correction proce-
dure: (a) average, (b) linear, (c) proposed correction, (d) proposed correction with
constant absorption constraint
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Synopsis

This paper proposes a flat-field correction method for X-ray computed tomography using the
edges of the sinogram (not shadowed by the sample) to adjust the best suited combination of
flat-fields.
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