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Abstract

This paper deals with the design of perfectly matched layers (PMLs) for transient acoustic wave
propagation in generally-shaped convex truncated domains. After reviewing key elements to derive PML
equations for such domains, we present two time-dependent formulations for the pressure-velocity system.
These formulations are obtained by using a complex coordinate stretching of the time-harmonic version of
the equations in a specific curvilinear coordinate system. The final PML equations are written in a general
tensor form, which can easily be projected in Cartesian coordinates to facilitate implementation with
classical discretization methods. Discontinuous Galerkin finite element schemes are proposed for both
formulations. They are tested and compared using a three-dimensional benchmark with an ellipsoidal
truncated domain. Our approach can be generalized to domains with corners.

1 Introduction

Nowadays, the numerical resolution of wave-like problems set on infinite or very large domains remains a
challenging task. When using classical schemes based on finite difference, finite volume or finite element
methods, a common strategy consists in computing the numerical solution only on a truncated domain, and
using an adequate treatment at the artificial boundary to preserve the original solution. This treatment
is supposed to simulate the outward propagation of signals and perturbations of all kinds generated inside
the truncated domain, even if they are not a priori known. For this purpose, a lot of artificial boundary
conditions, artificial layers and alternative techniques have been developed, studied and used for decades
(see e.g. the review papers [5, 25, 34, 36, 38, 39, 75] and references therein). Among them, the high-order
absorbing boundary conditions [4, 35, 39, 40, 67] and the perfectly matched layers (PMLs) [6, 13, 15, 18, 43,
45, 46, 49] provide treatments of the artificial boundary with arbitrarily-high accuracy.

The PML method has been introduced by Bérenger in the 90s [13] for transient electromagnetic problems,
and has been quickly applied to other wave-like problems. With this method, the truncated domain is
extended with a layer, where the governing equations are modified in such a way that outgoing waves are
damped. In addition, at the interface between the truncated domain and the layer, the outgoing waves
are transmitted without any reflection, whatever the angle of incidence. The combination of both these
properties made the success of the method.

The key ingredient of the PML method is the set of governing equations defined inside the layer. With
Bérenger’s strategy, valid for squared and cuboidal truncated domains, the equations are built by splitting
the original equations written in Cartesian coordinates, and using specific dissipations terms [13]. In the
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time-harmonic context, this strategy corresponds to a stretch of the Cartesian coordinates in the complex
plane [21, 63], and can be interpreted as a change of the metric [52, 73]. The PML equations then involve
complex metric coefficients. In alternative formulations, the original time-harmonic equations are used in
the PML without any change, but complex anisotropic material parameters are defined [32, 66, 78]. These
PMLs, frequently called uniaxial PMLs, are interpreted as anisotropic material absorbers. Time-dependent
formulations can finally be obtained by taking the inverse Fourier transform in time of time-harmonic PML
equations, and using convolution products or additional fields. All the above mentioned strategies have been
developed in the electromagnetics community in the 90s. During the last 20 years, they have been used and
adapted to design PML formulations for increasingly complex problems in various physical contexts, such
as aeroacoustics [45–47, 59], geophysical fluid dynamics [53, 60], elastodynamics [7, 8, 11, 20, 24, 56] and
quantum mechanics [79].

Most of the PML formulations are written in Cartesian coordinates and only deal with truncated domains
that have straight artificial boundaries (e.g. squared or cuboidal). However, some problems are naturally
written in other coordinate systems and, since the choice of the truncated domains is a priori arbitrary, it
could be advantageous to take domains with non-classical shapes. This motivated the derivation of PML
systems in alternative coordinate systems, firstly with cylindrical and spherical coordinates [22, 23, 61, 69, 70].
Some PML versions dealing with generally-shaped convex domains have been proposed in time-harmonic
contexts by Teixeira and Chew [71, 74], Lassas and Somersalo [51, 52], Zschiedrich et al [80] and Matuszyk
and Demkowicz [55]. Strategies have been presented for time-dependent simulations with non-Cartesian
finite difference schemes [64, 68], mixed finite element schemes [29] and discontinuous Galerkin schemes
[3, 30] for Maxwell’s equations. Alternative approaches with layers have also been proposed by Guddati et
al [37] and Demaldent and Imperiale [26] for polygonal domains.

In this paper, we present two PML formulations for transient acoustic problems defined on convex trun-
cated domains with regular curved boundary. Following strategies used in the electromagnetics community,
the formulations are obtained using, respectively, a complex stretch of coordinates and complex material
properties in the time-harmonic version of the pressure-velocity system. We derive the tensor form of the fi-
nal time-dependent equations and we provide the explicit definition of the coefficient tensors, which facilitates
implementation with classical discretization methods. Finite element implementations based on a discontin-
uous Galerkin method are then proposed for both formulations and tested by means of three-dimensional
numerical simulations.

