
HAL Id: hal-01378726
https://hal.science/hal-01378726v2

Submitted on 19 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Electroencephalogram Phase Estimation with
Applications in Brain-computer Interface Systems

Esmaeil Seraj, Reza Sameni

To cite this version:
Esmaeil Seraj, Reza Sameni. Robust Electroencephalogram Phase Estimation with Applications
in Brain-computer Interface Systems. Physiological Measurement, 2017, 38 (3), pp.501 - 523.
�10.1088/1361-6579/aa5bba�. �hal-01378726v2�

https://hal.science/hal-01378726v2
https://hal.archives-ouvertes.fr


Robust Electroencephalogram Phase Estimation

with Applications in Brain-Computer Interface

Systems

Esmaeil Seraj and Reza Sameni∗

School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

Tel: +98 71 3613 3169, Fax: +98 71 3647 4605

E-mail: e.seraj@cse.shirazu.ac.ir, rsameni@shirazu.ac.ir

Submitted August 25, 2016; Revised 13 November, 2016

Abstract. In this study, a robust method is developed for frequency-specific

electroencephalogram (EEG) phase extraction using the analytic representation of the

EEG. Based on recent theoretical findings in this area, it is shown that some of the

phase variations— previously associated to the brain response— are systematic side-

effects of the methods used for EEG phase calculation, especially during low analytical

amplitude segments of the EEG.

With this insight, the proposed method generates randomized ensembles of the EEG

phase using minor perturbations in the zero-pole loci of narrow-band filters, followed

by phase estimation using the signal’s analytical form and ensemble averaging over

the randomized ensembles to obtain a robust EEG phase and frequency. This Monte

Carlo estimation method is shown to be very robust to noise and minor changes of the

filter parameters and reduces the effect of fake EEG phase jumps, which do not have

a cerebral origin.

As proof of concept, the proposed method is used for extracting EEG phase

features for a brain computer interface (BCI) application. The results show significant

improvement in classification rates using rather simple phase-related features and

a standard K-nearest neighbors and random forest classifiers, over a standard BCI

dataset. The average performance was improved between 4–7% (in absence of

additive noise) and 8–12% (in presence of additive noise). The significance of these

improvements was statistically confirmed by a paired sample t-test, with 0.01 and 0.03

p-values, respectively. The proposed method for EEG phase calculation is very generic

and may be applied to other EEG phase-based studies.

Keywords: Electroencephalogram Phase, Electroencephalogram Frequency, Analytic
Signal Representation, Electroencephalogram Hilbert Transform, Brain-Computer
Interface. Submitted to: Physiol. Meas.
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1. Introduction

The phase analysis of electroencephalogram (EEG) signals has found great interest

in the past decades. It has been shown to be a notable compliment for— and in

cases more informative than— the EEG spectral amplitude. The EEG phase has been

associated to neural propagation and synchronized firing of neuronal populations (neural

assembly) during different mental and motor tasks. It is believed that a neural assembly

corresponds to a group of functionally interconnected neurons within the brain, which

interact with a reentry mechanism [1], to produce responses to specific intentions such

as motor tasks. A reentry mechanism in terms requires an assembly to synchronize their

firing rates [2]. These findings have led to an increased interest in utilizing features of

cerebral phase signals, such as their synchronization.

In [3], various methods were presented for extracting the instantaneous EEG

phase and amplitude of real EEG. The relationship between the different methods

were studied using the theory of analytic signals. In [4], the relation between phase

synchronization in EEG signals and brain activity in patients with temporal lobe

epilepsy was investigated. The authors reported a strong correlation between the shifts

in phase synchrony and pathological activity. In [5], the concept of frequency flows

analysis (FFA) was introduced, as a new approach for studying the dynamics of phase

synchrony in brain signals. The application of EEG phase and phase synchrony in

brain recordings for brain-computer interface (BCI) systems was studied in [6]. It

was reported that additional information could be obtained by utilizing phase-related

quantities for measuring brain synchrony. In [7] and [8], two other important phase

related quantities, namely phase shift and phase resetting and their relationship with

event-related potentials were studied. In [9], a phase synchronization method based on

empirical mode decomposition (EMD) was proposed and evaluated for BCI applications.

The phase-locking value (PLV) has been previously utilized to associate the EEG

phase information in BCI systems [10–14]. More recently, several studies have utilized

other EEG-based features for BCI applications, including steady-state visually evoked

potential (SSVEP) [15], event-related synchronization (ERS) and de-synchronization

(ERD) [16, 17]. Herein, we focus on rather simple EEG phase features to show how a

robust phase extraction mechanism can significantly improve the performance of BCI

systems, which are based on phase synchronization and phase desynchronization [11,14].

In previous research, various methods such as wavelet transforms and analytic signal

representations have been used for EEG phase extraction and PLV measurement [18,19].

In a recent study [20], the authors presented a statistical framework for EEG phase

analysis. Using an additive data model between the so-called background (spontaneous)

and foreground EEG, probability density functions and other statistical properties of

the instantaneous EEG envelope, phase and frequency were derived. It was analytically

and numerically shown that in low analytical signal envelopes, the EEG phase is highly

susceptible to the background EEG and noise. It was shown that although EEG phase

variations convey important information regarding the EEG, some instantaneous phase
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jumps are merely systematic side effects of the processing stages used for EEG phase

extraction, without any cerebral origin. A Monte Carlo approach was also proposed

in [20] to detect and smooth the phase contents, during the time instants in which the

estimated EEG phase is unreliable.

