A new formalisation for wireless sensor network adaptive context-aware system: Application to an environmental use case

J. Sun, G. de Sousa, C. Roussey, J.P. Chanet, F. Pinet, K.M. Hou

To cite this version:

HAL Id: hal-01378720
https://hal.archives-ouvertes.fr/hal-01378720

Submitted on 10 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Jie Sun, Gil De Sousa, Catherine Roussey, Jean-Pierre Chanet, François Pinet

Irstea, UR TSCF
9 avenue Blaise Pascal
CS 20085
F-63178 Aubière, France
Email: jie.sun@irstea.fr, gil.de-sousa@irstea.fr, catherine.roussey@irstea.fr
jean-pierre.chanet@irstea.fr, francois.pinet@irstea.fr

Kun-Mean Hou

LIMOS
Campus Universitaire des Cézeaux
1 rue de la Chebarde
TSA 60125 - CS 60026
F-63178 Aubière cedex, France
Email: kun-mean.hou@isima.fr

Abstract—Henceforth, new generations of Wireless Sensor Networks (WSN), as part of the Internet Of Things (IoT), have to be able to adapt their behaviour to collect, from the study phenomenon (or feature of interest), quality data for long period of time. In this article, we propose a new formalisation for the design and the implementation of context-aware systems. To illustrate this whole proposition, an environmental use case, the study of flood events in a watershed, relying on a WSN for the data collection, is presented.

Keywords—Context-aware system; formalisation; architecture; Wireless Sensor Network; Internet of Things; environment; phenomenon.

I. INTRODUCTION

The acquisition of heterogeneous data is essential in the era of IoT and the Big Data that is just starting. These two research topics have application in numerous fields: industry, “smart home smart care”, agriculture, environment, etc. WSN technology is now viewed as part of the IoT [1]. The increasingly use of WSN envisioned at the beginning of the 2000’s [2], is now a reality as shown, for example, in environment [3] and agriculture [4]. In these applications, a WSN collects natural phenomenon observations (temperature, humidity, etc.) and send them to a context-aware system, which may propose adaptation actions based on context. To build a full context adaptation service, information about wireless sensors themselves such as their energy level are also required. Indeed, despite steady progress in hardware (the development of low energy communication modules for example), a wireless sensor still has scarce resources. It is the case for “scalar” WSN and it is even more for Wireless Multimedia Sensor Networks (WMSN) [5]. Thus, to better use these limited resources, all the system components involved in data acquisition process have to work together in a cooperative way, from the component that collects raw data to the one that provides indicators to end users. Generally, these components are the wireless sensors, the gateway(s) and the remote Decision Support System (DSS). The acquisition and transmission frequencies required by the DSS, through the gateway, have to be consistent with the energy available at the level of the wireless sensors. For some alert applications such as fire prevention, data transmission is sometimes more important than the “survival” of a node of the network. Thus, all the components implied in the data acquisition process have to adapt their behaviours to the context in order to achieve the best performances. A WSN is also subject to unpredictable events that, without fast interventions, can threaten the stability of the whole system. The combination of the common decisions and actions is the issue addressed in this paper. More precisely, we propose a formalisation to define high level context which, integrated into an adaptive context-aware system, will be used to reduce the number of exchanged communication packets. Section II presents the main existing concepts related to context-aware systems. Section III of the article explains our proposition of formalisation of context in order to build any context system based on WSN. Section IV presents its application with the design of a context-aware system dedicated to a complex environmental use case. The second system adapts its behaviour to the context in order to limit packet exchanges. Section V presents different context systems developed for the same purpose. The last section concludes this article.

II. CONTEXT-AWARE SYSTEM MAIN CONCEPTS

One of the most known and accepted definition of context is given by [6] as Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves. As indicated in this definition, context is focused on one entity. Several contexts can be defined, for example, the context of the user, the context of the device running the application, and so on. As explained in [7], different categories of context exist. Low level context corresponds to the raw data acquired by sensors or static data provided by users. High level context is computed from the low level one, with more informative data associated to the application and the user. The Figure 1 presents the processes associated to an adaptive context-aware system when data are collected by a WSN. It could also be applied to sensor networks or other systems that generate raw data.