This paper is organized as follows. In section 2, PML formulations based on the pressure-velocity system
are derived in both time-harmonic and time-dependent contexts for generally-shaped convex domains. Sec-
tion 3 is dedicated to numerical simulations in the time domain. After describing numerical schemes based
on a discontinuous Galerkin method, time-dependent formulations are tested and compared by means of a
reference three-dimensional benchmark. An illustration of application is finally proposed.

2 Design of PML formulations

In this section, we derive two families of time-harmonic and time-dependent PML formulations for the
acoustic wave system 

∂p

∂t
+ ρc2∇ · u = 0,

∂u

∂t
+

1

ρ
∇p = 0,

(1)

where p(t,x) is the pressure, u(t,x) is the velocity, ρ is the reference density and c is the propagation speed
of the medium. The complete original problem consists in finding the fields p(t,x) and u(t,x) that are
governed by system (1) for t > 0 and x ∈ Rd, with initial conditions given for both fields at t = 0. The
spatial dimension d is equal to 2 or 3. For the modified problem, the fields are governed by system (1) only
inside the truncated domain Ω ⊂ Rd, which is surrounded with the PML Σ (see e.g. Fig. 1a).

The time-harmonic PML formulations are obtained from the original equations by stretching a spatial
coordinate in the complex plan, which introduces a directional damping of waves. In order to deal with
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Figure 1: Curvilinear coordinates and local frame associated with the boundary Υ in two dimensions. The curves of
iso-value coordinates are represented in Fig. (a). Gray curves are parallel. Red lines are straight and perpendicular
to Υ. Fig. (b) shows the local frame and the radial coordinate ξ1.

generally-shaped truncated domains, this stretch is performed in a specific local coordinate system. With
this strategy, first used by Teixeira and Chew [71], the truncated domain must be convex with a regularity
condition on its boundary, and the PML thickness is constant. The time-dependent formulations are then
obtained by defining supplementary fields and applying an inverse Fourier transform in time.

The local coordinate system is described in section 2.1. The time-harmonic and time-dependent PML
formulations are derived in sections 2.2 and 2.3, respectively.

2.1 Coordinate system associated with the domain boundary

We consider a local coordinate system defined in a layer Σ surrounding the domain Ω with a constant
thickness δ. The system is based on lines (in two dimensions) or surfaces (in three dimensions) parallel and
perpendicular to the interface Υ (Fig. 1a), which is assumed to be regular enough. This system has been
used to derive PMLs [51, 52, 71, 74] and absorbing boundary conditions [4].

In two dimensions, the interface Υ is a curve and the coordinate system is denoted (ξ1, ξ2). Since Ω is
convex, each point x(ξ1, ξ2) of the layer Σ has a unique closest point on Υ. We define the coordinate ξ1 as
the distance between the two points, while the coordinate ξ2 is given by a local parametrization of Υ. We
consider a coordinate patch of Υ defined as p : V ⊂ R → Υ. Each point of p(V) ⊂ Υ then is given by p(ξ2),
where ξ2 ∈ V. The coordinate patch is chosen in such a way that

dn

dξ2
= κt, with t =

dp

dξ2
,

where n(ξ2) is the unit outward normal, t(ξ2) is a unit tangent vector and κ(ξ2) is the curvature of Γ at p(ξ2).
The coordinates ξ1 and ξ2 form an orthogonal curvilinear system, and the set of vectors (e1, e2) = (n, t)
constitutes an orthonormal frame. For each point of the layer Σ, we can then write

x(ξ1, ξ2) = p(ξ2) + ξ1e1(ξ2),

which is illustrated in Fig. 1b.

The three-dimensional coordinate system (ξ1, ξ2, ξ3) is adapted from the two-dimensional version. For
each point of the layer Σ, the coordinate ξ1 is the distance with the closest point on the surface Υ, and
the coordinates ξ2 and ξ3 are provided by a local parametrization of Υ. We consider a coordinate patch
p : V ⊂ R2 → Υ. Each point of p(V) ⊂ Υ then is given by p(ξ2, ξ3), where (ξ2, ξ3) ∈ V. There exists a
coordinate patch that gives (see [4, 28])

dn

dξi
= κiti, with ti =

dp

dξi
, for i = 2, 3, (2)

