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Abstract

In order to obtain accurate classification results of hyperspectral images, both the spectral and spatial information

should be fully exploited in the classification process. In this paper, we propose a novel method using independent

component analysis (ICA) and edge-preserving filtering (EPF) via an ensemble strategy for the classification of

hyperspectral data. First, several subsets are randomly selected from the original feature space. Second, ICA is used

to extract spectrally independent components followed by an effective EPF method, to produce spatial features. Two

strategies (i.e., parallel and concatenated) are presented to include the spatial features in the analysis. The spectral-

spatial features are then classified with a random forest (RF) or rotation forest (RoF) classifier. Experimental results

on two real hyperspectral datasets demonstrate the effectiveness of the proposed methods. A sensitivity analysis of

the new classifiers is also performed.

Index Terms

Classification, hyperspectral data, independent component analysis (ICA), edge preserving filter (EPF).

I. INTRODUCTION

During the past two decades, the development of hyperspectral sensors have resulted in great improvement for

the image acquisition capabilities. Hyperspectral sensors are now able to provide images with both high spectral and

spatial resolutions. Hence, hyperspectral data offers a unique opportunity to monitor the Earth surface. Thematic

applications include environmental mapping and crop monitoring [1], [2].

Supervised classification is one of the most important problems in the remote sensing community. Given a set

of training samples (i.e., pixel vectors for hyperspectral image), the aim of classification is to assign a unique
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class label to each pixel after a training process. Classical techniques, such as maximum likelihood and nearest

neighbor classifiers, can be used to perform a supervised classification of hyperspectral data. Nevertheless, their

classification accuracy is relatively low because a sufficient number of training samples is often not available for

the wide range of spectral bands. This often causes an unbalance between the high dimensionality of spectral

bands and the limited number of training samples, known as the curse of dimensionality (also referred to as the

Hughes phenomenon) [3]. In addition, the spectral bands of hyperspectral data are highly correlated and might

show some redundancy. Furthermore, due to the spatial variability observed for high-resolution data, classification

algorithms exploiting only the spectral information generally demonstrate a low performance. To overcome this,

spatial contextual information (relationship between neighboring pixels) should be included in the analysis, resulting

in spectral-spatial classifiers [4], [5]. In recent years, many spectral and/or spatial classification methods have been

developed to alleviate the aforementioned issues, i.e., high dimensionality of the feature space, correlated features

and spatial variability, in order to improve the classification performance of hyperspectral data.

A popular strategy for providing enhanced classification performance is the random subspace (RS) ensemble [6].

The idea is intuitive and simple: subsets of feature sets are used in the ensemble instead of using all features. Each

classifier in the ensemble is constructed on a different feature subset by randomly sampling the original feature

set. The rationale behind the RS ensemble is to break down a complex high-dimensional problem into several

lower-dimensional sub-problems, hence allowing to address the curse of dimensionality problem [7].

Discriminative classifiers, e.g., support vector machines (SVMs) [8]–[10], random forest (RF) [11], [12] and

rotation forest (RoF) classifiers [13], [14], are the most widely used pixel-wise classifier for hyperspectral data.

Those classifiers provide good performances in terms of classification accuracies. In [14], Xia et al. propose RoF

for the classification of hyperspectral data and note its superior performance to RF and completion with the SVMs.

Compared to the SVMs, the two main advantages of RF and RoF, i.e., low computational complexity and few

parameters to tune, motivate us to select them as the base classifiers in this work. However, to improve the

classification performance of RF and RoF, the input features should be independent [15], [16].

In order to obtain independent features, a feature extraction (FE) step is generally employed. Principal component

analysis (PCA) is one of the most frequently used FE method in the remote sensing community [17]. Recently,

independent component analysis (ICA) has received attention for FE of hyperspectral remote sensing images [18]–

[21]. In particular, ICA extracts underlying source components that give rise to the mixed signal measured by

the sensor and the informative components present in the scene [18], [21]. Classically, when ICA is employed to

hyperspectral data, PCA is performed first, and then, ICA is performed on a percentage of the top most important

principal components, while the remaining components are discarded [21]–[23]. However, the PCA process might

lead to a loss of useful information in the discarded components, which may contain discriminant information to

improve the classification accuracy. In [24], it has been suggested that a noise-adjusted principal component analysis

(NAPCA) offers more useful information of objects in the original data than those obtained from PCA. In order

to enhance the classification performance by using ICA without losing useful information in the PCA process,

we propose to use a random subspace ensemble approach, in which several subsets are randomly selected from
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the original spectral bands and then ICA is applied on each subset. Furthermore, the classification result can be

improved by the integration of spatial contextual information.

Previous spectral-spatial classifiers include spatial contextual information, such as mathematical morphology

(MM) and Markov random fields (MRFs). Li et al. [25] have developed a generalized composite kernel (GCK)

framework by combining spectral information and the most effective MM features: extended multi-attribute profiles

(EMAPs). Falco et al. [26] proposed a spectral-spatial classifier based on ICA and reduced attribute profiles. Recently,

Xia et al. have proposed two powerful classifiers, namely rotation forests with MRFs (RoF-MRF) [27] and random

subspace ensembles with EMAPs (RS-EMAPs) [16]. The former combines the class posterior probabilities produced

by RoF and the spatial information represented by MRF-based multilevel logistic (MLL) prior [27]. The latter uses

random subspace ensembles to classify EMAPs features [16]. Recently, edge-preserving filters (EPF) have been

successfully applied in many fields such as denoising [28]. Those filters are used to remove noise, weak edges,

and small details whereas the overall structure of the image is preserved. Kang et al. have successfully combined a

probabilistic SVM with an EPF for the classification of hyperspectral images [29]. Furthermore, they proposed to

extract spatial features of hyperspectral images with image fusion and recursive filtering techniques (IFRF) [30].

