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Adaptive Design of Experiments for
Conservative Estimation of Excursion Sets

Dario Azzimonti∗, David Ginsbourger†∗, Clément Chevalier‡,
Julien Bect§, Yann Richet¶

Abstract

We consider a Gaussian process model trained on few evaluations
of an expensive-to-evaluate deterministic function and we study the
problem of estimating a fixed excursion set of this function. We re-
view the concept of conservative estimates, recently introduced in
this framework, and, in particular, we focus on estimates based on
Vorob’ev quantiles. We present a method that sequentially selects
new evaluations of the function in order to reduce the uncertainty on
such estimates. The sequential strategies are first benchmarked on ar-
tificial test cases generated from Gaussian process realizations in two
and five dimensions, and then applied to two reliability engineering
test cases.

1 Introduction

The problem of estimating the set of inputs that leads a system to a particular
behaviour is common in many applications, notably reliability engineering
(see, e.g., Bect et al., 2012; Chevalier et al., 2014a), climatology (see, e.g.,
French and Sain, 2013; Bolin and Lindgren, 2015) and many other fields (see,
e.g., Bayarri et al., 2009; Arnaud et al., 2010; Wheeler et al., 2014). Here we
consider a system modelled as a continuous function f : X→ Y, where X is
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a locally compact Hausdorff topological space and Y = Rk, for some k > 0.
We are interested in the set

Γ∗ = {x ∈ X : f(x) ∈ T}, (1)

where T ⊂ Y is closed, which implies that Γ∗ is closed as f is continuous.
We focus on the case where few evaluations of the response f can be made
available. This is common if f is expensive-to-evaluate, as, for example, when
its evaluations require time consuming computer experiments (Sacks et al.,
1989).

In a Bayesian framework (see, e.g., Chilès and Delfiner, 2012, and ref-
erences therein) we assume that f is a realization of an almost surely con-
tinuous Gaussian process (GP) Z ∼ GP (m,K), with mean function m, de-
fined as m(x) := E[Zx], x ∈ X, and covariance kernel K(x, y), defined as
K(x, y) := Cov(Zx, Zy), x, y ∈ X. For n > 0, we consider evaluations
fn = (f(x1), . . . , f(xn)) of f at an initial design Xn = (x1, . . . , xn) ∈ Xn

and the posterior distribution of the process Z | ZXn = fn, where ZXn =
(Zx1 , . . . , Zxn). The prior distribution on Z induces a prior distribution on
the excursion set

Γ = {x ∈ X : Zx ∈ T}. (2)

Analogously, the posterior distribution on Z induces a posterior distribution
for Γ and by summarizing this distribution we obtain an estimate for Γ∗. Ran-
dom closed sets do not have a unique definition of expectation, however it is
possible to provide different notions of expectation and variability for such
objects (see, e.g., Molchanov, 2005). The Vorob’ev expectation (Vorob’ev,
1984) is an example recently introduced in the GP framework (see, e.g.,
Chevalier et al., 2013). Here we focus on conservative estimates for Γ intro-
duced by French and Sain (2013); Bolin and Lindgren (2015).

Consider a Borel σ-finite measure µ defined on X and denote with C a
family of closed subsets in X. A conservative estimate at level α for Γ∗ is a
set CEα,n defined as

CEα,n ∈ arg max
C∈C

{µ(C) : Pn(C ⊂ Γ) ≥ α}, (3)

where Pn(·) = P (· | ZXn = fn). This type of set estimate is particularly
interesting in problems where Γ∗ is a set of safe configurations for a system.
In this case, by choosing a high α, we provide an estimate for Γ∗ that with
high posterior probability is included in Γ. The optimization procedure in
equation (3) can be very challenging to solve, and it crucially depend on
the choice of the family C. A very common choice (see, e.g., French and
Sain, 2013; Bolin and Lindgren, 2015; Azzimonti and Ginsbourger, 2016) is a
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parametric family of nested sets depending on a one dimensional parameter.
Here we also rely on a specific one dimensional family and, in Section 2, we
provide motivation for this choice.

The main contribution of this work is a framework to evaluate the un-
certainty on conservative estimates for Γ∗ and the development of strategies
to sequentially reduce such uncertainty by adding new evaluations of f . If
the input space X is a compact subset of Rd and the output space Y = R,
sequential strategies have already been proposed for contour lines (Ranjan
et al., 2008; Bichon et al., 2008) by adapting the expected improvement al-
gorithm criterion (Jones et al., 1998). In the case of excursion sets, Stepwise
Uncertainty Reduction (SUR) strategies based on the set’s measure were in-
troduced by Vazquez and Bect (2009); Bect et al. (2012). More recently a
fast parallel implementation of these strategies have been proposed (Cheva-
lier et al., 2014a) and applied to the problem of identifying the set Γ∗. Here
we extend this framework to conservative estimates.

