Adaptive Design of Experiments for Conservative Estimation of Excursion Sets

Abstract : We consider a Gaussian process model trained on few evaluations of an expensive-to-evaluate deterministic function and we study the problem of estimating a fixed excursion set of this function. We review the concept of conservative estimates, recently introduced in this framework, and, in particular, we focus on estimates based on Vorob'ev quantiles. We present a method that sequentially selects new evaluations of the function in order to reduce the uncertainty on such estimates. The sequential strategies are first benchmarked on artificial test cases generated from Gaussian process realizations in two and five dimensions, and then applied to two reliability engineering test cases.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01379642
Contributeur : Azzimonti Dario <>
Soumis le : mardi 10 janvier 2017 - 11:54:54
Dernière modification le : vendredi 29 septembre 2017 - 15:46:01
Document(s) archivé(s) le : mardi 11 avril 2017 - 14:21:20

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

  • HAL Id : hal-01379642, version 2
  • ARXIV : 1611.07256

Citation

Dario Azzimonti, David Ginsbourger, Clément Chevalier, Julien Bect, Yann Richet. Adaptive Design of Experiments for Conservative Estimation of Excursion Sets. 2017. 〈hal-01379642v2〉

Partager

Métriques

Consultations de la notice

429

Téléchargements de fichiers

158