In order to tackle the three main issues of the classification of hyperspectral images with both high spectral and

high spatial resolutions (i.e., high dimensionality of the feature space, correlated features and spatial variability), we

present a new spectral-spatial classification scheme. First, several subsets are randomly selected from the original

feature space to reduce the dimensionality. Second, ICA is used to extract independent features. Third, an EPF is

used to reduce the spatial variability in the feature set. Parallel ensemble and concatenated models are finally used

to include those spatial features into an RF or RoF classifier. The novelty of this work consists of:

• a new spectral-spatial classification scheme by using ICA and EPF via an ensemble strategy;

• introducing two novel ICA techniques, i.e., entropy bound minimization (EBM) [31] and entropy rate bound

minimization (ERBM) [32], [33], to the hyperspectral remote sensing community;

• exploiting the spatial contextual information by means of a recent and effective EPF, rolling guidance filter

(RGF).

In this study, previous work that introduces such a parallel ensemble [34] is extended, proposing a concatenated

model to supervised classification based on ICA and EPF. In addition, the new methodology is also validated on

additional hyperspectral dataset.

The paper is organized as follows. Section II recalls the principle of ICA while Section III gives a brief overview

of EPF. Section IV is devoted to the introduction of the proposed spectral-spatial classifier. Sections V and VI

present some experimental results on two hyperspectral dataset. Conclusions and future work are finally reported

in Section VII.

II. INDEPENDENT COMPONENT ANALYSIS (ICA)

ICA is an attractive solution to the blind source separation (BSS) problem, which decomposes an observed

set of mixtures into a set of statistically independent components (ICs) [18]. We consider the observed mixture
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x = [x1, ..., xD]
T
= As, which can be viewed as a linear combination of D random variables—or random processes

when sample dependence is taken into account—s = [s1, ..., sn]
T through a D × D non-singular mixing matrix

A. The statistically ICs y = [y1, ..., yD]
T are estimated by forming y = Wx, where W is the estimated demixing

matrix that makes use of some form of diversity. The most widely used type of diversity is non-Gaussianity, i.e.,

higher-order-statistics (HOS). Two popular ICA approaches used in the remote sensing community are FastICA [35]

and Joint Approximate Diagonalization of Eigenmatrices (JADE) [36]. FastICA [35] uses a fixed nonlinearity to

maximize the non-Gaussianity while JADE [36] extracts the demixing matrix W by joint a diagonalization of the

fourth-order cumulant matrix.

A more attractive approach to make use of HOS is to use a dynamic nonlinearity that is matched to each of the

estimated source densities, yd, for d = 1, . . . , D separately. Entropy bound minimization (EBM) utilizes an efficient

entropy estimator to approximate the density of the sources by maximizing the entropy bound and using a finite

number of prespecified measuring functions [31]. It provides robust performance according to the four measuring

functions proposed in [31] but also allows for selection of nonlinearities using prior information about the sources.

Another important type of diversity, which is of particular interest here, is sample dependence. The adjacent pixels

in an image are highly correlated and making use of this additional statistical property promises to further improve

the performance of ICA [37]. Entropy rate bound minimization (ERBM) [32], [33] effectively combines the dynamic

nonlinearity selection of EBM with an invertible filter model and hence achieves better performance in terms of

minimization of mutual information rate

Ir (y1; ...; yD) =
D∑
i=1

Hr (yi)− log |det(W)| −Hr (x) (1)

where, Hr (yi) is the (differential) entropy rate of the process yi and Hr (x) is a constant with respect to W. For

EBM, we can consider the same cost function where the entropy rate is simply replaced by the entropy. When the

demixing matrix W is assumed to be orthogonal and the nonlinearity that corresponds to source distribution is

fixed, we obtain FastICA [38].

III. EDGE PRESERVING FILTER (EPF)

EPF is an image processing technique that aims to reduce the spatial variability. It smooths away textures whilst

retaining sharp edges [28]. For high spatial resolution hyperspectral images, the neighboring pixels usually have

strong relationships with each other. The use of EPF makes that the neighboring pixels on the same side of an

edge have similar features values, which is beneficial for improving the classification performance. In this paper,

we propose to use one of the most recent and effective EPF filters, the RGF.

RGF, which is based on a modification of the bilateral filter [39], effectively removes noise and small details

while preserving large-scale structures automatically, which the standard bilateral filter often fails to do [40]. It is

composed of two steps, i.e., small structure removal and edge recovery. Small structure removal can be done by a

Gaussian filtering. Then, a joint bilateral filter is used to recover the edge iteratively. The result of the t−th iteration

is denoted by J t+1. J1 is initially set as the output of the Gaussian filtering. J t+1 is calculated by a joint bilateral

October 12, 2016 DRAFT



5

filtering form given the input image I and the previous iteration result J t.

J t+1(i) =
1

Qi

∑
j∈Np

exp

(
−‖i− j‖

2

2σ2
s

− ‖J
t(i)− J t(j)‖2

2σ2
r

)
I(j) (2)

where, Qi =
∑
j∈Np

exp

(
−‖i−j‖

2

2σ2
s
− ‖J

t(i)−Jt(j)‖2
2σ2

r

)
. The indexes i and j are the coordinates of pixels in the

image, Np denotes the set of neighbor pixels of i, σs and σr control the spatial and range weights respectively.