3



where n(ξ2, ξ3) is the unit outward normal, t2(ξ2, ξ3) and t3(ξ2, ξ3) are two unit tangent vectors in the
principal directions and κ2(ξ2, ξ3) and κ3(ξ2, ξ3) are the principal curvatures of the surface Γ at p2(ξ2, ξ3).
The coordinates ξ1, ξ2 and ξ3 form an orthogonal curvilinear coordinate system, and the set of vectors
(e1, e2, e3) = (n, t2, t3) constitutes an orthonormal frame. For each point of the layer Σ, we can then write

x(ξ1, ξ2, ξ3) = p(ξ2, ξ3) + ξ1e1(ξ2, ξ3). (3)

In orthogonal curvilinear coordinates, system (1) can be written
∂p

∂t
+ ρc2

1∏
k hk

(∑
i

∂

∂ξi

((∏
k ̸=i hk

)
ui

))
= 0,

∂ui

∂t
+

1

ρ

1

hi

∂p

∂ξi
= 0, for i = 1, . . . , d

(4)

where ui denotes a component of u in the coordinate system, and hi is the scale factor associated with the
coordinate ξi, which is defined by

hi =

∥∥∥∥ ∂x∂ξi
∥∥∥∥ . (5)

The lower and upper bounds of summation and product symbols are 1 and d, respectively. For the sake of
clarity, they are not written. Using the definition (5) together with equations (2) and (3) gives the scale
factors for the three-dimensional coordinate system described in this section,

h1 = 1,

h2 = 1 + κ2(ξ2, ξ3) ξ1,

h3 = 1 + κ3(ξ2, ξ3) ξ1.

2.2 Coordinate stretch and time-harmonic PML systems

Two PML systems are derived for the time-harmonic acoustic wave system
−ıωp̂+ ρc2

1∏
k hk

(∑
i

∂

∂ξi

((∏
k ̸=i hk

)
ûi

))
= 0,

−ıωûi +
1

ρ

1

hi

∂p̂

∂ξi
= 0, for i = 1, 2, 3,

(6)

where ω is the angular frequency and the hat ˆ denotes the Fourier transform in time. Both will be used to
derive different time-dependent PML formulations in section 2.3.

In a time-harmonic context, a classical way to derive PML systems from the original system consists in
stretching one coordinate in the complex plane, where the coordinate corresponds to the direction where
waves must be damped in the layer. In our case, this corresponds to replacing the real coordinate ξ1 ∈
[0, δ] with the complex one ξ̃1 ∈ U , where U is a curve in the complex plane (Fig. 2). We consider the
parametrization of the curve

ξ̃1(ξ1) = ξ1 −
1

ıω

∫ ξ1

0

σ(ξ′1) dξ
′
1, with ξ1 ∈ [0, δ], (7)

where σ(ξ1) is the so-called absorption function, which is positive. The effect of the complex stretching with
this specific parametrization can be interpreted by considering the plane wave solution. For the original
system (6), the plane wave solution reads

eı(k·x−ωt),

where the wave number k is related to the angular frequency through the dispersion relation ω = c ∥k∥.
Replacing ξ1 with ξ̃1 in this solution gives

eı(k·x−ωt)e−γ(ξ1),
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Figure 2: Complex coordinate stretch of the radial coordinate ξ1.

with the damping factor

γ(ξ1) =
1

c

k · e1
∥k∥

∫ ξ1

0

σ(ξ′1) dξ1.

Except grazing waves (i.e. k · e1 = 0), all the plane waves supported by the original system are damped in
their direction of propagation. For outgoing plane waves (i.e. k · e1 > 0), the damping factor is positive and
increases when ξ1 increases. By contrast, for ingoing plane waves (i.e. k · e1 < 0), the damping factor is
negative and increases when ξ1 decreases.

When replacing ξ1 with ξ̃1 in the time-harmonic system (6), the partial derivative with respect to ξ1
becomes

∂

∂ξ1
→ ∂

∂ξ̃1
=

1

1− σ/(ıω)

∂

∂ξ1
,

and the scale factors h2 and h3, which depend on ξ1, become

h2 → h̃2 = 1 + κ2ξ̃1,

h3 → h̃3 = 1 + κ3ξ̃1.

The other partial derivatives do not change, nor does the scale factor h1 = 1. Nevertheless, it is convenient
to introduce the complex scale factor defined as h̃1 = 1 − σ/(ıω). Indeed, the time-harmonic PML system
can then be written

−ıωp̂+ ρc2
1∏
k h̃k

(∑
i

∂

∂ξi

((∏
k ̸=i h̃k

)
ûi

))
= 0,

−ıωûi +
1

ρ

1

h̃i

∂p̂

∂ξi
= 0, for i = 1, 2, 3.