In this study, using our recent findings reported in [20], a new EEG phase extraction

procedure is presented for extracting reliable phase sequences from the EEG during a

BCI experiment. It is shown that the discrimination between true and fake EEG phase

variations can significantly improve classification rates in BCI applications, even using

rather basic features and conventional classifiers.

In Section 2, some preliminary backgrounds and limitations of classical EEG phase

extraction techniques are reviewed. In Section 3, the proposed method and modifications

to the conventional procedure of instantaneous EEG phase extraction are presented. As

proof of concept, the proposed method is used for feature extraction in a BCI application

in Section 4, showing significant improvement in the classification rates, followed by a

discussion and future perspectives regarding the proposed scheme.

2. Background

2.1. The conventional phase estimation procedure

The conventional procedure for extracting the instantaneous phase sequence of a signal

consists of two main stages: 1) narrow-band filtering, and 2) estimating the phase of

the narrow-band signal [21,22].

For a unique and canonical definition, the instantaneous phase is extracted from

very narrow frequency band signals [23]. Moreover, the input signal’s phase contents

should not be affected by the filtering procedure. For the first stage, almost all previous

studies on EEG phase extraction have used finite impulse response (FIR) filters to make

the signal narrow-band in its frequency spectrum [4,10,13,18,24,25]. However, in order

to have a reliable phase sequence, there are important considerations regarding this

procedure, including: the filter’s band-width, its phase response and the convolution

process.

The second stage requires choosing a phase estimation method to extract the phase

sequence from the narrow-band signal. The most common method for phase estimation

is based on the analytic signal representation of the narrow-band signal [23]. As shown

in [20], the calculation of the instantaneous phase from the analytical representations

becomes challenging and highly susceptible to noise in low analytical signal amplitudes;

resulting in fake jumps and spikes in the extracted phase signal. In the following sections,

this issue is further studied and partially solved by applying perturbations in the phase

extraction procedure followed by ensemble averaging, as proposed in [20].
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2.2. Unambiguous phase estimation conditions

For the signal x(t), its analytical form is defined as follows [22]:

zx(t) = x(t) + jH{x(t)} (1)

where H{·} denotes the Hilbert transform. Using the analytical form, the instantaneous

envelope (IE), the instantaneous phase (IP), and the instantaneous frequency (IF) are

uniquely defined as follows:

IE: ax(t) = |zx(t)| =
√
x(t)2 +H{x(t)}2 (2)

IP: φx(t) = arctan

(
H{x(t)}
x(t)

)
(3)

IF: fx(t) =
1

2π
[
dφx(t)

dt
mod 2π] (4)

For discrete-time implementations, (4) is replaced by a finite-difference approximation

of the derivative operator (e.g., the first-order difference in the simplest case).

Unless the signal has a narrow-band spectral support, the pair (ax(t), φx(t)) does

not convey significant information regarding the instantaneous phase [21]. This is due to

the fact that only for narrow-band signals, the relative variations of the amplitude ax(t)

are rather slow (and negligible) as compared with the variations of the phase φx(t) [22],

i.e., ∣∣∣∣dφ(t)

dt

∣∣∣∣� ∣∣∣∣ 1

a(t)

da(t)

dt

∣∣∣∣ (5)

For cerebral signals, it is known that the EEG has a wide frequency range (0 Hz-150 Hz

in the extreme case), which makes narrow bandpass filtering (of the order of Hertz) an

essential prerequisite for extracting a meaningful instantaneous phase sequence.

2.3. Linear-phase filtering

Previous studies on EEG phase extraction have commonly employed linear-phase FIR

filters to make the signal narrow-band in its frequency spectrum [4, 10, 13, 18, 24, 25].

The advantage of linear phase filters is their constant group delay, which avoids phase

distortions in the filtered signal. Nevertheless, in most FIR filter design techniques, the

order of the filter proportionally increases with the inverse of their transition bandwidth,

which means that narrow-band FIR filters have very long impulse responses and input-

output delays [26]. Moreover, highly narrow band filters are difficult to design and

susceptible to design parameters.

To avoid these issues, previous studies have kept a trade-off between the order of

the FIR filter and its bandwidth (BW). The BW is commonly chosen relatively wide,

e.g. between 4 to 12 Hz, to have a low-order and practically realizable filter [4, 25, 27].

However, as discussed before, using a bandwidth in this range, the envelope-phase pair

{a(t), φ(t)} obtained from the Hilbert transform fails to correctly (and uniquely) define
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Figure 1. A raw 60 s EEG signal used for phase extraction (top panel), the

analytical signal’s instantaneous envelope (IE) (middle panel), and the corresponding

instantaneous frequency (IF) centered at 8 Hz obtained from the phase sequence

(bottom panel).

the instantaneous envelope. Therefore, the extracted phase becomes unreliable. To

overcome this issue, very narrow band filters with reasonably low orders are required in

practice to be less sensitive to noise and filter parameter variations. In Section 3, it is

shown that for offline applications, zero-phase infinite impulse response (IIR) filters can

be used as an alternative solution.