In an adaptive context-aware system, different processes are required:

• Context acquisition: collecting raw data and metadata that are useful to build the context.
Context modeling: organisation of the collected data through a specific context data model. The process gives an interpretation to each raw data. For example, the value 24 becomes the measurement of the outdoor temperature in degree Celsius. This process builds the low level context. This process is also called annotation or tagging [7].

Context reasoning: the high level context is computed or inferred from the low level one. This process can imply different approaches based on machine learning [8] or rule engine [9].

Context distribution: diffusion of the high level context to the different consumers, for example, the end user or any system components are able to adapt their actions according to the current context.

Context adaptation: actions to adapt any system components according to context changes.

Note that a context-aware system stops at the context distribution process and sends alert to the end users.

III. PROPOSED CONTEXT FORMALISATION

The work in [10] define the concept of entity “state” as a qualitative data which changes over times (summarizing a set of information). Based on this definition, we propose a new definition of “context” as a set of entities characterized by their state, plus all information that can help to derive any state changes of these entities. In our context-aware system formalisation, we add the definition of two classes of entities:

1) observable entity : entity that is directly observed by sensors.
2) entity of interest : entity whose characterisation is obtained from one or many other entities and required by the application

We propose two new reasoning steps to create the high level context in the reasoning process, illustrated in Figure 2, we can see high level context of an entity of interest cannot be acquired directly based on low level context of observable entities. There are 2 levels of reasoning with rule based engine:

- The low level context contains the sensor measurements stored in the context data model. The high level context of observable entities is inferred from the low level context as indicated by the dotted arc in Figure 2. The context is enriched by the state of observable entities.
- The high level context of an entity of interest is inferred from the high level context of other entities.

The number of states and entities depends on the application requirements. Any hardware component, such as memories, of a wireless sensor can be added in our context formalisation. It can also be applied to software such as the operating systems. The number of system failures or watchdog calls constitutes raw observation data to derive states of the associated observable entities. The state of a wireless sensor management application, we consider a wireless sensor as an entity of interest where one of its associated observable entities is its power supply (a battery). From this observable entity, a sensor measures a charge/an energy level as a raw data observation or low-level context. Based on capacity and charge values, we deduce the percentage of energy remaining in the battery. This percentage is represented by the variable Energy. Figure 3 presents an example of finite-state machine used to deduce the energy state (high, middle or low) of the battery which is its high level context.

If we take the example of a wireless sensor management application, we consider a wireless sensor as an entity of interest where one of its associated observable entities is its power supply (a battery). From this observable entity, a sensor measures a charge/an energy level as a raw data observation or low-level context. Based on capacity and charge values, we deduce the percentage of energy remaining in the battery. This percentage is represented by the variable Energy. Figure 3 presents an example of finite-state machine used to deduce the energy state (high, middle or low) of the battery which is its high level context.
sensor will then be deduced from all the considered (hardware and software) entity states. These different entities and their state enrich the context. Thus, there are different contexts according to different entities and their state. However, the complexity of the deduction process increases with the number of relevant entities analysed. Providing entities and states in limited number is essential to have a highly dynamic context-aware system but this should not be at the expense of the quality of the final application decision. In the WSN topic, another possible use of this formalisation is for link quality evaluation application. This problem is well-known in routing protocols. Different metrics can be considered such as the available bandwidth, the latency, the available energy in the neighbourhood nodes and others [11]. The Quality of Service (QoS) of a link can be deduced from different observable entities: the connected nodes, the bandwidth. Our context formalisation can be improved depending on the complexity of the application requirements. For example, a wireless sensor management application wants to evaluate if a wireless sensor can communicate. The states of the wireless sensor entity (the entity of interest) are able to communicate or not able to communicate. Its state will be deduced from the link entity and the battery entity (enough energy to communicate). For a WSN management application, its entity of interest is the WSN. The state of the WSN could be computed from the states of all its wireless sensors (or nodes). Its connectivity state could be calculated from the QoS of all the links between its wireless sensors. At the end, the application can just need the states of the WSN, established from the states of all its nodes and of the gateway(s). Thus, we divide the context and the reasoning in several parts. Each part can be supported by different components of the context-aware system. If the two steps of the reasoning process is supported by two different components, the first component that deduces the high level context of an observable entity (its state) can communicate it to the second component. For performance reason, it would be better to communicate only the changing state events (with the associated value). In the following section, a context-aware system is built for an environmental use case. We experiment our formalisation on it.