(8)

An alternative PML system is obtained by defining the new unknowns

û⋆
i =

∏
k ̸=i h̃k∏
k ̸=i hk

ûi, for i = 1, 2, 3.

System (8) then becomes
−ıωp̂+ ρc2

∏
k hk∏
k h̃k

1∏
k hk

(∑
i

∂

∂ξi

((∏
k ̸=i hk

)
û⋆
i

))
= 0,

−ıωû⋆
i +

1

ρ

hi

h̃i

Πk ̸=ih̃k

Πk ̸=ihk

1

hi

∂p̂

∂ξi
= 0, for i = 1, 2, 3.

(9)

Both time-harmonic PML systems (8) and (9) have interpretations that are well-known in the electro-
magnetics community. For system (8), the complex coordinate stretch corresponds to a change of the metric
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of the space. In an orthogonal coordinate system, the original scale factors hi are indeed simply replaced
with the complex ones h̃i (see e.g. [52, 73, 74]). The tensor form of system (9) reads

−ıωp̂+ ρc2α∇ · û⋆ = 0,

−ıωû⋆ +
1

ρ
M∇p̂ = 0,

where the scalar α and the second-order tensor M are defined by

α =

∏
k hk∏
k h̃k

and M =
∑
i

hi

h̃i

∏
k ̸=i h̃k∏
k ̸=i hk

(ei ⊗ ei) .

This system is identical to the original one (system (1)), except that the (real) material parameters ρc2

and 1/ρ have been replaced with the complex parameter ρc2α and the anisotropic complex tensor M/ρ.
The time-harmonic PML can then simply be interpreted as an anisotropic absorber with specific complex
material properties [32, 66, 71]. The same material properties have been obtained for the Helmholtz equation
by Matuszyk and Demkowicz [55] in a more general framework.

2.3 Time-dependent PML systems

Two time-dependent PML systems are obtained from the time-harmonic ones (8) and (9) by using an inverse
Fourier transform in time. This transform can be performed thanks to the introduction of additional fields
and equations. For the sake of clarity, we define the real functions

σ1 = σ(ξ1),

σ2 = κ̄2(ξ1, ξ2, ξ3) σ̄(ξ1), (10)

σ3 = κ̄3(ξ1, ξ2, ξ3) σ̄(ξ1), (11)

with

κ̄i(ξ1, ξ2, ξ3) =
κi

1 + κiξ1
, with i = 2, 3,

σ̄(ξ1) =

∫ ξ1

0

σ(ξ′1) dξ
′
1.

These functions allow us to rewrite the complex scale factors as

h̃i =
(
1− σi

ıω

)
hi. (12)

Let us firstly consider system (8). By using equation (12), the second term of the first equation of system
(8) successively becomes

ρc2
1∏
k h̃k

∑
i

∂

∂ξi

((∏
k ̸=i h̃k

)
ûi

)
= ρc2

1∏
k h̃k

∑
i

[(∏
k ̸=i

(
1− σk

ıω

)) ∂

∂ξi

((∏
k ̸=i hk

)
ûi

)
+
((∏

k ̸=i hk

)
ûi

) ∂

∂ξi

(∏
k ̸=i

(
1− σk

ıω

))]
=
∑
i

(
1− σi

ıω

)−1
[
ρc2

1∏
k hk

∂

∂ξi

((∏
k ̸=i hk

)
ûi

)]
+
∑
i

[
ρc2
(∏

k

(
1− σk

ıω

)−1
) ûi

hi

∂

∂ξi

(∏
k ̸=i

(
1− σk

ıω

))]

=
∑
i

(
1− σi

σi−ıω

)[
ρc2

1∏
k hk

∂

∂ξi

((∏
k ̸=i hk

)
ûi

)]
+
∑
i

ρc2 (−ıω)

σi − ıω

∑
k ̸=i

[
1

σk − ıω

∂σk

∂ξi

]
ûi

hi

 .
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Using the definitions of σ1, σ2, σ3 and h1, the second term can be simplified as

∑
i

ρc2 (−ıω)

σi − ıω

∑
k ̸=i

[
1

σk − ıω

∂σk

∂ξi

]
ûi

hi


= ρc2û1

(−ıω)

σ1 − ıω

[
1

σ2 − ıω

∂σ2

∂ξ1
+

1

σ3 − ıω

∂σ3

∂ξ1

]
+ ρc2

(−ıω)

(σ2 − ıω)(σ3 − ıω)

