M. V. Afonso, J. M. Bioucas-dias, and M. A. Figueiredo, An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems, IEEE Transactions on Image Processing, vol.20, issue.3, pp.681-695, 2011.
DOI : 10.1109/TIP.2010.2076294

A. Alotaibi, P. L. Combettes, and N. Shahzad, Solving Coupled Composite Monotone Inclusions by Successive Fej??r Approximations of their Kuhn--Tucker Set, SIAM Journal on Optimization, vol.24, issue.4, pp.2076-2095, 2014.
DOI : 10.1137/130950616

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643354

P. Bianchi, W. Hachem, and F. Iutzeler, A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization, 2014.

R. I. Bo¸tbo¸t and C. Hendrich, Convergence Analysis for a Primal-Dual Monotone + Skew Splitting Algorithm with Applications to Total Variation Minimization, Journal of Mathematical Imaging and Vision, vol.38, issue.3, pp.551-568, 2014.
DOI : 10.1007/s10851-013-0486-8

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Machine Learn, pp.1-122, 2011.

L. M. Arias and P. L. Combettes, A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality, SIAM Journal on Optimization, vol.21, issue.4, pp.1230-1250, 2011.
DOI : 10.1137/10081602X

URL : https://hal.archives-ouvertes.fr/hal-00643797

M. Burger, A. Sawatzky, and G. Steidl, First Order Algorithms in Variational Image Processing, To appear in Operator Splittings and Alternating Direction Methods, 2014.
DOI : 10.1007/978-3-319-41589-5_10

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2010.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

P. Chen, J. Huang, and X. Zhang, A primal???dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Problems, vol.29, issue.2, p.25011, 2013.
DOI : 10.1088/0266-5611/29/2/025011

]. P. Combettes, Systems of Structured Monotone Inclusions: Duality, Algorithms, and Applications, SIAM Journal on Optimization, vol.23, issue.4, pp.2420-2447, 2013.
DOI : 10.1137/130904160

URL : https://hal.archives-ouvertes.fr/hal-00800511

P. Combettes, L. Condat, J. Pesquet, and B. C. V?uv?u, A forwardbackward view of some primal-dual optimization methods in image recovery, Proc. IEEE Int. Conf. Image Process. (ICIP), pp.4141-4145, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01098038

P. L. Combettes and J. Pesquet, A Douglas???Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery, IEEE Journal of Selected Topics in Signal Processing, vol.1, issue.4, pp.564-574, 2007.
DOI : 10.1109/JSTSP.2007.910264

URL : https://hal.archives-ouvertes.fr/hal-00621820

P. L. Combettes and J. Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallelsum type monotone operators. Set-Valued Var, Anal, pp.1-24, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00794044

P. L. Combettes and J. Pesquet, Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping, To appear in SIAM J. Optim, 2015.

L. Condat, A Primal???Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, Journal of Optimization Theory and Applications, vol.23, issue.1???2, pp.460-479, 2013.
DOI : 10.1007/s10957-012-0245-9

URL : https://hal.archives-ouvertes.fr/hal-00609728

J. Eckstein and D. P. Bertsekas, On the Douglas???Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, vol.29, issue.1, pp.293-318, 1992.
DOI : 10.1007/BF01581204

E. Esser, X. Zhang, and T. Chan, A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science, SIAM Journal on Imaging Sciences, vol.3, issue.4, pp.1015-1046, 2010.
DOI : 10.1137/09076934X

M. A. Figueiredo and J. M. Bioucas-dias, Restoration of Poissonian Images Using Alternating Direction Optimization, IEEE Transactions on Image Processing, vol.19, issue.12, pp.3133-3145, 2010.
DOI : 10.1109/TIP.2010.2053941

M. A. Figueiredo and R. D. Nowak, Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp.31-34, 2009.
DOI : 10.1109/SSP.2009.5278459

M. Fortin and R. Glowinski, Augmented Lagrangian Methods : Applications to the Numerical Solution of Boundary-Value Problems, 1983.

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, vol.2, issue.1, pp.17-40, 1976.
DOI : 10.1016/0898-1221(76)90003-1

J. Giovannelli and A. Coulais, Positive deconvolution for superimposed extended source and point sources, Astronomy and Astrophysics, vol.439, issue.1, pp.401-412, 2005.
DOI : 10.1051/0004-6361:20047011

T. Goldstein and S. Osher, The Split Bregman Method for L1-Regularized Problems, SIAM Journal on Imaging Sciences, vol.2, issue.2, pp.323-343, 2009.
DOI : 10.1137/080725891

N. Komodakis and J. Pesquet, Playing with Duality: An overview of recent primal?dual approaches for solving large-scale optimization problems, IEEE Signal Processing Magazine, vol.32, issue.6, 2015.
DOI : 10.1109/MSP.2014.2377273

URL : https://hal.archives-ouvertes.fr/hal-01246610

J. Liang, J. Fadili, and G. Peyré, Convergence rates with inexact nonexpansive operators, 2014.

J. J. Moreau, Proximit?? et dualit?? dans un espace hilbertien, Bulletin de la Société mathématique de France, vol.79, pp.273-299, 1965.
DOI : 10.24033/bsmf.1625

J. Pesquet and A. Repetti, A class of randomized primal-dual algorithms for distributed optimization, J. Nonlinear Convex Anal, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01077615

T. Pock, A. Chambolle, D. Cremers, and H. Bischof, A convex relaxation approach for computing minimal partitions, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.810-817, 2009.
DOI : 10.1109/CVPR.2009.5206604

Q. Tran-dinh, A. Kyrillidis, and V. Cevher, Composite selfconcordant minimization, To appear in J. Mach. Learn. Res, 2015.

B. C. V?uv?u, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math, vol.38, issue.3, pp.667-681, 2013.