IV. ENVIRONMENTAL APPLICATION USE CASE

The considered environmental application is a watershed monitoring system which is able to send alert about flood risk. As shown in Figure 4, the application uses a WSN for data acquisition. This network is composed of wireless sensors, called “Water flow node”, equipped with stream gauge measuring the water flow rate. One of these wireless sensors is located on the outlet of the watershed. The network contains also “Precipitation nodes” measuring the precipitation quantity. All the measurements are sent to a DSS. This DSS deduces the risk or the occurrence of a flood and send it to users. One of our assumptions is that the WSN has a star topology: each node communicates directly with the DSS, we do not introduce routing protocol constraints at this step.

In the application, we define four entities:

1. the Precipitation entity which is an observable one. Its state is calculated from the data collected by the “Precipitation nodes” located at different points of the watershed. The Precipitation entity \(P \) has two states: high and low.

2. the WaterCourse entity which is an observable one. Its state is calculated from the data collected by the “water flow nodes” located at different points of the tributary stream (WaterCourses). The WaterCourse \(W \) entity has two states: high and low.

3. the Outlet entity which is also an observable one. Its state is calculated from the data collected by the “water flow node” located on the outlet of the watershed. The Outlet entity \(O \) has two states: high and low.

4. the Flood entity is the entity of interest of the application. The flood entity is not an observable entity but its state depends on the states of all the observable entities. The Flood entity has four states “Normal”, “Rain”, “Risk”, “Flood”. Normal state means there is no risk. Rain state means that the watershed has received lot of precipitations, but there is no flood. Risk state means that flood is coming. Flood state means that the flood is there, the main river is overflowing. Application users want to know as soon as possible when a risk state is reached.

All the measurements are stored in the context data model in order to build the low level context. Several reasoning steps will be proposed in order to build the high level context of the Flood entity:

1. The precipitation measurements from the various “Precipitation nodes” are aggregated. One threshold should be set on the aggregation value in order to determine when the Precipitation entity moves from the low to the high state and vice versa.

2. The water flow measurements from the various stream gauges, which equip “Water flow nodes” located in the WaterCourses, are aggregated. One threshold should be set on the aggregation value in order to determine when the WaterCourse entity moves from the low to the high state and vice versa.

3. Based on the measurements of the stream gauge that equips the “Water flow node” located at the Outlet, one threshold should be set in order to determine when the Outlet entity moves from the low to the high state and vice versa.

4. The Figure 5 presents the finite-state machine that deduces the state of the Flood entity from the states of the three other observable entities. This diagram follows every step of the emergence of a flood. Usually, when a flood event occurs, the Flood entity will move from the “Normal (F1)” state to the “Rain...
(F2)” one, proceed to the “Risk (F3)” one and finish with the “Flood (F4)” one.

Based on the use case mentioned above, we can see

![Figure 5. Example of flood finite-state machine](image)

If considering energy of sensor nodes, in our use case, we define five entities: Precipitation, WaterCourse, Outlet, Node and Flood. The former four are observable entities and the last one is entity of interest. There are two kinds of context: flood context and energy context. They are both high level context of entity of interest: flood state and energy state. Flood state is deduced from high level context of the former three observable entities. So the use case we proposed is complex enough for us to implement.

V. **FORMALISATION USE IN SIMULATION**

To implement our formalisation, we extend the simulation system based on the multi-agent system JADE (Java Agent DEvelopment Framework) as introduced in [10]. There are 3 main features that JADE has:

1) **Agent communication**: Exchange messages among the agents.