[
û2

h2

∂σ3

∂ξ2
+

û3

h3

∂σ2

∂ξ3

]
= ρc2û1

(−ıω)

σ1 − ıω

[
σ1 − σ2

σ2 − ıω
κ̄2 +

σ1 − σ3

σ3 − ıω
κ̄3

]
+ ρc2

(−ıω)

(σ2 − ıω)(σ3 − ıω)

[
û2

h2

∂σ3

∂ξ2
+

û3

h3

∂σ2

∂ξ3

]
= ρc2û1

[
− (−ıω)

σ1 − ıω
(κ̄2 + κ̄3) +

(−ıω)

σ2 − ıω
κ̄2 +

(−ıω)

σ3 − ıω
κ̄3

]
+ ρc2

(−ıω)σ̄

(σ2 − ıω)(σ3 − ıω)

[
κ̄2
3

κ2
3

û2

h2

∂κ3

∂ξ2
+

κ̄2
2

κ2
2

û3

h3

∂κ2

∂ξ3

]
=
∑
i

(
1− σi

σi−ıω

)
(q̂i + σ̄r̂i),

where we have introduced the additional fields

q̂1 = −ρc2(κ̄2 + κ̄3)û1, r̂1 = 0,

q̂2 = ρc2κ̄2û1, r̂2 = ρc2
1

σ3 − ıω

κ̄2
3

κ2
3

û2

h2

∂κ3

∂ξ2
,

q̂3 = ρc2κ̄3û1, r̂3 = ρc2
1

σ2 − ıω

κ̄2
2

κ2
2

û3

h3

∂κ2

∂ξ3
.

Defining the additional fields

p̂i = − 1

σi − ıω

[
ρc2

1∏
k hk

∂

∂ξi

((∏
k ̸=i hk

)
ûi

)
+ q̂i + σ̄r̂i

]
, for i = 1, 2, 3,

system (8) can be rewritten as

−ıωp̂+ ρc2
1∏
k hk

(∑
i

∂

∂ξi

((∏
k ̸=i hk

)
ûi

))
= −

∑
i

(σip̂i)−
∑
i

(q̂i + σ̄r̂i),

−ıωûi +
1

ρ

1

hi

∂p̂

∂ξi
= −σiûi, for i = 1, 2, 3,

−ıωp̂i + ρc2
1∏
k hk

∂

∂ξi

((∏
k ̸=i hk

)
ûi

)
= −(σip̂i + q̂i + σ̄r̂i), for i = 1, 2, 3,

−ıωr̂2 = ρc2
κ̄2
3

κ2
3

û2

h2

∂κ3

∂ξ2
− σ3r̂2,

−ıωr̂3 = ρc2
κ̄2
2

κ2
2

û3

h3

∂κ2

∂ξ3
− σ2r̂3.

One equation can be removed by using p̂ =
∑

i p̂i, as well as one term of the first equation since
∑

i q̂i = 0.
Using an inverse Fourier transform in time, we finally obtain the time-dependent PML system

∂p

∂t
+ ρc2∇ · u = −σ1p1 − σ2p2 − σ3(p− p1 − p2)− σ̄(r2 + r3),

∂u

∂t
+

1

ρ
∇p = −

∑
i

σiuiei,

∂pi
∂t

+ ρc2∇i · u = −σipi − qi − σ̄ri, for i = 1, 2,

∂r2
∂t

= ρc2u2
κ̄2
3

κ2
3

(e2 · ∇κ3)− σ3r2,

∂r3
∂t

= ρc2u3
κ̄2
2

κ2
2

(e3 · ∇κ2)− σ2r3.

(13)
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with ui = ei · u, q1 = −ρc2(κ̄2 + κ̄3)u1, q2 = ρc2κ̄2u1 and

∇i · u
def.
= ∇ · (uiei). (14)

With this system, the governing equations of p and u are identical to the original ones, but with additional
non-differential terms. The original equations are recovered if σ is equal to zero. This formulation has four
supplementary differential equations: two with the differential operator of equation (14) and two ordinary
differential equations. The latter involve the spatial variation of each principal curvature (κ2 and κ3) in the
other principal direction (respectively, e3 and e2). For a sphere, the curvature is constant and the fields r1
and r2 are equal to zero. In two dimensions, only one supplementary partial differential equation is required.

We now consider system (9), which can be rewritten as
−ıωp̂+ ρc2

1∏
k hk

(∑
i

∂

∂ξi

((∏
k ̸=i hk

)
ûi

))
= −ıω

(
1−

∏
k h̃k∏
k hk

)
p̂,

−ıωûi +
1

ρ

1

hi

∂p̂

∂ξi
= −ıω

(
1− h̃i

hi

∏
k ̸=i hk∏
k ̸=i h̃k

)
ûi.