In Section 1.1 we briefly recall the set estimates preliminary to this work
and, in Section 1.2, the previously introduced uncertainty reduction tech-
niques. In Section 2 we study the conservative estimates and we motivate
our choice for the family C. In Section 3 we define the metrics used to quan-
tify the uncertainty on conservative estimates. In Section 4, we detail the
proposed sequential strategies and their implementation in real valued case
(Y = R). In Section 5 we first benchmark the strategies with Gaussian pro-
cess realizations showing how the conservative property affects the estimates.
We then apply the proposed strategies on two industrial test cases. The first
one is a coastal flood problem and the second one is a nuclear criticality
safety problem.

1.1 The Vorob’ev approach to excursion set estimation

The posterior distribution of Γ provides estimates for Γ∗ and different ways
to quantify the uncertainty on these estimates. See, e.g. Chevalier et al.
(2014a); Bolin and Lindgren (2015); Azzimonti et al. (2016) for more details.

Let us now briefly recall the Vorob’ev approach (Vorob’ev, 1984; Molchanov,
2005; Chevalier et al., 2013). Define the coverage probability function of a
random closed set Γ as

pΓ(x) = P (x ∈ Γ), x ∈ X.
In our case we consider the posterior coverage function pΓ,n, where we con-
sider the posterior probability Pn. The coverage function defines the family
of Vorob’ev quantiles

Qn,ρ = {x ∈ X : pΓ,n(x) ≥ ρ}, (4)
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with ρ ∈ [0, 1]. These sets are closed for each ρ ∈ [0, 1] as the coverage
function is upper semi-continuous (Molchanov, 2005, Proposition 1.34).

The level ρ can be selected in different ways. For example by choosing
ρ = 0.5 we obtain the Vorob’ev median. Another important type of set
estimate based on the Vorob’ev quantiles is the Vorob’ev expectation of Γ,
where the level ρ = ρV is chosen such that Qρ has the closest possible measure
to the expected measure of Γ, for some Borel σ-finite measure on X. In
Section 2 we show that Vorob’ev quantiles are a reasonable choice for the
family C in the conservative estimates defined in Equation (3).

Finally let us introduce the concept of expected distance in measure be-
tweeen two random sets. Consider two random closed sets Γ1,Γ2 ⊂ X. The
expected distance in measure between Γ1 and Γ2 with respect to the mea-
sure µ is

dµ(Γ1,Γ2) = E[µ(Γ1∆Γ2)],

where Γ1∆Γ2 = (Γ1 \ Γ2) ∪ (Γ2 \ Γ1). The expected distance in measure can
be seen as the measure of variability associated with a Vorob’ev quantile and
with the Vorob’ev expectation. In the Ph.D. thesis of Chevalier (2013), this
notion of variability was introduced to adaptively reduce the uncertainty on
Vorob’ev expectations for expensive-to-evaluate functions. Here, it is used
in Section 3 to provide uncertainty functions for conservative estimates.

1.2 Background on SUR strategies

The objective of sequential strategies for GP models is to select a sequence
of points X1, X2, . . . , Xn that reduces the uncertainty on selected posterior
quantities. Here we are interested in reducing the uncertainties on CEα,n, as
defined in equation (3). In this case the current state of the model is described
by Xn ∈ Xn and ZXn ∈ Yn, with Xn the locations where the function f was
evaluated and ZXn are the actual evaluations. Here, we focus on Stepwise
Uncertainty Reduction (SUR) strategies. A SUR strategy (see, e.g., Fleuret
and Geman, 1999; Bect et al., 2012; Chevalier et al., 2014a) selects the next
evaluation in order to reduce a particular uncertainty function.

Definition 1 (Uncertainty function). Consider a model where n evaluations
of f are given, we call uncertainty of an estimate the map

Hn : (X× Y)n → R,

that associates to each vector of couples (xi, Zxi)i=1,...,n a real value repre-
senting the uncertainty associated with the selected estimate.

4



Since they are selected sequentially, both the locations X1, . . . , Xn and
the evaluations are random. More specifically, denote with An the σ-algebra
generated by the couples X1, ZX1 , . . . , Xn, ZXn . We denote with Hn the An
measurable random variable that returns the uncertainty associated with An,
the σ−algebra generated by (Xi, ZXi)i=1,...,n.

In what follows we denote with En[·] = E[· | ZXn = fn], the expectation
conditioned on the event ZXn = fn, where Xn ∈ Xn is a fixed design and
fn ∈ Yn. If we assume that the first n evaluations of the field are known then,
a SUR strategy selects the locations X∗n+1, . . . , X

∗
n+q that minimize En[Hn+q],

the future uncertainty in expectation. For a more complete and theoretical
perspective on SUR strategies see, e.g., Bect et al. (2016) and references
therein. There are many ways to proceed with the minimization introduced
above, see, e.g., Osborne et al. (2009); Ginsbourger and Le Riche (2010);
Bect et al. (2012); González et al. (2016) and references therein. Here we fo-
cus on sub-optimal strategies, also called batch-sequential one-step lookahead
strategies, that select the next batch of locations by greedily minimizing the
expected uncertainty at the next step. This choice is often justified in prac-
tice because it is possible to run the evaluations of the function in parallel
thus saving wall-clock time.

Definition 2 (batch sequential one-step lookahead criterion). We call batch
sequential one-step lookahead sampling criterion a function Jn : (X)q → R
that associates to each batch of q points x(q) := (xn+1, . . . , xn+q) ∈ Xq the
expected uncertainty at the next step assuming this batch is evaluated

Jn(x(q)) = En [Hn+q | Xn+1 = xn+1, . . . , Xn+q = xn+q] .