In general, those steps can be combined into one by starting the rolling guidance simply from a constant-value

(equal to C) image. In this case, the initial step can be saved by starting rolling guidance from J0, where ∀i,

J0(i) = C. Algorithm 1 depicts the RGF implementation.

Algorithm 1 Rolling Guidance Filter

Input: I , σs, σr and niter

1: Initialize J0 as a constant image
2: For i = 1 : niter

3: J t ← JointBilateral(I, J t−1, σs, σr) . using (2)
4: Endfor

Output: The output image G← Jn
iter

IV. CLASSIFICATION USING ICA AND EPF VIA AN ENSEMBLE STRATEGY

In this paper, we present two strategies to combine multiple features obtained for ICA and RGF. The first one is the

parallel combination (referred as E-ICA-RGFP ) that is based on the separate classification of each feature group and

on the fusion of the results obtained by the independent classifiers in order to generate the final decision result. The

second one is the concatenated combination (referred as E-ICA-RGFC), in which multiple features are integrated

into one vector and then classified via a classifier. In comparison to the concatenation combination, the parallel

combination keeps the dimensionality of the data low and increases the robustness of the results, particularly if

different features generate classification results with sufficient diversity. However, even if complementary information

can be extracted by considering different features, a great redundancy is present in the extracted features. Thus, it

is advisable that a classification algorithm with excellent penalization capability is used for classifying the features

in order to handle the increased dimensionality which can lead to the curse of dimensionality.

As shown in Fig. 1, the proposed methods (E-ICA-RGFP and E-ICA-RGFC) consist of five steps:

• Step 1. Random subspace ensemble (E): number of subsets is set to K and M features in each subset are

randomly selected without replacement from original spectral bands.

• Step 2. ICA: the aim of this step is to extract informative ICs for the classes in each subset, to be used for

classification. Here, we propose to use EBM and ERBM due to their superior separation performance [31]–[33].

• Step 3. RGF: RGF is performed on each extracted component to obtain the mth feature in ith subset.

Gmk ← Algorithm 1
(
ICmk , σs, σr, n

iter) (3)
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(a)

(b)

Fig. 1: Schematic of the proposed classification methods. (a) Parallel combination: E-ICA-RGFP . (b) Concatenated
combination: E-ICA-RGFC .

where σs and σr are the spatial and range standard deviations of the filter in (2). ICmk is the mth (m = 1, ...,M )

component derived from ICA in the kth (k = 1, ...,K) subset. Gmk is the resulting feature obtained after RGF.

Parallel combination (P)

• Step 4: perform classification on the filtered images in each subset. Two classifiers (e.g., RF and RoF) are

used. For RoF, the feature space is randomly split into several subsets. Then, principal component analysis

(PCA) is applied on each subset. Furthermore, a new training data is formed by concatenating all the principal

components in each subset. An individual decision tree (DT) classifier is trained with this training set. A series

of individual classifiers is generated by repeating the above steps several times. The final classification result is

produced by integrating the results from individual classifiers using a majority voting rule [13], [27], [41]. For

both RF and RoF, two parameters, i.e., the number of trees and the number of selected features, are empirically

fixed. According to the study presented in [16], the number of trees of the RF and RoF classifiers are set to

100 and 20 respectively. Moreover, the number of selected features is set to
√
M .

• Step 5: combine the results together to generate the final classification map by a majority vote rule. The rule
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TABLE I: Indian Pines AVIRIS and University of Pavia ROSIS image: class name and number of samples in
reference

AVIRIS ROSIS
No. Name Reference data Name Reference data
1 Alfalfa 54 Bricks 3682
2 Corn-no till 1434 Shadows 947
3 Corn-min till 834 Metal Sheets 1345
4 Bldg-Grass-Tree-Drives 234 Bare Soil 5029
5 Grass/pasture 497 Trees 3064
6 Grass/trees 747 Meadows 18649
7 Grass/pasture-mowed 26 Gravel 2099
8 Corn 489 Asphalt 6631
9 Oats 20 Bitumen 1330

10 Soybeans-no till 968
11 Soybeans-min till 2468
12 Soybeans-clean till 614
13 Wheat 212
14 Woods 1294
15 Hay-windrowed 380
16 Stone-steel towers 95

considered when combining the results of the single classifiers relies on the sum of the votes of the classifiers

applied to the features obtained from ICA and RGF, assigning each pixel to a class.

Concatenated combination (C)

• Step 4: concatenate the features together.

• Step 5: perform classification on the concatenated features to produce the final result (the same with step 4 of

parallel combination).

V. DATASETS AND SETUP FOR EXPERIMENTAL RESULTS

A. Hyperspectral datasets

Two different real hyperspectral data are used to evaluate the performances of the proposed approaches. The two

hyperspectral images provide different characteristics in terms of spatial and spectral resolutions in order to validate

the methods in very different scenarios. The scenes have the following characteristics:

1) Indian Pines AVIRIS: The first hyperspectral image is recorded by the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) sensor over the Indian Pines in Northwestern Indiana, USA. This scene, which comprises

220 spectral bands in the wavelength range from 0.4 to 2.5 µm with a spectral resolution of 10 nm, is composed

of 145 × 145 pixels, and the spatial resolution is 20 m/pixel. The reference data with sixteen classes of interest is

composed of 10336 pixels (seen in Table I). Figs. 2(a) and (b) show respectively the three-band color composite

image and the ground truth of AVIRIS hyperspectral data.