2.4. Low-amplitude analytical signal

The instantaneous phase sequence derived from the analytic representation of a signal is

prone to fake jumps (without cerebral source) in low-amplitude analytical signal (LAAS)

time instants [22, 23, 25]. As depicted in Fig. 1, the instantaneous frequency tends to

have big jumps at LAAS epochs. The problem was rigorously studied in [20]. The

main reason underlying this phenomenon could be linked to the arctan(·) operator used

for phase calculation. According to (3), LAAS leads into very small numerator and

denominator values. Consequently, any minor change in the real or imaginary parts of

the analytic form (due to noise or background EEG fluctuations), results in a significant

change in the estimated phase. This fact is illustrated in Fig. 2 for a sample EEG

signal. It is seen that phase values corresponding to lower amplitudes tend to have

bigger variations. More rigorously, it was shown in [20] that during LASS epochs the

instantaneous phase tends to a uniform distribution over [−π, π] and in discrete-time

implementations, the instantaneous frequency becomes uniform over the entire Nyquist
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Figure 2. A 14 s segment of a raw EEG signal used for extracting the instantaneous

phase sequence (top panel); the analytical signal envelope (middle panel); the polar

representation of two segments of the analytical form, at time instants with (b) high and

(c) low analytical signal envelope (bottom panel). The phase jump between successive

samples (which is proportional to the instantaneous frequency) are considerably greater

in lower analytic envelopes.

band [0, fs].

The findings of [20] are in accordance with previous research [25], which reported

that LAAS occurs more frequently in low power time-frequency regions, such as the

high frequency bands of the EEG, for which the EEG power decays more rapidly

with increasing frequency. To illustrate this point, in Fig. 3 the instantaneous phase

differences of frequency components in the range of DC to 50 Hz have been extracted

alongside their corresponding instantaneous envelopes. Accordingly, the first 5 s of the

results are due to the FIR filter’s transient response; resulting in very low-magnitude

instantaneous amplitudes during this period. As it can be seen, the corresponding

regions of the phase difference plot contains many phase jumps and spikes. For the

rest of the signal, in lower frequencies, where the analytic form has higher amplitudes,
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Figure 3. Phase difference of the frequency components from DC to 50 Hz (left

panel), the corresponding instantaneous analytical signal envelope (right panel), for a

25 s EEG segment.

the phase sequences are less contaminated with jumps and spikes. However, as the

frequency increases and the power in EEG signal decays, the analytical signal envelope

decreases and the rate of phase jumps increases once more.

Based on these findings, in the next section a robust method is proposed for the

estimation of the instantaneous phase using perturbation of filter parameters and a

Monte Carlo estimation process.

3. Method

The overall proposed scheme is summarized in Algorithm 1. In this algorithm, the

bandpass filter is specified with a set of parameters: bandwidth (BW), transition-band

width (TB), maximum pass-band ripple (PR) and minimum stop-band attenuation (SA)

that we consider as the filter’s design parameter set λ = {BW,TB,PR, SA}, which in

term result in the zero-pole sets Z = {z1, z2, ..., zn} and P = {p1, p2, ..., pm}, depending

on the filter design technique. The variables δpi and δzi are uniformly distributed random

variables with very minor standard deviations (10−4 in the sequel), used for making

random perturbations in the zero-pole loci. The details of each stage of the algorithm

are elaborated in the following subsections.

3.1. Step 1: Narrow-band zero-phase smoothing

The challenges in narrow-band FIR filter design were noted in Section 2.3. To overcome

these issues, we propose to use forward-backward zero-phase IIR filters. Although the

filter is performed offline in a non-causal manner (which is not a limiting issue for offline

applications), the major advantage is that the order of a narrow band IIR filters is much

lower than its FIR counterpart and by applying it in a forward-backward manner, the

nonlinear phase response of the filter is compensated and zero-phase distortion— which

is necessary for EEG phase analysis— is guaranteed.
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Algorithm 1 Robust Instantaneous EEG Phase Extraction

Require: Input EEG signal x(t)

Require: Bandpass filter prototype hBP(t) with design parameters λ =

{BW,TB,PR, SA} and zero-pole sets Z and P , respectively.

Require: Number of Monte Carlo iterations (N)

1: for all i = 1 · · ·N do

2: Perturb the poles and zeros with minor random deviations δpi and δzi , while

keeping the zero-pole pairs conjugate symmetric and preserving the poles

inside the unit circle: Pi ← P ± δpi , Zi ← Z ± δzi
3: Construct the bandpass filter h

(i)
BP(t) with perturbed zero-pole pairs Zi and Pi

4: Zero-phase forward-backward filter the input signal xi(t)← h
(i)
BP(t) ∗ x(t)

5: Form the analytic representation of xi(t): zi(t)← xi(t) + jH{xi(t)}

6: Calculate the instantaneous phase: φi(t)← arctan(
Im{zi(t)}
Re{zi(t)}

)

7: Unwrap the estimated phase sequences Φi(t)← unwrap{φi(t)}
8: end for

9: Ensemble average over all iterations: Φ(t)← 1

N

N∑
i=1

Φi(t)

Various types of IIR filters such as Chebyshev types 1 and 2, Butterworth and

Elliptic filters were studied to determine the best filter for this application, and the