In the next sections we revisit these concepts for the problem of computing
conservative estimates of an excursion set.

2 Properties of conservative estimate

The conservative estimate introduced in Equation (3) requires the specifica-
tion of the family C where to search for the optimal set CEα. In practice, it
is convenient to choose a parametric family indexed by a parameter θ ∈ Rk.
Consider a nested family Cθ indexed by a real number θ ∈ [0, 1], i.e. for each
θ1 > θ2

Cθ1 ⊂ Cθ2 , (5)

for any Cθ1 , Cθ2 ∈ Cθ. Let us define C0 = X and assume that µ(X) <∞. In
practice, this is often the case as X is either chosen as a compact subset of
Rd with µ the Lebesgue measure or µ is a probability measure.
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For each θ, we can define the function ϕµ : [0, 1]→ [0,+∞) that associates
to each θ ∈ [0, 1] the value ϕµ(θ) := µ(Cθ), with Cθ ∈ Cθ. It is a non
increasing function of θ because the sets Cθ are nested. We further define
the function ψΓ : [0, 1] → [0, 1] that associates to each θ the probability
ψΓ(θ) := P (Cθ ⊂ Γ). The function ψΓ is non decreasing in θ due to the
nested property in Equation (5). In this set-up the computation of CEα is
reduced to finding the smallest θ = θ? such that ψΓ(θ?) ≥ α. The measure
µ(Cθ?) is equal to ϕµ(θ?).

The Vorob’ev quantiles introduced in Equation (4) are a family of nested
closed sets that satisfy the property in Equation (5). Moreover they have
the important property of being the minimizers of the expected distance in
measure among sets with the same measure.

Proposition 1. Consider a measure µ such that µ(X) < ∞. The Vorob’ev
quantile

Qρ = {x ∈ X : pΓ(x) ≥ ρ}
minimizes the expected distance in measure with Γ among measurable sets M
such that µ(M) = µ(Qρ), i.e.,

E [µ(Qρ∆Γ)] ≤ E [µ(M∆Γ)] , (6)

for each measurable set M such that µ(M) = µ(Qρ).

Proof. see Appendix A

The Vorob’ev quantiles have the smallest expected distance in measure
with respect to Γ among sets with the same measure. They are thus an
optimal family for conservative estimates with respect to the expected dis-
tance in measure. In general, however, the Vorob’ev quantile chosen for CEα

with this procedure is not the set S with the largest measure satisfying the
property P (S ⊂ Γ) ≥ α.

In the remainder of the paper we always consider C as the family of
Vorob’ev quantiles. Given an initial design Xn we can exploit the previously
described properties and obtain CEα,n, a conservative estimate at level α for
Γ∗. In the next section we introduce different ways to quantify the uncer-
tainty on this estimate, while in Section 4 we introduce sequential strategies
to reduce this uncertainty by adding new evaluations to the model.

3 Uncertainty quantification on CEα,n

In this section we introduce several uncertainty functions for conservative
estimates. Here we consider a static scenario where n evaluations of f are
available.
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Our object of interest is Γ∗, therefore we require uncertainty functions
that take into account the whole set. Chevalier and co-authors (Chevalier
et al., 2013; Chevalier, 2013) evaluate the uncertainty on the Vorob’ev expec-
tation with the expected distance in measure between the current estimate
Qn,ρn and the set Γ. Let us recall here that the Vorob’ev uncertainty of the
quantile Qρn is the quantity

Hn(ρn) = En[µ(Γ∆Qn,ρn)]. (7)

In the following sections, this uncertainty quantification function is applied
to the Vorob’ev expectation, ρn = ρV,n, to the Vorob’ev median, ρn = 0.5,
and to the conservative estimate at level α, ρn = ραn.

Consider now the case of conservative estimates and fix the level α. Note
that, by definition, the symmetric difference can be written as

En[µ(Γ∆Qn,ραn)] = En[µ(Qn,ραn \ Γ)] + En[µ(Γ \Qn,ραn)]. (8)

Let us denote with G
(1)
n = µ(Qn,ραn \ Γ) the random variable associated with

the measure of the first set difference and with G
(2)
n = µ(Γ\Qn,ραn) the random

variable associated with the second one.

Remark 1. Consider the conservative estimate Qn,ραn , then the ratio between

the error En[G
(1)
n ] and the measure µ(Qn,ραn) is bounded by 1−α, the chosen

level for the conservative estimates. See Appendix A for a proof.

A conservative estimate Qn,ραn aims at controlling the error En[G
(1)
n ]. With

a broad use of the hypothesis testing lexicon we denote Type I error at state
n the quantity En[G

(1)
n ] and Type II error at state n the quantity En[G

(2)
n ].

Type II error defines the following uncertainty function for CEα,n.