2) University of Pavia ROSIS: The second experiment was carried out on the University of Pavia image of

an urban area operated by Reflective Optics Spectrographic Imaging System (ROSIS)-03 optical airborne sensor.

The original image is composed by 610 × 340 pixels, with a very high spatial resolution of 1.3 m/pixel and 115

spectral bands. In this work, 12 noisy channels were removed and the remaining 103 spectral bands are used for

the investigation [42]. Nine land cover classes were considered for classification (seen in Table I). Fig. 3 shows the

three-band color composite image and reference map of University of Pavia data.
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Fig. 2: (a) Three-band color composite of AVIRIS image. (b) Ground truth.

Fig. 3: (a) Three-band color composite image of AVIRIS data. (b) Reference map.
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B. Experimental setup

We conducted several experiments with these hyperspectral images in order to investigate several relevant aspects

of our proposed methods, such as spectral analysis, spectral-spatial analysis and parameter sensitivity analysis. A

small set of labeled samples (30 samples per class) are randomly selected from the reference data as the training

set. The rest of the pixels forms the testing set 1. In order to increase the statistical significance of the results,

we perform ten Monte Carlo runs with a set of different training samples each run. Experiments for the two

hyperspectral datasets consist in:

• Spectral analysis: we present the classification results for the proposed parallel method without the filtering

step (E-ICA) and compare it with the ICA applied to the lower-dimensional space (PCA as the dimensionality

reduction technique) and high-dimensional space (entire dataset). In this case, K is set to 10, and M is set

equal to the number of classes. For this case, when ICA is applied to the lower-dimensional space (referred

as PCA-ICA), we first use PCA on the original space and then apply ICA to the obtained feature subset. The

procedure is repeated for each ICA algorithm, resulting in different subsets of the kept components, starting

from a minimum of 5 components up to 40 components. Only the best results are reported. For the strategy of

high-dimensional space, ICA is applied to the entire data set and then the most informative features are selected

by using the Relief method [43]. We do not consider JADE and ERBM in this case, since their computational

load increase significantly with dimensionality.

• Spectral-spatial analysis: we present results obtained from the parallel and concatenated combinations: E-ICA-

RGFP and E-ICA-RGFC , and compare them with the following algorithms: 1) random subspace ensemble

(E): proposed method without ICA and RGF; 2) random subspace ensemble with ICA (E-ICA): proposed

method without RGF and 3) random subspace ensemble with RGF (E-RGF): proposed method without ICA.

To evaluate the influence of the final classifier, a comparison between and RF and RoF is shown. It should be

noted that E, E-ICA and E-RGF are constructed in a parallel way, and σs and σr in RGF are set to 7 and 0.1,

respectively.

• Parameter sensitivity analysis. We evaluate the influences of K, M , σs and σr on classification performances.

• Comparisons with other state-of-the art classifiers. Five state-of-the-art spectral-spatial classifiers, such as

generalized composite kernels (GCK) [25], rotation forest with Markov random fields (RoF-MRF) [27], random

subspace with extended morphological attribute profiles (RS-EMAPs) [16], the SVMs with edge preserving

filtering (SVM-EPF) [29] and image fusion and recursive filtering (IFRF) [30], are added for comparison

against the proposed methods. The settings of these methods can be found in the original references.

The following measures are used to evaluate the performances:

• Overall accuracy (OA): the percentage of correctly classified samples; and

• Average accuracy (AA): average percentage of correctly classified samples for individual class.

1For the minority class Grass/pasture-mowed and Oats, we select half of the samples for training (10 and 13 samples respectively).
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TABLE II: Indian Pines AVIRIS image. Overall and average accuracies obtained from the proposed E-ICA method in comparison to the ICA
applied on the lower-dimensional space (PCA as dimensionality reduction) and high-dimensional space (entire dataset).

Methods RF RoF
OA AA OA AA

Original 61.60±1.33 71.39±0.72 66.46±1.28 75.59±0.75

Entire data-ICA EBM 58.44±2.54 70.12±1.85 61.08±2.17 71.14±1.41
FastICA 35.14±3.46 54.12±3.12 41.64±3.78 62.37±2.98

PCA-ICA

EBM 65.91±1.71 76.46±1.61 67.58±1.65 77.92±1.43
ERBM 68.69±1.65 78.23±1.46 69.08±1.67 78.86±1.38
JADE 60.95±1.81 72.25±1.24 61.18±1.74 72.91±1.61

FastICA 64.36±1.69 75.41±1.51 62.04±1.81 72.57±1.64

E-ICA

EBM 68.82±1.62 79.33±1.50 68.02±1.21 78.28±0.81
ERBM 72.61±1.27 83.55±1.15 69.27±1.38 81.11±0.96
JADE 65.36±1.82 71.67±1.62 61.54±1.64 70.49±1.21

FastICA 65.29±1.65 72.27±1.57 61.54±1.79 69.19±1.46

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Spectral analysis

We test the proposed E-ICA approach for spectral analysis and show the results on the two datasets. Tables II

and III show the OAs and AAs obtained from the E-ICA method in comparison to ICA applied to the lower- and

high-dimensional spaces for the AVIRIS and ROSIS images. From Tables II and III, it can be found that the average

OA (AA) obtained for RF and RoF classifiers when applied to the original feature space of AVIRIS image are

61.60% (71.39%) and 66.46% (75.59%), respectively. The average OAs (AAs) achieved by RF and RoF classifiers

when applied to the original feature space of ROSIS image are 69.18% (78.53%) and 75.62% (83.41%), respectively.