Elliptic filter was chosen due to its steeper roll-off characteristics (as compared with

Butterworth or Chebyshev filters) and its equi-ripple behavior in both the passband

and stopband. In general, by allowing ripples in both passband and stopbands, Elliptic

filters meet given performance specifications with the lowest order as compared with

their counterparts [28]. In order to preserve the filter’s frequency response over all

frequency bands, instead of designing various bandpass filters in each band, a fixed

narrow band lowpass filter prototype was designed and applied to the signal using a

frequency domain shifting scheme illustrated in Fig. 4. Further details regarding this

scheme is presented in Section 3.2. The prototype Elliptic IIR lowpass filter used in

this study has the following characteristics: 0.3 Hz pass-band frequency, 0.5 Hz stop-

band cutoff frequency, 0.1 dB maximum pass-band ripple, and 70 dB minimum stop-

band attenuation, designed at a sampling frequency of 160 Hz (the sampling rate of

the sample EEG). The order of this prototype filter was 6, which is computationally

far more effective than any FIR filter with the same specifications. This filter was

performed in a forward backward manner, which doubles its pass-band ripple and stop

band attenuation in dB.

The procedure of zero-phase forward-backward smoothing (FBS) is shown in Fig. 5.

This process can be implemented using the filtfilt function in major signal processing

languages such as Matlab, Octave, or R. Accordingly, FBS uses the time-reversal

property of the Fourier transform to perform zero-phase smoothing by processing the
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Figure 4. The procedure of bandpass filtering and analytical form calculation using

a lowpass prototype filter and frequency domain shifting of the input signal.
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Time-
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Figure 5. Block-diagram of the forward-backward filtering process.

input signal in both the forward and reverse directions [29]. Considering H(jω) as the

frequency response of the forward path digital filter, the overall response of FBS is

Heff(jω) = |H(jω)|2 (6)

which is real-valued. Therefore, regardless of the nonlinear phase-response of the IIR

filter, FBS has a zero-phase (and zero-group delay) response, which preserves the input

signal’s phase.

3.2. Step 2: Phase calculation

The next step is to compute the phase sequence. For this, we use the analytic

representation of the filtered signal. In order to reduce the processing complexity and

avoid the direct calculation of the Hilbert transform, this stage can be merged with the

bandpass filtering as follows: as illustrated in Fig. 4, the proposed bandpass filtering

scheme uses a lowpass filter prototype. To filter the signal x(t) around the center

frequency ω0, x(t) is shifted in the frequency by multiplying the pure phase signal

exp(jω0t), to obtain a complex valued signal xf (t). Next, the real and imaginary parts

of xf (t) are given to the lowpass prototypeHLP(jω) to obtain the narrow-band analytical

signal yf (t). Finally, yf (t) is shifted back to the center frequency ω0, by multiplying

the phase signal exp(−jω0t). This procedure provides xa(t), which is the narrow band

analytical form of the original signal x(t) around the center frequency ω0.

After computing the analytic form of the filtered EEG, the instantaneous phase is

calculated as follows:

φ(t) = arctan

(
Im(xa(t))

Re(xa(t))

)
(7)

For discrete-time signals, the instantaneous frequency can be approximated by the first

order difference of the instantaneous phase:

f(t) ≈ fs
φ(t)− φ(t−∆)

2π
(8)
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where ∆ is the sampling time and fs = 1/∆ is the sampling frequency.

3.3. Step 3: Zero-pole perturbation of the prototype filter

In the proposed scheme, the previous two stages (narrow band filtering and phase

calculation) are repeated several times, each time with very minor changes in the

filter design parameters λ (and zero-pole positions). Here, the idea is to generate

random ensembles of the signal’s analytical form and EEG phase, using infinitesimal

perturbations in the filter parameters. Apparently, clinically relevant EEG phase

information should not be susceptible to minor filter design variations at the order

of, e.g., 0.01 Hz. However, during LAAS epochs, even minor deviations in the filter

parameters can significantly change the phase estimates, resulting into fake phase jumps.

The zero-pole plot of the utilized prototype IIR filter and the loci of its perturbed

zeros and poles are illustrated in Fig. 6(c). It is known that all Elliptic IIR filter zeros

are located on the unit-circle. Thus, in order to prevent any major change in the filter

characteristics, these zeros are perturbed randomly only on the unit-circle. For this,

the filter’s zeros are taken into polar coordinates (ρ, θ), and the random perturbations

are applied only to θ. Another important consideration is that any perturbation in the

pole loci of a causal filter should not move its poles out of the unit-circle (to preserve its

stability). Moreover, the conjugate symmetry of the zeros and poles should be preserved

to guarantee the realness of the impulse response. These properties are achieved by

applying random complex-valued perturbations δpi (to the poles) and δzi (to the zeros) to

each pair of conjugate symmetric pair of poles/zeros. The complex values added to each

conjugate symmetric pair should have equal real parts, and imaginary parts with equal

magnitudes and opposite signs, to preserve the conjugate symmetry of the perturbed

poles/zeros. The perturbed pole loci is finally checked to be inside the unit circle

(Fig. 6(c)), to guarantee the filter’s stability. The magnitude and phase response of 100

lowpass prototype filters obtained by the proposed zero-pole perturbation procedure are

shown in Fig. 6(a) and Fig. 6(b), where it is seen that the zero-pole perturbations have

had rather minor impact on the filters’ response (irrelevant to most cerebral studies).