Definition 3 (Type II uncertainty). Consider the Vorob’ev quantile Qn,ραn

corresponding to the conservative estimate at level α for Γ. The Type II
uncertainty is the uncertainty function Ht2

n defined as

Ht2
n (ραn) := En[G(2)

n ] = En[µ(Γ \Qn,ραn)] (9)

Conservative estimates at high levels α tend to select regions inside Γ, by
definition. In particular if the number of function evaluations is high enough
to have a good approximation of the function f , the conservative estimates
with high α tend to be inside the true excursion set Γ∗. In these situations
the expected type I error is usually very small, as shown in Remark 1, while
type II error could be rather large. Type II uncertainty is thus a relevant
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quantity when evaluating conservative estimates. In the test case studies we
also compute the expected type I error to check that it is consistently small.

The last uncertainty function introduced in this section is the measure
of Qn,ραn multiplied by −1. In fact by definition the conservative estimate
has probability at least α of being inside the excursion. If an estimate Qn,ραn

has a large measure it is then a good indicator of how well the target set is
covered by the estimate while still retaining the conservative statement.

Definition 4 (Uncertainty meas). We denote the uncertainty function re-
lated to the measure µ with Hmeas

n , defined as

Hmeas
n (ραn) := −En[µ(Qn,ραn)] (10)

If µ(X) <∞, thenHmeas
n (ραn) is bounded from below by −µ(X). While the

uncertainty functions are usually bounded from below by zero, this property
is not required to develop SUR strategies.

4 SUR strategies for conservative estimates

In this section we consider a current design of experiments Xn, for some
n > 0. We introduce one-step lookahead SUR strategies that select the next
batch of q > 0 locations Xn+1, . . . , Xn+q ∈ X in order to reduce the future
uncertaintyHn+q defined in Equation (7), (9) and (10). We denote withAn+q

the σ−algebra generated by the sequence (Xi, ZXi)i=1,...,n+q ∈ (X × Y)n+q.
In this case the uncertainty Hn+q is a random variable that depends on the
unknown response at the points Xn+1, . . . , Xn+q.

In the case of conservative estimates we consider three sampling criterion
based on the uncertainty functions introduced in Equation (7), (9) and (10).
The first is an adaptation of the Vorob’ev criterion introduced in Chevalier
(2013) and based on the Vorob’ev deviation (Vorob’ev, 1984; Molchanov,
2005; Chevalier et al., 2013).

Jn(x(q); ραn+q) = En
[
Hn+q(ρ

α
n+q) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
(11)

= En
[
En+q

[
µ(Γ∆Qn+q,ραn+q

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]]
for x(q) = (xn+1, . . . , xn+q) ∈ Xq, where Qn+q,ραn+q

is the Vorob’ev quantile
obtained with n + q evaluations of the function at level ραn+q, the conserva-
tive level obtained with n + q evaluations. In what follows for the sake of
brevity we denote with An+q(x

(q)) the σ-algebra generated by the couples
(xn+1, Zxn+1), . . . , (xn+q, Zxn+q), where (xn+1, . . . , xn+q) = x(q).
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In the case of conservative estimates with high level α, each term of
Equation (8) does not contribute equally to the expected distance in measure,
as observed in Remark 1. It is thus reasonable to consider a criterion to
reduce the Type II uncertainty introduced in Definition 3.

Jt2
n (x(q); ραn+q) = En

[
Ht2
n (ραn+q) | An+q(x

(q))
]

(12)

= En
[
E
[
G(2)
n (Qn+q,ραn+q

) | An+q(x
(q))
]]
,

for x(q) ∈ Xq. In Section 4.1 this criterion is derived for a generic level
ρn ∈ [0, 1], under more restrictive assumptions on the process and on Γ∗.

The last criterion studied here for conservative estimates relies on the
uncertainty function Hmeas

n . We can define the measure based criterion as

Jmeas
n (x(q); ραn+q) = En

[
−E

[
µ(Qn+q,ραn+q

) | An+q(x
(q))
]]
. (13)

Since we are interested in minimizing this criterion we consider the equivalent

function to maximize J̃n
meas

(x(q); ραn+q) = En
[
E
[
µ(Qn+q,ραn+q

) | An+q(x
(q))
]]
.

Note that this criterion select points that are meant to increase the measure
of the estimate and it is only reasonable for conservative estimates where the
conservative condition on Qραn+q

leads to sets with finite measure in expecta-
tion. In practice, there is no closed form formula the criteria presented above
with a choice of ραn+q. In the implementation part we replace this level with
ραn, the last level computed.

4.1 Implementation

In this section we detail the algorithmic aspects of the criteria.
The notions of an estimate’s uncertainty and of sequential criteria can be

defined in the generic setting introduced in Section 1.2, however in order to
provide formulae to implement the criteria we need to restrict ourselves to
a more specific framework. Here we fix X ⊂ Rd, a compact subset of Rd,
and Y = R. These choices are common especially in engineering and other
scientific applications. We assume that Z is a GP with constant prior mean
m and covariance kernel K. Finally we derive formulas for the criteria for
the set Γ∗ = {x ∈ X : f(x) ∈ T} with T = [t,+∞), where t ∈ R is a fixed
threshold. It is straightforward to compute the criteria for T = (−∞, t] and
to extend them for unions of such intervals.