As observed in these two tables, the ICA results for the high-dimensional space do not improve the performances

as the selected components in this case tend to be noisy, resulting in low accuracy classification. On the contrary,

PCA-ICA approach leads to significant increase in the classification accuracy. This indicates that the pre-processing

step (e.g., dimensionality reduction) helps ICA to provide better features for obtaining accurate classification results.

These results are consistent with the study presented in [21]. The proposed E-ICA method significantly increases

the classification accuracy in comparison to the other two strategies since it adopts an ensemble strategy to combine

the results obtained for ICA on the lower dimensional spaces (the subsets) while retaining spectral information. In

particular, the two ICA algorithms, EBM and ERBM, yield better results and lower standard deviations than JADE

and FastICA. Indeed, ERBM not only matches a wide range of distributions like EBM [31] but also considers

sample dependence [32], [33].

B. Spectral-spatial analysis

In this section, the results obtained for the proposed spectral-spatial classifiers, E-ICA-RGFP and E-ICA-RGFC

are presented. With the help of RGF, E-ICA-RGFP and E-ICA-RGFC significantly improve the classification results

compared with the classifiers which consider only spectral information (seen in Section VI.A). We would like to
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TABLE III: University of Pavia ROSIS image. Overall and average accuracies obtained from the proposed E-ICA method in comparison to
the ICA applied on the lower-dimensional space (PCA as dimensionality reduction) and high-dimensional space (entire dataset).

Methods RF RoF
OA AA OA AA

Original 69.18±2.74 78.53±0.93 75.62±2.14 83.41±0.89

Entire data-ICA EBM 65.17±2.61 74.12±1.01 67.25±1.81 75.14±0.92
FastICA 58.53±3.12 68.42±1.42 61.64±3.45 74.35±1.58

PCA-ICA

EBM 75.68±2.11 83.19±1.01 73.92±1.95 82.70±0.86
ERBM 76.98±2.12 83.59±1.06 77.34±1.86 85.86±0.81
JADE 71.93±2.45 78.96±1.24 69.89±2.01 79.50±1.01

FastICA 74.06±2.32 80.87±1.14 72.47±2.06 79.17±1.13

E-ICA

EBM 76.61±2.00 84.46±0.77 76.37±1.73 84.05±0.68
ERBM 77.12±1.91 85.31±0.78 77.89±1.81 85.10±0.71
JADE 75.42±2.08 82.43±0.81 75.61±1.96 82.25±0.78

FastICA 73.97±2.16 80.43±0.91 77.14±1.91 81.58±0.83

emphasize that in this work we performed E-ICA-RGFP and E-ICA-RGFC with different ICA methods (e.g., EBM,

ERBM, FastICA and JADE) and found that E-ICA-RGFP and E-ICA-RGFC with EBM and ERM perform slightly

better than the ones with other ICA methods. The main weakness of ERBM is high computational complexity.

Thus, considering the balance of classification performance and computational complexity, EBM provides a good

trade-off. In the following, we only present results obtained from the proposed spectral and spatial methods using

EBM.

Tables IV and V report the classification accuracies achieved for the proposed methods as well as other compared

methods using RF and RoF classifiers, respectively (Indian Pines AVIRIS image). Classification accuracies of

University of Pavia ROSIS image are shown in Tables VI and VII. Figs. 4 and 5 provide the classification maps

(one sample out of the ten Monte Carlo runs). It can be seen that random subspace ensemble method does not

improve the performance. The main reason is that we select a small number of features in each subset. For AVIRIS

image, E-ICA and E-RGF produce higher OAs and AAs than RS and original, indicating the effectiveness of ICA

and RGF techniques. E-RGF is superior to E-ICA for this dataset. For ROSIS image, the classification accuracy

for classes 2, 5 and 8 decrease, leading to lower AA of E-RGF than the one of original E-ICA. This is due to the

fact that when RGF is directly applied to the original feature space, it neglects the informative parts with small

structures, such as shadow (class 2), trees (class 5) and asphalt (class 8). The ensemble strategy that combines

the results obtained for ICA can extract the informative class-specific features, even for classes with small-scale

objects. Followed by RGF, it ensures that the neighboring pixels belonging to the same class have similar feature

values, thus decreasing the variability within regions belonging to the same class. This explains why the proposed

methods have shown significantly better performances than E-RGF (see McNemar’s test 2 in Table VIII).

In this case, the classification results obtained for the parallel combination (AVIRIS image) achieved 31.6, 31.5,

2McNemar’s test (Z) is calculated by Z = f12−f21√
f12+f21

, where, f12 means the number of samples correctly classified by classifier 1 and
incorrectly classified by classifier 2. The difference between classifiers 1 and 2 is to be statistically significant if |Z| > 1.96. Z > 0 indicates
that classifier 1 is more accurate than classifier 2.
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TABLE IV: Indian Pines AVIRIS image. Classification results achieved by the RF classifier. For each method, ”OA (%)”, ”AA (%)” and
class-specific accuracies, ”CA (%)” are reported.