However, it is later shown that even these minor changes can significantly change the

EEG phase, especially during LAAS.

3.4. Step 4: Phase unwrapping

Calculating the phase using the four quadrant arc-tangent causes phase-wrapping [30].

The amplitude of the phase sequence can take any value and even exceed the range

[−π, π]. In cases where the phase exceeds this range, it is wrapped so that it stays

within the principal range [30, 31]. In such cases, the wrapped phase sequence will

contain some phase-jumps greater than ±π. Therefore, for EEG phase analysis (either

from the phase itself or from its time difference), an unwrapping procedure is required

to obtain the phase sequence in its original continuous form. An unwrapped phase

sequence typically diverges from zero over time (similar to a random-walk process). For
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Figure 6. The (a) magnitude and (b) phase of the frequency responses of 100 lowpass

prototype filters obtained by zero-pole perturbation; (c) zero-pole plot of the prototype

Elliptic IIR filter. The contours specify the region of random perturbations of zeros

and poles.

better illustration of the phase fluctuations, one may either subtract the constant linear

phase signal ω0t from the instantaneous phase to obtain its temporal fluctuations, or

alternatively use the time difference of the phase signal, which is proportional to the

instantaneous frequency.

3.5. Step 5: Ensemble averaging

The final stage of the algorithm is to average over the randomized ensembles of the phase

sequences obtained from different filter responses, to obtain an average phase estimate.

For illustration, Fig. 7 shows 100 ensembles of the instantaneous frequency of a

sample EEG segment obtained by the aforementioned randomization scheme (zero-

pole perturbation) for a center frequency of 8 Hz, and the average of the randomized

ensembles. This figure illustrates the importance of the proposed scheme and the
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Figure 7. (top panel) The gray shades show ensembles of the estimated instantaneous

frequency using 100 filters with minor zero-pole perturbations and the final averaged

instantaneous frequency in solid black line; (bottom panel) the standard deviation of

the instantaneous frequency for 100 ensembles at each time instant.

significance of the zero-pole perturbation. Accordingly, without this procedure (by

simply calculating the phase from a single filtered signal as in conventional methods),

the obtained phase sequence is unreliable, since each set of filter parameters (even with

minor differences) would lead to significantly different results; especially during low

analytical signal envelope epochs in which the standard deviation of the instantaneous

frequency is significantly high (Fig. 7).

3.6. Example

In this section, the robustness of the proposed phase/frequency calculation method

is verified versus conventional methods (without random ensemble generation and

averaging) for a sample EEG signal. The sample signal, represented in Fig. 9(a), consists

of 24 s of an ongoing EEG acquired with a sampling frequency of fs=173.61 Hz, recorded

during a BCI study. The complete description of the data is presented in [32]. In the

following, the phase robustness of this sample data is studied from three aspects: (1)

impact of filter parameter variations, (2) robustness to non-stationary background noise

and (3) low-amplitude analytic signal and phase jumps. The power spectral density

(PSD) of this sample data is shown in Fig. 8. Accordingly, f0 =8 Hz (the alpha-band

peak) is chosen as the center frequency in the following evaluations.

3.6.1. Filter Parameter Variations: In order to assess the sensitivity of the proposed

method to filter parameter variations, the following three scenarios are considered for

digital lowpass Elliptic IIR filter design. All filters are designed for a sampling frequency

of fs=173.61 Hz (the sampling rate of the sample EEG), and a 0 dB DC gain.
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Figure 8. The PSD of the sample EEG used for evaluation in Section 3.6. The peak

at f0 =8 Hz is chosen as the center frequency (in the alpha-band) in all evaluations.

(i) f0 = 8 Hz (center frequency), BW=0.5 Hz (pass-band bandwidth), TB=0.5 Hz

(transient-band from either side of the center frequency), δp =0.1 dB (maximum

pass-band ripple), and δs =–70 dB (minimum stop-band attenuation)

(ii) f0 = 8 Hz, BW=0.2 Hz, TB=0.2 Hz, δp =0.1 dB, and δs =–70 dB

(iii) f0 = 8 Hz, BW=1.0 Hz, TB=1.0 Hz, δp =0.1 dB, and δs =–70 dB

The instantaneous frequency obtained from (8) for these three scenarios are shown in

Fig. 9(b), using both the conventional and proposed methods. It can be seen that the

conventional method is very sensitive to variations in filter parameters and the results

have significantly changed with minor changes in the bandpass filter design parameters.

On the other hand, the proposed method has been more stable to such parameter

variations and the filter design variation effects are almost removed during the frequency

response perturbations and ensemble averaging.

3.6.2. Low-amplitude Analytic Signal and Phase Jumps: Fig. 10 shows the

instantaneous phase difference and the instantaneous analytical signal envelope

calculated for the sample EEG in Fig. 9(a) using the conventional method, for frequency

components in the range of DC to 30 Hz, using the three filtering schemes stated in

Section 3.6.1. The same procedure is performed using the proposed method and the

results are shown in Fig. 11 for comparison.