The formulas for the criteria introduced here all rely on the posterior
coverage probability function pn, where the subscript Γ is dropped as the
set is clear from the context. In particular, from the assumptions previously
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introduced it follows that, for each n ≥ 0, pn(x) = Φ ((mn(x)− t)/sn(x)),
with x ∈ X, where Φ is the univariate standard Normal distribution, mn is
the posterior mean of the process and sn(x) =

√
K(x, x) for all x ∈ X.

The first criterion introduced in Section 4 is based on the symmetric
difference between the set Γ and the Vorob’ev quantile Qn,ρ. In Chevalier
(2013), Chapter 4.2, the formula for this criterion in this framework was
derived for the Vorob’ev expectation, i.e. the quantile at level ρ = ρV . In
the following remark we first extend this result to any quantile ρ.

Remark 2 (Criterion Jn). Under the previously introduced assumptions the
criterion Jn can be expanded in closed-form as

Jn(x(q); ρn) = En
[
E
[
µ
(
Γ∆Qnq ,ρn

)
| An+q(x

(q))
]]

=

∫
X

(
2Φ2

((
an+q(u)

Φ−1(ρn)− an+q(u)

)
;

(
1 + γn+q(u) −γn+q(u)
−γn+q(u) γn+q(u)

))
− pn(u) + Φ

(
an+q(u)− Φ−1(ρn)

γn+q(u)

))
dµ(u), (14)

where

an+q(u) =
mn(u)− t
sn+q(u)

, bn+q(u) =
Kn(u,x(q))K−1

q

sn+q(u)
, (15)

γn+q(u) =
√

bTn+q(u)Kqbn+q(u), u ∈ X

with Kn(u,x(q)) = (K(u, xn+1), . . . ,K(u, xn+q)). Kq is covariance matrix with
elements [Kn(xn+i, xn+j)]i,j=1,...,q, Φ2(·; Σ) is the bivariate centred Normal dis-
tribution with covariance matrix Σ and Φ−1(u) denotes the quantile at level
u of the standard Normal distribution.

The proof of the previous remark is a simple adaptation of the proof in
Chevalier (2013), Chapter 4.2.

Proposition 2. The criterion Jt2
n (·; ραn) can be expanded in closed-form as

Jt2
n (x(q); ραn) = En

[
E
[
G(2)
n (Qn+q,ραn) | An+q(x

(q))
]]

(16)

=

∫
X

Φ2

((
an+q(u)

Φ−1(ραn)− an+q(u)

)
;

(
1 + γn+q(u) −γn+q(u)
−γn+q(u) γn+q(u)

))
dµ(u).

Proof. The proof is a simple adaptation of the Remark 2. See Chevalier
(2013).

Proposition 3. The criterion Jmeas
n can be expanded in closed-form as

Jmeas
n (x(q); ραn) = En

[
E
[
µ(Qn+q,ραn) | An+q(x

(q))
]]

=

∫
X

Φ

(
an+q(u)− Φ−1(ραn)

γn+q(u)

)
dµ(u). (17)
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Proof. First of all notice that, for each x ∈ X the coverage function pn+q(x
(q))

can be written as

pn+q(x
(q))(x) = Φ

(
an+q(x) + bTn+qYq

)
, (18)

where an+q,bn+q are defined in Equation (15) and Yq ∼ Nq(0, Kq) is a q di-
mensional normal random vector. The indicator function of the set Qn+q,ραn

can be written as 1pn+q(x)≥ραn . By Tonelli’s theorem we exchange the expec-
tation with the integral over X and we obtain

En
[
E
[
µ(Qn+q,ραn) | An+q(x

(q))
]]

=

∫
X
En
[
1pn+q(u)≥ραn

]
dµ(u)

=

∫
X
Pn (pn+q(u) ≥ ραn) dµ(u).

By substituting the expression in Equation (18) we obtain∫
X
Pn (pn+q(u) ≥ ραn) dµ(u) =

∫
X
Pn
(
an+q(u) + bTn+q(u)Yq ≥ Φ−1(ραn)

)
dµ(u)

=

∫
X

Φ

(
an+q(u)− Φ−1(ραn)

γn+q(u)

)
dµ(u)

For the practical implementation of the sampling criteria we exploit the
kriging update formulas (Chevalier et al., 2014b; Emery, 2009) for faster up-
dates of the posterior mean and covariance when new evaluations are added.

The sampling criteria, implemented above in Equation (14), (16) and
(17), are used to select the next evaluations of the function f . The conser-
vative level ραn is computed with the algorithm detailed by Azzimonti and
Ginsbourger (2016).

5 Test cases

In this section we apply the proposed sequential uncertainty reduction meth-
ods to different test cases. First we develop a benchmark study with Gaussian
process realizations to study the different behaviour of the proposed strate-
gies. Then, we apply the methods to two reliability engineering test cases. In
the first test case, the set of interest represents the offshore conditions that
do not lead the water level at the coast to be larger than a critical threshold
above which flood would occur. In the second test case the set of interest is
the set of safe parameters for nuclear storage facility.
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Strategy number criterion parameters
Benchmark 1 IMSE

Benchmark 2 tIMSE target=t

A Jn(·; ρn) ρn = 0.5

B Jn(·; ρn) ρn = ραn, α = 0.95

C Jmeas
n (·; ρn) ρn = ραn, α = 0.95

D Jt2
n (·; ρn) ρn = 0.5

E Jt2
n (·; ραn) α = 0.95

F (hybrid strategy) Jt2
n (·; ραn) + IMSE 2 iterations IMSE,

1 iteration with E

Table 1: Strategies implemented in the test cases.