For the sake of clarity, the superscript ⋆ has been removed. Using equation (12), the right-hand sides of
these equations become

−ıω

(
1−

∏
k h̃k∏
k hk

)
p̂ = −ıω

(
1−

(
1− σ1

ıω

)(
1− σ2

ıω

)(
1− σ3

ıω

))
p̂

= − (
∑

i σi) p̂−
(∑

i

∏
k ̸=i σi

) p̂

(−ıω)
− (
∏

i σi)
p̂

(−ıω)2
,

−ıω

(
1− h̃i

hi

∏
k ̸=i hk∏
k ̸=i h̃k

)
ûi = −ıω

(
1− 1− σi/(ıω)∏

k ̸=i (1− σk/(ıω)))

)
ûi

= −ıω

∏
k ̸=i(ıω − σk)− ıω(ıω − σi)∏

k ̸=i(ıω − σk)
ûi

= −ıω
ıω
(
σi −

∑
k ̸=i σk

)
+
∏

k ̸=i σk∏
k ̸=i(ıω − σk)

ûi

= −
(
σi −

∑
k ̸=i σk

)
(v̂i + ûi)−

(∏
k ̸=i σk

)
ŵi,

where v̂i and ŵi have been introduced such that

v̂i + ûi =
(ıω)2∏

k ̸=i(ıω − σk)
ûi =

(ıω)2

(ıω)2 − ıω
(∑

k ̸=i σk

)
+
(∏

k ̸=i σk

) ûi,

ŵi =
ıω∏

k ̸=i(ıω − σk)
ûi =

ıω

(ıω)2 − ıω
(∑

k ̸=i σk

)
+
(∏

k ̸=i σk

) ûi,

which give

−ıωv̂i = −
(∑

k ̸=i σk

)
(v̂i + ûi) +

(∏
k ̸=i σk

)
ŵi,

−ıωŵi = −(v̂i + ûi).

Defining supplementary fields for p̂/(−ıω) and p̂/(−ıω)2, and using an inverse Fourier transform in time, we
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finally obtain the system

∂p

∂t
+ ρc2

1∏
k hk

(∑
i

∂

∂ξi

((∏
k ̸=i hk

)
ui

))
= − (

∑
i σi) p−

(∑
i

∏
k ̸=i σi

)
p(1) − (

∏
i σi) p

(2),

∂ui

∂t
+

1

ρ

1

hi

∂p

∂ξi
= −

(
σi −

∑
k ̸=i σk

)
(ui + vi)−

(∏
k ̸=i σk

)
wi,

∂p(1)

∂t
= p,

∂vi
∂t

= −
(∑

k ̸=i σk

)
(ui + vi) +

(∏
k ̸=i σk

)
wi,

∂p(2)

∂t
= p(1),

∂wi

∂t
= −(vi + ui).

The tensor form of this system reads

∂p

∂t
+ ρc2∇ · u = − (σ1 + σ2 + σ3) p− (σ1σ2 + σ1σ3 + σ2σ3) p

(1) − (σ1σ2σ3) p
(2),

∂u

∂t
+

1

ρ
∇p = −A(u+ v)− Bw,

∂p(1)

∂t
= p,

∂v

∂t
= −C(u+ v) + Bw,

∂p(2)

∂t
= p(1),

∂w

∂t
= −(u+ v),

(15)

with the second-order tensors

A = (σ1 − σ2 − σ3) I1 + (−σ1 + σ2 − σ3) I2 + (−σ1 − σ2 + σ3) I3,
B = (σ2σ3) I1 + (σ1σ3) I2 + (σ1σ2) I3,
C = (σ2 + σ3) I1 + (σ1 + σ3) I2 + (σ1 + σ2) I3,

where Ii = ei ⊗ ei. As in system (13), p and u are governed by the original equations where source terms
are added. By contrast, this formulation involves two scalar and two vectorial supplementary fields, which
are governed by ordinary differential equations. Only one scalar field and one vector field are required in
two dimensions.

In the remainder, systems (13) and (15) are respectively called the PML-PDE system and the PML-ODE
system.

Interpretation and extension for domains with corners

Though the PML systems have been derived for convex domains with regular boundary, they can straight-
forwardly be adapted for squared and cuboidal domains with edge and corner regions where layers overlap.
Formula (12) is classically used to stretch scale factors in the Cartesian directions to derive PML for squared
and cuboidal domains (see e.g. [72, 74]). Therefore, the PML systems (13) and (15) can be used as is
for Cartesian PMLs, but each absorption function σi(xi) is chosen independently and corresponds to the
damping of waves in the corresponding Cartesian direction ei.