The comparison of Fig. 10 and Fig. 11, clearly shows the effects of LAAS on the

EEG phase jumps using the classical and proposed methods. It is seen that the phase

sequences estimated by the conventional method are prone to fake jumps at points

where the corresponding analytic signal have lower amplitudes; while this issue has
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Figure 9. (a) Sample ongoing EEG signal to assess the robustness of the proposed

phase estimation method. (b) Instantaneous frequency around f0=8 Hz calculated by

the conventional (gray) and proposed method (black) for three filter parameter sets

described in Section 3.6.1 (from top to bottom)

been significantly improved using the proposed method.

3.6.3. Noise Susceptibility: For evaluating the robustness of the proposed phase

estimation method to noise, the results of phase estimations using both the proposed

and conventional methods are tested in presence of additive non-stationary noise.

Non-stationary noise with a time-variant variance and EEG-like spectra is used to

model background non-stationary EEG activity. For this purpose, a time-varying auto-

regressive (TVAR) model of order 20 is trained over sliding windows of length 4 s using

a sample 20 s EEG. The resulting TVAR model is next fed by white Gaussian noise, to

generate non-stationary noises of the same length with a spectra similar to a real EEG

and added to the EEG understudy at different signal-to-noise ratios (SNR). For this

scenario, an Elliptic IIR filter with f0=8 Hz, BW=0.5 Hz, TB =0.5 Hz, δp =0.1 dB and

δs =70 dB is used as the bandpass filter.

The corresponding results are shown in Fig. 12 for both the conventional and
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Figure 10. The instantaneous phase difference (top row) and the instantaneous

amplitudes (bottom row) calculated from the EEG signal shown in Fig. 9(a) using

the conventional phase extraction procedure, for frequency components in the range

of DC to 30 Hz, (from left to right) with three different sets of filter parameters 1)

BW=0.5 Hz, TB=0.5 Hz, 2) BW=0.2 Hz, TB=0.2 Hz and 3) BW=1.0 Hz, TB=1.0 Hz

(detailed in Section 3.6.1).

presented methods in SNR = 15 dB. It can be seen that while the conventional phase

estimation procedure (gray line) becomes unreliable during noisy epochs, the proposed

method (thick black line) yields a robust estimation of phase information despite the

non-stationary background noise (which is statistically independent from the underlying

mental task). Therefore, the proposed method significantly improves the reliability of

the extracted instantaneous phase/frequency estimates. A rigorous discussion on the

effect of noise and SNR level on the probability of correct and false phase detections has

been presented in [20].

Fig. 13 shows the instantaneous phase difference and the instantaneous analytical

signal envelope calculated for the sample EEG in Fig. 9(a), using the conventional

method for frequency components in the range of DC to 30 Hz, at three SNR: infinity

(no noise), SNR= 10 dB, and SNR= 0 dB. In Fig. 14, the same procedure is repeated

using the proposed method for comparison; where it is seen that the proposed method

has been considerably less susceptible to additive noise.
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Figure 11. The instantaneous phase difference (top row) and the instantaneous

amplitudes (bottom row) calculated from the EEG signal shown in Fig. 9(a) using the

proposed phase extraction procedure, for frequency components in the range of DC to

30 Hz, (from left to right) with three different sets of filter parameters 1) BW=0.5 Hz,

TB=0.5 Hz, 2) BW=0.2 Hz, TB=0.2 Hz and 3) BW=1.0 Hz, TB=1.0 Hz (detailed in

Section 3.6.1).
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Figure 12. Instantaneous frequency centered at 8 Hz, calculated through the

conventional (gray) and proposed method (black) for a 20 s segment of EEG

contaminated with additive non-stationary background noise.

4. Case Study: Phase and Frequency Features for a Brain Computer

Interface Application

In order to show the significance of the proposed method, its performance is evaluated

for a visual evoked potential (VEP)-based BCI system, as proof of concept. The state-

of-the-art classification procedure used in previous VEP-based BCI studies is employed

for this purpose [12, 13, 33], and we focus on the impact of EEG phase features using

conventional versus the proposed schemes. It should be noted that this case study is
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Figure 13. The instantaneous phase difference (top row) and instantaneous

amplitudes (bottom row), calculated through the conventional phase extraction

procedure for frequency components in the range of DC to 30 Hz for the sample

EEG shown in Fig. 9(a), in three different cases: 1) no noise, 2) non-stationary noise

with SNR=10 dB, and 3) non-stationary noise with SNR=0 dB from left to right,

respectively.

only presented as a typical application for reliable and robust EEG phase/frequency

extraction and we do not seek improvements in classification rates of state-of-the-art

BCI systems. Therefore, only phase-related features and standard classifiers are used.

4.1. Dataset

The dataset used for this study is adopted from the Neuroelectric and Myoelectric

Databases, which are online available on Physionet [34]. This dataset includes one

and two-minute recordings of 109 volunteers, performing a series of motor and motor-

imagery tasks. Each record contains sixty four channels of EEG recorded using the

BCI2000 System, during a set of annotated mental tasks [35]. The complete description

of the dataset is available at [34]. Each subject has performed a series of mental tasks:

two one-minute baseline runs, with open and closed eyes and three two-minute runs of

the four following tasks:

(i) A target appears on the left or right side of a screen in front of the subject. The

subject opens and closes the corresponding fist until the target disappears. Then

the subject relaxes.