In each test case we choose a tensor product covariance kernel from the
Matérn family, see Rasmussen and Williams (2006, Chapter 4), for details
on the parametrization.

All computations are carried out in the R programming language (R Core
Team, 2016), with the packages DiceKriging (Roustant et al., 2012) and
DiceDesign (Franco et al., 2013) for Gaussian modelling, KrigInv (Chevalier
et al., 2014c) for already existing sampling criterion and ConservativeEstimates

(Azzimonti and Ginsbourger, 2016) to compute the conservative estimates.

5.1 Benchmark study: Gaussian processes

Let us start with a benchmark study for the different strategies introduced
in Section 4 on Gaussian process realizations in two and five dimensions.

The following setup is shared between the two test case. We consider
the unit hypercube X = [0, 1]d, d = 2, 5 and we choose a Gaussian process
(Zx)x∈X ∼ GP (m,K). The GP has a constant prior mean m = 0 and a
tensor product Matérn covariance kernel with parameters fixed as detailed in
Table 2. The objective is to obtain a conservative estimate at level α = 0.95
for Γ = {x ∈ X : Zx ≥ 1}. The measure of reference µ is the Lebesgue
measure on X. Here we test the strategies detailed in Table 1.

We consider an initial design of experiments Xninit
, obtained with the

function optimumLHS from the package lhs. The field is simulated at Xninit

and the random seed is saved. The next evaluations are chosen by minimizing
each sampling criterion detailed in Table 1. We ensure that each strategy is
applied on the same realization by initializing the seed at the same value for
sampling Xninit+1. Each criterion is run for n = 30 iterations, updating the
model with q = 1 new evaluations at each step. We consider mdoe different

12



Test case d covariance parameters mdoe ninit

GP 2 ν = 3/2, θ = [0.2, 0.2]T , σ2 = 1 10 3

GP 5 ν = 3/2, θ =
√

5
2
[0.2, 0.2, 0.2, 0.2, 0.2]T , σ2 = 1 10 6

Costal 2 ν = 5/2, MLE for θ, σ2, σ2
noise 10 10

Nuclear 2 ν = 5/2, MLE for θ, σ2, σ2
noise 10 10

Table 2: Test cases parameter choices.

initial design of experiments and, for each design, we replicate the procedure
10 times with different initial values ZXninit

.

5.1.1 Dimension 2

We evaluate the strategies by looking at the type I and type II errors for
Qραn , defined in Section 3, and by computing the measure µ(Qραn). For each
of these quantities we report the median result over the replications obtained
after n = 30 evaluations for each initial design.

Expected type I error does not vary much among the different strategies
as it is controlled by the probabilistic condition imposed on the estimate, as
shown in Section 2.

In Figure 1 we show the distribution of expected type II error and the
expected volume µ(Qραn) after n = 30 new evaluations. The strategies
A,B,C,E, F all provide better uncertainty reduction for conservative esti-
mates than a standard IMSE strategy or than a tIMSE strategy. In particular
strategy E has the lowest type 2 error while at the same time providing an
estimate with the largest measure, thus yielding a conservative set which is
likely to be included in Γ∗ and not too small in volume. All estimates are
very conservative: the median ratio between the expected type I error and
the estimate’s volume is 0.03%, thus much smaller than the upper bound
1−α = 5% computed in Remark 1. On the other hand the expected type II
error is in median 178% bigger than the estimate’s volume.

5.1.2 Dimension 5

In Figure 2 we show the distribution of expected type II errors for Qραn and
its measure µ(Qραn) obtained with the different design of experiments, after
30 iterations of each strategy.

In this test case the differences between the strategies are less clear. The
IMSE strategy provides conservative estimates with small measure and with
slightly larger type II error. Strategies A,B,C,E provide a good trade off

13
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Figure 1: Median expected type II errors and measure of the estimate across
the different designs of experiments after n = 30 iterations of each strategy.
Test case in dimension 2.
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Figure 2: Median expected type II errors and measure of the estimate across
different designs of experiments after n = 30 iterations of each strategy. Test
case in dimension 5.
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between small type II error and large measure of the estimate, however they
are not clearly better than the other strategies in this case. The estimates
provided by all methods are very conservative also in this case. The median
ratio over all DoEs and all replications between the expected type I error and
volume is 0.33%, which is smaller than the upper bound 5%, as computed in
Remark 1. The expected type II error is instead 3 orders of magnitude larger
than the estimate’s volume. This indicates that we have only recovered a
small portion of the true set Γ∗, however, under the model, this estimate is
very conservative.

5.2 Coastal flood test case

In this section we present a coastal flood test case introduced in Rohmer and
Idier (2012). We focus here on studying the parameters that lead to floods
on the coastlines. This study is often conducted with full grid simulations.
However, this type of simulations require many hours of computational time
and render set estimation problems often infeasible. The use of meta-models,
recently revisited in this field (see, e.g., Rohmer and Idier, 2012, and refer-
ences therein), allows tackling this computational issue.