Class Original E E-ICA E-RGF E-ICA-RGFP E-ICA-RGFC
1 81.25 85.00 90.00 96.67 98.75 99.17
2 40.16 41.84 66.80 68.75 90.70 91.97
3 48.54 50.19 58.69 64.83 89.47 93.38
4 67.60 70.69 81.13 95.25 99.75 99.26
5 83.49 82.68 82.46 78.61 93.53 95.27
6 79.61 80.85 95.54 83.53 98.84 98.08
7 87.69 89.23 86.92 94.62 99.23 98.46
8 86.54 84.47 96.56 96.12 99.80 99.63
9 77.00 76.00 81.00 83.00 100.00 100.00

10 64.37 65.82 72.75 66.52 91.86 92.53
11 52.25 50.96 40.14 59.62 88.24 87.60
12 48.99 48.46 72.24 69.14 94.67 94.43
13 94.62 94.34 99.51 94.45 99.34 99.23
14 83.31 83.41 92.99 82.48 98.27 97.60
15 48.83 41.31 56.54 93.57 98.23 97.54
16 98.00 98.00 96.00 98.92 99.08 98.92
OA 61.60±1.33 61.53±1.43 68.82±1.62 72.75±2.76 93.15±1.19 93.43±0.99
AA 71.39±0.72 71.45±0.83 79.33±1.50 82.88±1.72 96.23±0.59 96.23±0.60

24.3 and 20.4 percentage points over original, E, E-ICA and E-RGF, respectively. From Figs. 4 and 5, without RGF

smoothing, the classification maps of the original, E and E-ICA look noisy due to the existence of mixed pixels.

The classification maps obtained for methods involving spatial information (see Figs. 4 and 5(e)-(f)) show more

homogeneous regions.

C. Parameter sensitivity analysis

In this part, we investigate the sensitivity of the proposed methods to parameter choice. Figs. 6 and 7 plot the

OA as a function of the key parameters for the proposed E-ICA-RGFP (AVIRIS image) and E-ICA-RGFC (ROSIS

image) with RF classifier. From Figs. 6 and 7, it is observed that: 1) There is no pattern of dependence between

K and the accuracy. The OA of concatenated combination does not decrease as K increases, indicating that RF

is not sensitive to the increased dimensionality; 2) When M increases, the proposed method tends to give better

performance at the expense of increased computational complexity; 3) For AVIRIS image, the proposed method

achieves the best classification performance when σs = 7 but the performance is satisfactory over a wide range of

values as well. For the ROSIS image, the OA of the proposed method increases with σs; 4). The best range of σr

for the two datasets is between 0.1 to 0.3. Hence, based on the results obtained from AVIRIS and ROSIS images,

selection of parameters is not very critical for the proposed methodology, which is an important added advantage.

The only parameter that seems to provide better performance in a small range is σr. In practice, the users might

select a small value of σr as in our case to better preserve the edges of hyperspectral data and hence increase the

discrimination between different classes.
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TABLE V: Indian Pines AVIRIS image. Classification results achieved by the RoF classifier. For each method, ”OA (%)”, ”AA (%)” and
class-specific accuracies, ”CA (%)” are reported.

Class Original E E-ICA E-RGF E-ICA-RGFP E-ICA-RGFC
1 82.50 84.58 90.42 96.25 96.88 96.67
2 54.49 50.75 76.57 75.73 93.01 90.33
3 57.67 61.63 57.10 76.53 91.17 88.72
4 80.83 79.12 81.47 94.71 99.71 98.38
5 85.05 84.43 87.69 85.93 95.46 93.75
6 84.20 86.92 96.22 86.56 99.07 98.12
7 80.00 85.38 87.69 98.46 99.23 100.00
8 84.14 90.11 93.33 97.06 99.41 98.95
9 83.00 87.00 63.00 95.00 99.00 99.00

10 69.89 72.63 69.50 64.22 90.28 89.63
11 45.44 52.91 32.68 58.40 82.78 83.21
12 63.32 55.17 71.59 73.07 92.64 92.74
13 96.43 95.44 99.62 92.86 99.34 97.31
14 86.26 86.55 92.16 79.83 97.67 95.83
15 61.57 51.89 59.51 86.97 97.54 98.43
16 94.62 97.85 94.00 97.54 96.77 96.77
OA 66.46±1.28 66.99±1.45 68.02±1.21 74.40±1.67 91.97±0.92 91.01±0.84
AA 75.59±0.75 76.40±0.89 78.28±0.81 84.94±0.94 95.56±0.63 94.86±0.61

TABLE VI: University of Pavia ROSIS image. Classification results achieved by the RF classifier. For each method, ”OA (%)”, ”AA (%)”
and class-specific accuracies, ”CA (%)” are reported.

Class Original E E-ICA E-RGF E-ICA-RGFP E-ICA-RGFC
1 70.38 73.05 80.81 71.30 95.81 94.23
2 100.00 100.00 99.72 74.81 95.64 95.32
3 99.15 99.18 99.76 94.85 99.22 99.00
4 64.97 65.73 77.01 87.12 96.68 97.78
5 90.47 91.07 95.36 72.25 93.24 92.29
6 62.59 60.84 69.75 73.89 94.45 97.57
7 64.19 57.65 72.05 71.36 90.88 92.08
8 68.40 69.16 75.66 59.60 92.76 92.18
9 86.62 86.89 90.00 67.67 96.41 97.91
OA 69.18±2.74 68.59±2.64 76.61±2.00 73.24±1.88 94.54±1.83 95.83±1.37
AA 78.53±0.93 78.17±0.91 84.46±0.77 74.76±1.37 95.01±0.67 95.37±0.62

D. Comparisons with other-state-of-the art classifiers

Finally, we present comparisons of the proposed methods against the aforementioned state-of-the-art spectral-

spatial classifiers, including GCK [25], RoF-MRF [27], RS-EMAPs [16], SVM-EPF [29] and IFRF [30], by

considering different numbers of training samples (i.e., 10, 20, 30, 40, 50 samples per class). From Tables IX

and X, we observe that the proposed methods outperform those methods in terms of classification accuracies and

are more stable (with lower standard deviations) than other spectral-spatial classifiers.
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TABLE VII: University of Pavia ROSIS image. Classification results achieved by the RoF classifier. For each method, ”OA (%)”, ”AA (%)”
and class-specific accuracies, ”CA (%)” are reported.