2) **Content of message modelization by Ontology**: JADE uses ontology to model the exchanged message contents between agents.

3) **Integration with other tools**: JADE can use tools like Jess [12] in a Java language framework as a decision component of an agent, so the agents in multi-agent systems are more intelligent.

However, current implementations based on JADE are very basic. The work in [13] only realizes basic agent communication. It does not care about the content of message modelization and other tools integration. In our simulation, we implement all the 3 features as shown in Figure 6. We use Ontology to model the content of exchange messages among the agents, meanwhile we can get low level context of observable entities e.g. rainfall amount last 24 hour. Then we can use Jess to infer and acquire the high level context of observable entities e.g. Precipitation state; thus, high level context of entity of interest e.g. Flood state is inferred from those the high level context of observable entities by Jess. As mentioned in [7], the context modeling is often based on ontologies. Ontologies are defined by [14] as an *formal explicit specification of a shared conceptualization*. According to W3C, ontologies are vocabularies that define the concepts and relationships used to describe and represent an area of concern. Thus, ontologies provide meaning to data (as data model do).

Our ontology is based on Semantic Sensor Network ontology (SSN) proposed by the W3C [15]. This ontology is a nucleus on which other ontologies can be connected, in order to develop a full context data model. The main concepts of SSN that we reused are “Sensor”, “FeatureOfInterest”, “Property”, “Observation”. Our observable entities or entity of interest are defined in SSN as “FeatureOfInterest”. Possible entities can also come from some dedicated ontologies such as the Climate and Forecast ontology [16] or the SWEET ontology [17]. To describe time stamp, we reuse the Time ontology proposed by the W3C [18]. We use the QU ontology to define the unit [19]. To describe the state of our entities, we reuse the ontology proposed in [10].

![Figure 6. Simulation architecture](image)

Our ontology is based on Semantic Sensor Network ontology (SSN) proposed by the W3C [15]. This ontology is a nucleus on which other ontologies can be connected, in order to develop a full context data model. The main concepts of SSN that we reused are “Sensor”, “FeatureOfInterest”, “Property”, “Observation”. Our observable entities or entity of interest are defined in SSN as “FeatureOfInterest”. Possible entities can also come from some dedicated ontologies such as the Climate and Forecast ontology [16] or the SWEET ontology [17]. To describe time stamp, we reuse the Time ontology proposed by the W3C [18]. We use the QU ontology to define the unit [19]. To describe the state of our entities, we reuse the ontology proposed in [10].

![Figure 7. Rule of Normal state of Flood entity](image)

Concerning the reasoning process, we use the rule-based engine called Jess as indicated above. We define several rules sets. Some are dedicated to infer the observable entity state based on predefined thresholds and aggregation values. Others are dedicated to infer the state of the Flood entity. For example,
the following rule deduces the state “Normal (F1)” of the Flood entity from states of observable entities.

We implement two systems where the DSS receives all the measurements and performs all the reasoning processes. These systems use the same WSN composed of heterogeneous wireless sensors to collect precipitation quantities, the WaterCourses and the outlet flow rates. Figure 8 is a UML sequence diagram that presents the operating mode of “system 1”, a context-aware one that send the Flood entity state to end user. The three different types of wireless sensors, previously mentioned, are represented by: “PrecipitationNode”, “WaterCourseNode” (for the “water flow nodes” located in the tributary stream), “OutletNode” (for the “water flow node” located in the outlet).

Based on the previous system, we develop an adaptive context-aware one, “system 2”, presented in Figure 9. The adaptation decision is implemented by the DSS. It deduces a new communication frequency for each wireless sensor based on the Flood entity state. Using our simulation architecture, we have compared these two systems at the level of the total amount of exchanged communication packets, using one-month data collected on a watershed. We use the data provided by [20]. Three “PrecipitationNodes”, two “WaterCourseNodes” and one “OutletNode” are considered in our simulation. In JADE, we define as many agents as nodes. We also add a DSS agent. Each node agent acquires raw observation data and sends them to DSS. The acquisition frequency is of one measurement every minute. In the “system 1”, the acquisition and the transmission frequencies are equals. In the “system 2”, the transmission frequency is modulated (calculated by the DSS) as shown in Figure 9. The DSS agent processes the context modeling in order to build the low level context. It infers the high level context from the low level one using Jess rule engine. Figure 10 shows the obtained results. The nodes of the “system 1” has transmitted near 250000 packets. With the “system 2”, the number of transmitted message is reduced to less than 100000 packets. In terms of the phenomenon monitoring quality, the two systems detect the same number of state changes.