(ii) A target appears on the left or right side of the screen. The subject imagines

opening and closing the corresponding fist until the target disappears. Then the

subject relaxes.
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Figure 14. The instantaneous phase difference (top row) and instantaneous

amplitudes (bottom row), calculated through the proposed phase extraction procedure

for frequency components in the range of DC to 30 Hz for the sample EEG shown in

Fig. 9(a), in three different cases: 1) no noise, 2) non-stationary noise with SNR=10 dB,

and 3) non-stationary noise with SNR=0 dB from left to right, respectively.

(iii) A target appears on the top or bottom of the screen. The subject opens and closes

both fists (if the target is on top) or both feet (if the target is on the bottom) until

the target disappears. Then the subject relaxes.

(iv) A target appears on the top or bottom of the screen. The subject imagines opening

and closing both fists (if the target is on top) or both feet (if the target is on the

bottom) until the target disappears. Then the subject relaxes.

Fig. 15 shows the placement of the electrodes used for recording EEG signals in this

dataset. Since the primary cortical regions involved in the task of motor imagery are the

supplementary motor area (SMA) and the primary motor cortex area (M1), electrodes

FCz, C3, and C4 are chosen for this study [13,36,37].

The annotations provided in the dataset consist of three classes for identifying rest

versus left/up or right/down side activities: 1) T0 corresponding to rest condition, 2)

T1 corresponding to motion (real or imagined) onset of either the left fist or both fists,

and 3) T2 corresponding to motion (real or imagined) onset of either the right fist or

both feet. We therefore have a three-class classification problem.

The targets appeared on the screen every four seconds, resulting in thirty 4 s

annotated EEG segments for each two minute records (per subject), each corresponding

to a mental task trial.
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Figure 15. The location of the three (out of sixty four) leads used for the BCI

classification case study. (a), (b) and (c) represent C4, C3 and FCz, respectively.

4.2. Feature Extraction

A survey of previous studies on VEP-based BCI systems reveals that EEG phase-

related features are among the most discriminative and informative features for BCI

applications [12, 13, 38]. During the feature extraction phase, a broad range of features

are commonly extracted from the frequency band of interest and passed to the feature

selection and classification stages. However, in this study, a single phase-related feature,

namely the PLV, is used to evaluate the robustness and feasibility of the proposed

instantaneous phase estimation procedure.

PLV is an index for quantifying how constant the phase difference between two

signals is. In order to calculate the PLV between two signals (or channels) x(t) and

y(t), the following steps are applied [10,19]:

• Channelize the signals using narrow-band filters centered at f

• Calculate the instantaneous frequency-specific phase values φx(t, f) and φy(t, f).

• Calculate the instantaneous phase-difference between x(t) and y(t) and quantify

the local stability of this phase-difference over time:

PLVxy(f) =

∣∣∣∣∣ 1

T

T∑
t=1

exp (j[φx(t, f)− φy(t, f)])

∣∣∣∣∣ (9)

where T is the signal length and the summation is taken over all temporal samples

of the instantaneous phases.

PLV varies between 0 and 1, corresponding to completely non-synchronized signals and

complete synchronization, respectively [10, 19]. The notion of phase-locking using PLV

has been previously studied in BCI applications [11, 14]. For illustration, the envelope

and phase sequences (phase derivatives), and the corresponding PLV index extracted

from two 10 s segments of EEG acquired from channels C3 and C1 of the first subject

in the dataset are shown in Figs. 16(a) and 16(b). During this segment, the subject

is performing a right-hand task (starting between t = 55 and t =56 s) for four seconds

and then relaxes. The PLV index obtained by averaging over 250 ms sliding windows
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Figure 16. The envelope (top panel) and phase (middle panel) sequences for 10 s EEG

segments acquired from channels C3 and C1 of an EEG signal recorded during a right-

hand task from subject number one of the dataset; (bottom panel) the time-courses

(dynamics) of the PLV values between C3-C1 (related to the task).

(controlled by the window length T , in (9) ) is shown in Fig. 16(c), using phase values

obtained from the conventional and proposed methods. Accordingly, the PLV computed

using the conventional phase estimation method is reporting some de-synchronization

around t =50.2 s, 50.6 s, 52.4 s, 57.7 s and 59 s, which have coincided with the envelope

drops at the same instants (Fig. 16(a)). This shows that phase variations during low

analytical signal epochs are unreliable in conventional methods, which is not the case

for the PLV reported by the proposed method.

In order to evaluate the overall performance, the EEG phase and the corresponding

PLV features were extracted using the conventional and proposed procedures, from 105

out of 109 subjects (four subjects were excluded due to data deficiency). The PLV

was calculated for a single frequency band f = 10 Hz with an effective bandwidth of

1 Hz, which was identified as the dominant alpha-band peak by visual inspection of the

EEG spectra. The index was calculated between the three possible combinations of the

selected electrodes, i.e., FCz–C3, FCz–C4 and C3–C4 (as shown in Fig. 15), resulting

in PLV feature vectors of length three. The feature vectors were computed from each of

the thirty 4 s annotated temporal windows over all two-minutes records of each subject.
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Figure 17. The overall accuracies obtain on 105 subjects, using PLV features without

(WON) and with additive noise (WAN), for the conventional (Conv.) and proposed

(Prop.) EEG phase extraction methods.