Here we consider a simplified coastal flood case as described by Rohmer
and Idier (2012). The water level at the coast is modelled as a deterministic
function f : X ⊂ Rd → R, assuming steady offshore conditions, without
solving the flood itself inland. The input space X = [0.25, 1.50]× [0.5, 7] are
the variables storm surge magnitude S and significant wave height Hs. We
are interested in recovering the set Γ∗ = {x ∈ X : f(x) ≤ t}, with t = 2.15. In
order to evaluate the quality of the meta-model, we rely on a grid experiment
of 30× 30 runs carried out by Rohmer and Idier (2012).

Here we consider a Gaussian process prior (Zx)x∈X ∼ GP (m,K), with
constant prior mean function and Matérn covariance kernel with ν = 5/2.
We assume that the function evaluations are noisy with zero noise mean
and variance σ2

noise. We select mdoe = 10 different initial DoEs, with equal
size ninit = 10. The initial designs are chosen with a maximin LHS design
Xninit

= {x1, . . . , xninit
} ⊂ X with the function optimumLHS from the package

lhs. The covariance kernel hyper-parameters and the noise variance are
estimated with maximum likelihood. Figure 3a shows the true function f
we are aiming at reconstructing, the critical level and one initial design of
experiments. We compute conservative set estimates for Γ∗ at level α = 0.95,
as defined in Section 2, with the Lebesgue measure on X.

We proceed to add 20 evaluations with the strategies detailed in Table 1.
The covariance hyper-parameters are re-estimated at each step with maxi-
mum likelihood. Figure 3b shows the conservative estimate obtained after
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Figure 3: Costal flood test case, one initial design of experiments.

30 functions evaluations at locations chosen with Strategy E.
Figure 4a shows the true type II error at the last iteration of each strategy,

after 30 evaluations of the function. The true type II error is computed by
comparing the conservative estimate with an estimate of Γ∗ obtained from the
30×30 grid experiment. Monte Carlo integration over this grid of evaluations
leads to a volume of Γ∗ equal to 77.56%.

Strategies A,B,E provide estimates with higher volume and lower type
II error in median than IMSE and tIMSE. Strategy F did not show any
improvement over IMSE or tIMSE. For all strategies the true type I error
is zero for almost all initial DoEs, thus indicating that all strategies lead to
conservative estimates.

Figure 4b shows the behaviour of relative volume error as a function of
the iteration number for Strategies tIMSE, A,B,E. The hyper-parameter re-
estimation causes the model to be overconfident at the initial iterations, thus
increasing the relative volume error. As the number of evaluations increases
the hyper-parameter estimates become more stable and the relative error
decreases as conservative estimates are better included in the true set.
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Figure 4: Randomized initial DoEs results. Values of the uncertainties for
each strategy with α = 0.95. Costal flood test case.

5.3 Nuclear criticality safety test case

In this section we test the proposed strategies in a reliability engineering
test case from the French Institute of nuclear safety (IRSN). The problem at
hand concerns a nuclear storage facility and we are interested in estimating
the set of parameters that lead to a safe storage of the material. This is
closely linked to the production of neutrons. In fact, since neutrons are both
the product and the initiator of nuclear reactions, an overproduction could
lead to a chain reaction. The safety of a system is usually evaluated with the
neutron multiplication factor, here called k−effective or k-eff. We consider
k-eff : X→ [0, 1] defined on X = [0.2, 5.2]× [0, 5], where the two parameters
represent the fissile material density, PuO2, and the water thickness, H2O.
We are interested in recovering the set of safe configurations

Γ∗ = {(PuO2,H2O) ∈ X : k-eff(PuO2,H2O) ≤ 0.92},

where the threshold was chosen at 0.92 for safety reasons.
In general, the evaluation of k-eff at one point requires an expensive

computer experiment thus our objective is to provide an estimate for Γ∗

from few evaluations of k-eff and to quantify its uncertainty.
We consider the function k-eff as a realization of a Gaussian process

and we fix a prior (Z)x∈X ∼ GP (m,K) with constant mean function m and
tensor product Matérn covariance kernel with ν = 5/2. We assume that the
function evaluations are noisy with zero mean noise and variance σ2

noise. We
consider mdoe = 10 different initial DoEs of size n0 = 10, obtained with the
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Figure 5: Nuclear criticality safety test case.

function optimumLHS from the package lhs in R. Figure 5a shows the true
values of the function, the set Γ∗ and one initial design of experiments. Each
initial DoE is used to estimate the covariance hyper-parameters and the noise
variance with maximum likelihood.

We now test how to adaptively reduce the uncertainty on the estimate
with different strategies. Table 1 lists the strategies tested in this section.
We run n = 20 iteration of each strategy and at each step we select a batch of
q = 3 new points where to evaluate k-eff. The covariance hyper-parameters
are re-estimated at each iteration by adding the 3 new evaluations. The
starting model provides a conservative estimate for Γ∗ at level α = 0.95,
with the Lebesgue measure µ on X. Figure 5b shows the coverage function of
the random set Γ obtained after 70 function evaluations at locations selected
with Strategy E and the corresponding conservative estimate.