VI. RELATED WORK

No system of this type dedicated to flood monitoring was found. However, a context-aware system for water quality management exits. The InWaterSense project proposes a context-aware system to deduce the water quality of any water bodies (lake, river) [9] [21]. Their system is totally built using semantic web technologies. SSN ontology is used as a nucleus in order to build the context model. They also use the Jess rule based engine. Their rule format is based on SQWRL language. It is able to build aggregation value using rules. Thus, their rules merge the characteristics of observable entities and those of the entity of interest. Their rules infer the state of the water body without intermediate steps. Compare to our approach, their rules are much more difficult to manage due to their complexity. Our formalisation eases the reasoning process by splitting it into several steps: deduction of the high level context of observable entities; then, deduction of the high level context of the entity of interest.

The work of [22] proposes a WSN architecture called “Sepsen” in order to integrate, in nodes, several components: semantic annotator based on fragments of ontology, rule-based engine and a knowledge base that stores events. The goal is to decrease the number of event messages between sensors by classifying them as share, forward or discard event. The share events are sent to other sensor nodes to update their knowledge base. The forward events are sent to the gateway. The discarded events are removed. However, the semantic annotation is done manually. The rule indicates that a sensed value should be above a threshold in order to become a share or forward event. Using the PowerTOSSIM environment, the “Sepsen” architecture is applied on a simulation scenario showing the energy saving which this kind of approach can bring.

None of these systems uses the same formalisation based on observable entities, entity of interest and states. Thus, even if all these systems use a rule-based engine and ontologies, their rules are very complex and hard to maintain.
The Sensorgrid4Env project [23] wants to help coastal flood planning managers to make decisions during coastal flooding events. It proposes a mash-up application that integrates heterogeneous datasets: sensor data stream, historical database. The integration is made possibly by a set of ontologies: SSN, SWEET, etc. In this project, the context is not modeled explicitly.

When dealing with complex phenomenon like natural disaster, context-aware systems based on WSN become situation awareness system based on WSN. In this type of system, the data management model is composed of different layers (sensor data, aggregation data, situation representation knowledge) [24]. Our formalisation can be integrated in the situation layer. In [24], a situation is defined as the representation of a “structured part of the reality”. It contains all the description of entities involved in the situation. Context is a point of view of one entity about the situation.

VII. CONCLUSION AND PERSPECTIVES

In this article, we have proposed a new formalisation for the design and the implementation of context-aware systems. One of its advantages is that our approach can be used for multiple purposes. It can integrate both the monitoring of the studied phenomenon (feature of interest) and the management of the hardware and the software system used to observe it. More generally, it provides a unified way to deal with all the components/entities of an observation process. This formalisation can be used in different application topics related to agriculture, environment, “smart care smart home”, industry. To illustrate its use, we have provided an environmental use case application: the study of flood events in a watershed. In the Irstea institute, we have different data related to this topic and we will continue the implementation and the experiment of our approach in this application field. A simulation architecture is provided to evaluate systems developed using our formalisation. This architecture is based on the ontology concept with the use of the multi-agent system JADE and the rule-based engine Jess (those are both Java language tools). Different scenarios for this environmental application will be proposed in our future work taking into account different states and extended wireless sensors reasoning capabilities. Our application will also be implemented with tools suitable for the limited resources of wireless sensors.
ACKNOWLEDGMENT

This research is partly funded by the grant of the French Auvergne region, and now in the new Auvergne-Rhône-Alpes region (temporary name) and, the grant of the European Regional Development Fund (ERDF). The authors would like to thank the team of the Orgeval observatory for their help.

REFERENCES