4.3. Classification

The PLV feature vectors calculated by both the conventional and proposed methods

together with the annotations provided in the database were used for training and

testing the classifiers. K-Nearest Neighbors (KNN) with K=30 (the number of nearest

neighbors used in the classification), and Random Forest (RF) with number of trees

equal to 10, were used as classifiers in a leave-one-out cross-validation process, in which

the feature-set of one subject is considered as test data and the rest of the feature sets

are used for training the classifiers.

4.4. Results

The comparison has been made both in absence and presence of an additive white

Gaussian noise with SNR=5 dB, to investigate the robustness of the conventional and

proposed procedures to noise. The average results of the noiseless and noisy cases over

all subjects are reported in Fig. 17. Accordingly, the proposed method for extracting

PLV features has improved the mean RF classification rates 7%, as compared with

conventional methods of EEG phase extraction (in absence of additive noise) and 12%

(in presence of additive noise). Using the KNN classifier, the mean classification rates

have been improved 4% (in absence of additive noise) and 8% (in presence of additive

noise). The significance of these results was tested by a paired sample t-test between

the conventional and proposed methods, under the null hypothesis of equal average

performance of PLV features obtained by both methods (conventional versus proposed).

The null hypothesis was rejected with p-values p = 0.01 and p = 0.03, for the noiseless

and noisy scenarios, respectively, using 6442 degrees of freedom in both cases.

The per-subject three-class accuracies using PLV as feature are shown and

compared for the proposed and conventional methods in Fig. 18; where the

outperformance of the proposed method is seen, both in terms of higher classification

accuracies and smaller inter-subject variances. The higher performance can be
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Figure 18. Per-subject three-class accuracies for the entire dataset (105 subjects),

obtained using PLV as feature and KNN and RF as classifiers, for the conventional

and proposed EEG phase extraction methods.

Table 1. Average and standard deviation of the results of Fig. 18, for the proposed

and conventional methods over all subjects

Method Mean ± Standard Deviation

Conventional Method - RF 65.45 ± 4.23

Conventional Method - KNN 66.06 ± 4.03

Proposed Method - RF 70.09 ± 2.56

Proposed Method - KNN 70.90 ± 1.45

associated to the robustness of the proposed EEG phase extraction method. The

average and standard deviation of the per-subject results shown in Fig. 18 are reported

in Table 1, which show that KNN has slightly outperformed RF in all cases.

In order to make the results reproducible, all source codes related to this study are

online available in the open-source electrophysiological toolbox (OSET) [39].

5. Discussion

The EEG phase is a rich source of information for various fields of brain studies.

Conventional methods for calculating the instantaneous phase and frequency of EEG

signals are unreliable in presence of spontaneous background EEG activity (and noise)

and during low analytical signal envelopes [20]. Therefore, robust methods for phase

calculation are required.

Herein, a robust phase estimation procedure was proposed to overcome these issues.

The proposed method has additional steps as compared to conventional methods: 1)

zero-pole perturbation of the utilized bandpass filters, 2) offline forward-backward zero-

phase filtering, and 3) ensemble averaging between the perturbed phase estimates to

obtain robust estimates.
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The zero-pole perturbation decreases the effects of LAAS and provides more reliable

instantaneous phase sequences. It was shown that the proposed method, significantly

reduces the sensitivity to noise and variations in filter parameters, which have been

commonly neglected in previous studies. However, as recently reported in [20], the

phase ambiguities due to LAAS are unavoidable and should be considered as an intrinsic

limitation for phase estimation.

For BCI applications, the results presented in Section 4 demonstrate the significance

and robustness of the proposed phase extraction procedure. The results show that phase-

related features obtained through this method not only outperform conventional phase

features, but also are more robust to noise for BCI applications.

The proposed method is also useful for robust instantaneous EEG frequency

estimation. For instance, previous studies have shown that the attention of an individual

to a particular visual stimulus with a specific flashing rate can be detected by inspecting

the peaks of the EEG frequency spectra at the corresponding flashing rate [40].

Therefore, accurate estimation of the instantaneous frequency of the EEG over time

is of particular importance in designing SSVEP-based BCI systems. Although the

hereby utilized dataset was not based on SSVEP, the proposed method can be used

as a potential instantaneous frequency estimator in SSVEP-based BCI studies.

The scope of the current study is not limited to BCI applications. In fact, without

using the hereby proposed scheme, the effects of LAAS and narrow-band filtering lead

to unreliable and ambiguous phase sequences, which result in wrong interpretations

of phase-related quantities in any similar application. This highlights the necessity of

the mentioned additional steps in phase estimation, to improve the reliability of the

estimated instantaneous phase sequence of an EEG for different applications.

The theoretical findings of [20] and the hereby reported results further highlight

the importance of the analytical signal envelope in EEG phase-related studies. In

future studies, the combination of phase and analytical signal envelopes can be used for

improving performance in BCI and other applications, including sleep stage classification

and pathological cases such as epileptic EEG. We also expect the hereby developed

scheme to have considerable applications in brain connectivity and cognitive studies

based on the EEG phase.
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