Class Original E E-ICA E-RGF E-ICA-RGFP E-ICA-RGFC
1 77.46 81.53 84.53 82.64 95.88 88.64
2 99.98 99.93 99.88 75.94 95.09 95.07
3 99.18 99.33 99.85 94.63 99.49 98.21
4 83.31 77.94 83.09 92.54 95.77 95.86
5 93.12 92.92 95.54 81.97 92.55 90.39
6 67.94 59.69 67.62 83.50 95.04 95.79
7 69.48 64.09 64.28 82.72 89.33 87.86
8 74.21 74.31 76.84 57.16 89.58 89.90
9 86.00 86.01 84.78 82.09 95.70 94.97
OA 75.62±2.14 71.47±1.98 76.37±1.73 80.39±2.15 94.06±1.02 93.53±1.03
AA 83.41±0.89 81.75±0.92 84.05±0.85 81.47±0.95 94.27±0.61 92.97±0.63

TABLE VIII: Statistic of the McNemar’s test .Each case of the Table represents Zcr where c is the column and r
is the row.

Methods AVIRIS ROSIS
RF RoF RF RoF

Zcr E-ICA-RGFC
Original 38.51 25.34 50.34 40.87

E 39.27 24.83 51.24 42.65
E-ICA 26.14 29.53 37.25 37.23
E-RGF 16.15 18.21 39.41 30.24

E-ICA-RGFP 1.21 -0.99 3.14 -2.01

TABLE IX: Indian Pines AVIRIS image. Classification accuracies obtained from the proposed methods in comparisons to other spatial-spectral
classifiers.

Samples per class RoF-MRF [27] GCK [25] RS-EMAPs [16] SVM-EPF [29] IFRF [30] E-ICA-RGFP E-ICA-RGFC

10 samples OA 74.14±3.21 81.21±2.78 82.15±2.20 62.57±3.25 77.05±3.01 84.44±1.85 86.30±2.15
AA 84.21±1.63 86.78±1.52 88.14±1.42 67.84±1.78 72.47±1.72 91.39±1.15 91.86±1.39

20 samples OA 82.11±2.71 86.24±1.89 87.13±1.82 72.46±1.86 87.12±1.76 90.92±1.63 90.41±1.51
AA 90.27±1.54 90.15±1.34 90.78±1.14 75.14±1.32 80.26±1.32 95.13±0.85 95.78±0.81

30 samples OA 86.24±2.65 88.35±1.59 92.14±1.20 78.51±2.13 89.65±1.85 93.15±1.19 93.43±0.99
AA 92.76±1.21 92.62±0.73 94.71±0.68 80.43±1.14 82.53±1.09 96.23±0.59 96.23±0.60

40 samples OA 87.78±1.72 90.42±1.23 93.18±1.01 82.86±1.86 91.56±1.47 95.35±0.92 95.31±0.87
AA 93.52±1.01 94.63±0.72 95.18±0.69 85.13±1.17 86.78±0.83 97.53±0.38 97.11±0.35

50 samples OA 90.74±1.34 92.88±1.02 93.84±0.86 85.19±1.32 94.11±1.04 95.78±0.69 95.90±0.72
AA 94.02±0.86 95.52±0.68 95.80±0.52 86.74±0.59 88.26±0.82 97.63±0.46 97.89±0.48

TABLE X: University of Pavia ROSIS image. Classification accuracies obtained from the proposed methods in comparisons to other spatial-
spectral classifiers.

Samples per class RoF-MRF [27] GCK [25] RS-EMAPs [16] SVM-EPF [29] IFRF [30] E-ICA-RGFP E-ICA-RGFC

10 samples OA 79.14±3.65 84.53±3.19 85.16±3.23 76.35±4.08 77.18±3.31 86.12±2.95 85.79±3.15
AA 85.62±1.23 89.79±1.14 89.15±1.27 78.42±1.49 78.51±1.24 90.46±1.12 90.60±1.09

20 samples OA 84.88±2.72 89.53±2.81 89.61±2.28 86.21±2.89 86.78±2.34 92.56±1.96 92.91±2.06
AA 89.13±1.08 92.28±1.14 92.87±1.01 87.14±1.21 83.52±1.19 94.02±0.76 94.08±0.72

30 samples OA 89.27±2.35 90.62±2.59 92.87±1.98 88.19±2.46 89.32±2.11 94.54±1.83 95.83±1.37
AA 91.46±1.27 94.53±0.97 94.46±0.87 87.51±1.31 84.41±1.18 95.01±0.67 95.37±0.62

40 samples OA 91.30±1.31 93.11±1.28 93.16±0.99 91.75±1.11 92.07±1.16 95.94±0.94 95.86±0.86
AA 92.98±0.85 95.12±0.96 94.98±0.81 93.78±0.96 92.22±0.83 95.73±0.73 95.79±0.71

50 samples OA 92.75±1.00 94.25±1.04 94.18±0.91 93.05±0.98 93.18±0.89 96.73±0.72 96.49±0.70
AA 94.11±0.65 96.03±0.45 95.87±0.53 93.78±0.61 92.86±0.86 96.82±0.34 96.24±0.36
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Indian Pines AVIRIS image. Classification results of (a) Original, OA = 62.04%. (b) E, OA = 62.84%.
(c) E-ICA, OA = 69.37%. (d) E-RGF, OA = 73.27%. (e) E-ICA-RGFP , OA = 94.87%. (f) E-ICA-RGFC , OA =
95.32%.