An analogy with the Cartesian PMLs provides a nice interpretation for the absorbing functions σ2 and
σ3 expressed in equations (10) and (11). They can be considered as absorption functions associated with
the principal directions, but they are due to the curvature of the domain boundary. They are equal to zero
if the boundary is planar.

The validity of the PML systems (13) and (15) can also be extended to other convex domains having
corners with right angles. For instance, they can deal with cylindrical domains having convex cross-sections.
Let us consider a cylinder with the axis e3. In the lateral PML that surrounds the cylinder, the PML systems
are then simply obtained by considering that κ2 is the curvature of the cross section and κ3 → 0 in relations
(10) and (11); e1 remains the radial direction and e2 is tangent the lateral surface and perpendicular to e3.
At the two extremities of the cylinder, the PMLs are planar and only σ3 is non-zero. At the corner, σ1 and
σ2 are defined as in the lateral PML, and σ3 is defined as in the PML of the border.

9



Classification and mathematical properties

The derived PML-PDE system (13) and PML-ODE system (15) can be categorized into two well-known
families of PMLs. The first family contains the Bérenger-like PML systems that are built using the splitting-
field technique of Bérenger [13] or the complex coordinate stretch technique [21, 22]. These systems involve
additional fields governed by differential equations with spatial partial derivatives (see e.g. [14, 23, 24, 45–
47, 60]). The second family corresponds to PML systems based on frequency-dependent complex material
properties [32, 66, 78] and written in the time-domain with supplementary ordinary differential equations
[2, 19, 62]. Such PMLs are generally referred as uniaxial PMLs.

The mathematical properties of PMLs from both families have been studied in many works and are still
an active field of research (see e.g. [1, 2, 9, 10, 27, 31, 41, 42, 48, 62]). For wave problems described with
symmetric hyperbolic systems (e.g. acoustic system (1) and Maxwell’s equations), the PML systems derived
with the original strategy of Bérenger are weakly hyperbolic, and lead to weakly well-posed problems [1, 9].
By contrast, the uniaxial PML systems are symmetric hyperbolic and lead to strongly well-posed problems
[2, 42, 62]. To our knowledge, only proofs of weak stability have been proposed for standard PML systems
from both families [9, 12, 19]. This means that no exponentially growing modes are supported by the
equations, but linear modes could pollute the solution in long-duration simulations. Since the PML systems
studied in [9, 12, 19] correspond to planar versions of systems (13) and (15), the PML formulations proposed
in this work will also suffer from the same long-time instability.

Let us note that modified PML formulations have been proposed to avoid any linear growing mode, and
to improve the accuracy for problems involving evanescent and grazing waves. For instance, the so-called
complex frequency shifted PML formulations [50, 65] are derived using a modified coordinate stretch, where
new parameters are introduced. In the time domain, these formulations can be seen as generalizations of
standard PML formulations with supplementary terms and equations. The formulations proposed in this
work could be enriched using the modified coordinate stretch, but at the cost of larger PML systems and
more expensive computations.

3 Numerical simulations

Both time-dependent PML formulations are tested by means of a three-dimensional benchmark where a
spherical wavefront is propagated in a truncated domain. The computational domain is the half of an ellipsoid
of revolution, whose shell is extended with a PML. The simulations are performed using discontinuous finite
element schemes that are described in section 3.1. After the description of the benchmark in section 3.2,
accuracy results are proposed to validate our implementation and performance results are discussed (section
3.3). An illustration of application is finally proposed in section 3.4.

For the PML-PDE formulation (13), both fields ri are set to zero and the corresponding equations are
not computed. Since the domain has an axis of revolution, one of the principal curvatures is constant, and
the corresponding field is equal zero. Setting the other field to zero is an approximation that corresponds to
neglecting the effect of the spatial variation of the other principal curvature. With our specific benchmark,
we have observed a posteriori that the performances of the formulation remain very good in comparison to
the PML-ODE formulation, which is implemented without any approximation.

3.1 Discontinuous finite element schemes

We propose numerical schemes based on a nodal discontinuous Galerkin (DG) method for the PML sys-
tems. The schemes are derived following a classical strategy for hyperbolic systems [44], with some further
developments to discretize the supplementary equations.