Figure 6a shows a comparison of the type II error at the last iteration, i.e.
after 70 evaluations of the function, for each initial DoE and each strategy.
Strategy D as in the previous test cases is the worse performer, thus showing
that minimization of type II error works only for conservative quantiles. The
strategies A,B,E perform well both in terms of final volume and true type
II error. Strategy F while better than strategies D and IMSE does not show
any improvement over its non-hybrid analogous E. Strategy C also performs
well in this test case, as opposed to the previous examples.
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Figure 6: Randomized initial DoEs results. Values of the uncertainties for
each strategy with α = 0.95. Nuclear criticality safety test case.

Figure 6b shows the relative volume error as a function of the itera-
tion number for strategies tIMSE, A,B,C,E. The relative volume error is
computed by comparing the conservative estimate with an estimate of Γ∗

obtained from evaluations of k-eff on a grid 50× 50. The volume of Γ∗ com-
puted with Monte Carlo integration from this grid of evaluations is 87.92%.
All strategies presented show a strong decrease in relative volume error in the
first 10 iteration, i.e. until 40 evaluations of k-eff are added. In particular
strategies B,C,E show the strongest decline in error in the first 5 iterations.
Overall, as in the previous test cases, strategy E, the minimization of the
expected type II error, seem to provide the best uncertainty reductions both
in terms of relative volume error and in terms of type II error.

6 Conclusion

In this paper we introduced sequential uncertainty reduction strategies for
conservative estimates. This type of set estimates proved to be useful in
reliability engineering, however they could be of interest in all situations
where practitioners aim at controlling the overestimation of the set. The
estimator CE, however, is based on a global quantity and an underlying GP
model that badly approximates f will not lead to reliable estimates. For a
fixed model, this issue might reduced by increasing the level of confidence.
We presented test cases with fixed α = 0.95, however testing different levels,
e.g. α = 0.99, 0.995, and comparing the results is a good practice.
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The sequential strategies proposed here provide a way to reduce the un-
certainty on conservative estimates by adding new function evaluations. The
numerical studies presented showed that adapted strategies provide a bet-
ter uncertainty reduction that generic strategies. In particular, strategy E,
i.e. the criterion Jt2

n (·; ραn), resulted among the best criteria in terms of
Type 2 uncertainty and relative volume error in all test cases. In this work
we mainly focused on showing the differences between the strategy with a-
posteriori measures of uncertainty. Nonetheless the expected type I and II
errors could be used to provide stopping criteria for the sequential strategies.
Further studies in this direction are needed to understand the limit behaviour
of these quantity as the number of evaluation increases.

The strategies proposed in this work focus on reducing the uncertainties
on conservative estimates. This objective does not necessarily lead to better
overall models for the function or to good covariance hyper-parameters esti-
mation. The sequential behaviour of hyper-parameters maximum likelihood
estimators under SUR strategies needs to be studied in more details.
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A Properties of conservative estimates

In the following, let us denote with (Ω,F , P ) a probability space.

Proof of Proposition 1. Let us consider a measurable setM such that µ(M) =
µ(Qρ). For each ω ∈ Ω, we have

µ(M∆Γ(ω))− µ(Qρ∆Γ(ω)) = 2

(
µ(Γ(ω) ∩ (Qρ \M))− µ(Γ(ω) ∩ (M \Qρ))

)
+ µ(QC

ρ )− µ(MC).

By applying the expectation on both sides and by remembering that µ(QC
ρ ) =

µ(MC) we obtain

E [µ(M∆Γ)− µ(Qρ∆Γ)] = E
[
2

(
µ(Γ ∩ (Qρ \M))− µ(Γ ∩ (M \Qρ))

)]
(19)

= 2

∫
Qρ\M

pΓ(u)dµ(u)− 2

∫
M\Qρ

pΓ(u)dµ(u), (20)
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where the second equality comes from the definition of Qρ. Moreover, since
pΓ(x) ≥ ρ for x ∈ Qρ \M and pΓ(x) ≤ ρ for x ∈M \Qρ we have

2

[∫
Qρ\M

pΓ(u)dµ(u)−
∫
M\Qρ

pΓ(u)dµ(u)

]
≥ 2ρ[µ(Qρ \M)− µ(M \Qρ)]

(21)

= 2ρ[µ(Qρ)− µ(M)] = 0, (22)

which shows that Qρ verifies Equation (6).

Proof of Remark 1. Notice that for all ω ∈ Ω such that Qn,ραn ⊂ Γ(ω), we

have G
(1)
n (ω) = 0. By applying the law of total expectation we obtain

En[G(1)
n ] = En[G(1)

n | Qn,ραn ⊂ Γ]P (Qn,ραn ⊂ Γ)

+ En[G(1)
n | Qn,ραn \ Γ 6= ∅](1− P (Qn,ραn ⊂ Γ))

≤ 0 + En[G(1)
n | Qn,ραn \ Γ 6= ∅](1− α) ≤ µ(Qn,ραn)(1− α).
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