E. Discussion

For spectral information based classification, the proposed E-ICA is superior to ICA applied to either high or low

dimensional space. The rationale behind the success is that random subspace ensemble is introduced to combine

the results obtained for the subsets via ICA techniques. In this case, we can enhance the classification performance

without losing spectral information. The results in Tables II and III show that EBM and ERBM provide better

classification results than JADE and FastICA in all the cases. The main reason is that EBM is a flexible density

model to estimate the ICs [31], and ERBM, in addition to the use of this density model, incorporates sample

dependence into the estimation procedure [32], [33].

The proposed spectral-spatial methods, E-ICA-RGFP and E-ICA-RGFC , significantly improve the classification

results compared with the use of only spectral information (E-ICA), indicating the importance of RGF in extracting

spatial contextual information. The results shown in Tables IV, V, VI and VII indicate that both E-ICA-RGFP

and E-ICA-RGFC are superior to E-ICA and E-RGF, demonstrating the effectiveness of combining ICA and RGF

via an ensemble strategy. It should be noted that the orders of ICA and RGF are very important in our proposed

methods. We have done an experiment by switching the ICA and RGF steps. Experimental results indicated that

the classification accuracies are lower than our proposed methods, however, still higher than the ones of E-ICA and

E-RGF. This is due to the fact that useful spectral information is lost after application of RGF, which prevents ICA

to extract effective ICs. Moreover, other EPF techniques (e.g., relative total variation [44]) have also been tested
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(a) (b) (c)

(d) (e) (f)

Fig. 5: University of Pavia ROSIS image. Classification results of (a) Original, OA = 75.13%. (b) E, OA = 70.14%.
(c) E-ICA, OA = 78.06%. (d) E-RGF, OA = 79.47%. (e) E-ICA-RGFP , OA = 94.93%. (f) E-ICA-RGFC , OA =
93.87%.

and classification results were very close to the one obtained with the RGF.

An additional advantage of the proposed methods is the fact that parameter choice is not critical and does not

need to be tuned finely. The users might select a small value of σr as in our case to increase the classification

performance of the proposed method.

VII. CONCLUSION

In this paper, a new methodology for spectral-spatial supervised classification of hyperspectral remote sensing

image has been proposed. The presented methodology uses a combination of ICA and edge preserving filter.
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(a) (b) (c) (d)

Fig. 6: Indian Pines AVIRIS image. Sensitivity of the proposed method: (a) influence of K (M = 16, σs = 7 and σr = 0.1), (b) influence
of M (K = 10, σs = 7 and σr = 0.1), (c) influence of σs (K = 10, M = 16 and σr = 0.1) and (d) influence of σr (K = 10, M = 16
and σs = 7)

(a) (b) (c) (d)

Fig. 7: University of Pavia image. Sensitivity of the proposed method: (a) influence of K (M = 9, σs = 7 and σr = 0.1), (b) influence of
M (K = 10, σs = 7 and σr = 0.1), (c) influence of σs (K = 10, M = 9 and σr = 0.1) and (d) influence of σr (K = 10, M = 9 and
σs = 7).

In particular, an ensemble strategy that combines the results obtained for ICA on the subsets is designed to

retrieve effective spectral features in a high-dimensionality scenario without losing spectral information, i.e., where

no prior dimensionality reduction is applied. More specifically, the ICA techniques are applied to each subset, which

are randomly selected from the original feature space, and then the classification results obtained from ICs in each

subset via a supervised classifier (e.g., RF or RoF) are integrated. Moreover, EBM and ERBM are introduced to

the remote sensing community. EBM make uses of the non-Gaussianity property based on a flexible density model

[31] and ERBM [32], [33] adds the use of sample dependence into the estimation procedure. Hence, both provide

attractive alternatives for performing ICA for remote sensing applications as well.

The analysis is also extended to the spatial information domain with the definition of RGF for extracting spatial

information. RGF effectively removes noise and small details while preserving large-scale structures. In this case,

it can provide complementary spatial information of the structures present in the scene following the application of

ICA in each subset. Moreover, the parallel (E-ICA-RGFP ) and concatenated (E-ICA-RGFC) strategies are proposed

to combine multiple features via ICA and RGF. The proposed methods (i.e., E-ICA-RGFP and E-ICA-RGFC) are

tested on two real hyperspectral images, which are different in terms of spectral/spatial resolution. The results show

the effectiveness of the proposed methods in extracting spectral and spatial features, providing higher classification

October 12, 2016 DRAFT



18

accuracies when compared with state-of-the-art methods.

In our future studies, we will utilize other data sources (e.g., multi-temporal datasets) in the classification process.

Furthermore, the optimization of our algorithms to reduce the computational burden and classification problems

will be investigated.
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