The unknown fields are approximated on a spatial mesh of Ω made of non-overlapping polyhedral cells,
Ω =

∪
k=1,...,K Dk, where K is the number of cells and Dk is the kth cell. With the nodal DG method, each

scalar field and each Cartesian component of vector fields is approximated by piecewise polynomial functions,
where discontinuities correspond to interfaces between elements. The discrete unknowns correspond to the
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values of fields at the nodes of elements. Over each cell Dk, the approximation of any field q(x, t) can then
be written as

qk(x, t) =

Nk∑
n=1

qk,n(t) ℓk,n(x), ∀x ∈ Dk,

where Nk is the number of nodes over element k, qk,n(t) is the value of the field at node n, and ℓk,n(x) is
the multivariate Lagrange polynomial function associated with node n.

For both the original system (1) and the PML systems (13) and (15), the governing equations of p and u
are discretized in the same manner. Multiplying these equations by test functions p̂ and û, integrating the
resulting equations over any cell Dk, and using integration by parts, we get the weak form(

∂p

∂t
, p̂

)
Dk

−
(
ρc2u,∇p̂

)
Dk

+ ⟨fp, p̂⟩∂Dk
= (sp, p̂)Dk

,(
∂u

∂t
, û

)
Dk

−
(
p

ρ
,∇ · û

)
Dk

+ ⟨fu, û⟩∂Dk
= (su, û)Dk

,

with the fluxes

fp = ρc2nk · u,

fu =
p

ρ
nk,

where nk is the outward unit normal on the boundary ∂Dk. For both PML systems, sp and su contain the
right-hand side terms of the governing equations of p and u. The discrete fields being discontinuous at the
interface between elements, the fluxes are replaced by numerical fluxes which involve values of fields from
both sides of interfaces. We choose the upwind fluxes

fnum
p = ρc2nk ·

{
u
}
− c

q
p
y
, (16)

f numu =
1

ρ
nk

{
p
}
− c nk

(
nk ·

q
u
y)

, (17)

where the mean
{
q
}
and the semi-jump

q
q
y
of any field q are defined as

{
q
}
=

q+ + q−

2
,q

q
y
=

q+ − q−

2
.

The plus and minus subscripts denote values on the side of the neighboring and current cells, respectively.
These fluxes are classically obtained by using a Riemann solver (see e.g. [44, 54]). At the external bound-
ary, we use a first-order absorbing boundary condition (ABC) based on characteristics, which is simply
implemented by taking the external values p+ and u+ equal to zero in the numerical fluxes (16)-(17).

For the PML-PDE system (13), the partial differential equations that govern the supplementary fields
p1 and p2 are discretized by analogy with the governing equation of p. Multiplying these equations by test
functions, integrating over an element Dk of the layer Σ, and integrating by parts lead to the weak form(

∂p1
∂t

, p̂1

)
Dk

−
(
ρc2e1(e1 · u),∇p̂1

)
Dk

+ ⟨fp1 , p̂1⟩∂Dk
= (sp1 , p̂1)Dk

,(
∂p2
∂t

, p̂2

)
Dk

−
(
ρc2e2(e2 · u),∇p̂2

)
Dk

+ ⟨fp2 , p̂2⟩∂Dk
= (sp2 , p̂2)Dk

,

where fp1 and fp2 are defined as

fp1
= ρc2(nk · e1)(e1 · u),

fp2
= ρc2(nk · e2)(e2 · u),

11



Figure 3: Geometry and mesh for the three-dimensional benchmark with a three-cells PML. This mesh is made of
58,396 tetrahedra in the truncated domain and 3× 6, 998 prisms in the layer.

and sp1
and sp2

contain the source terms written in the right-hand side of equations. Since system (13) is no
longer strictly hyperbolic, we cannot use the Riemann solver to derive upwind fluxes. Noting the similitudes
between fp and both fp1 and fp2 , we propose to use the Lax-Friedrichs fluxes

fnum
p1

= ρc2(nk · e1)(e1 ·
{
u
}
)− c

q
p1

y
,

fnum
p2

= ρc2(nk · e2)(e2 ·
{
u
}
)− c

q
p2

y
.

These fluxes are valid inside the layer Σ, but not at its external boundary Γ and at the interface Υ with the
domain Ω. Indeed, because the supplementary fields are defined only inside the layer, we cannot use their
semi-jumps

q
p1

y
and

q
p2

y
on Υ and Γ. Fortunately, we note that nk = −e1 on Υ and nk = e1 on Γ. We

also have nk · e2 = 0 on both surfaces. Therefore, we have fp1
= fp and fp2

= 0 in both cases. We then use
the numerical flux fnum

p instead of fnum
p1

, and fnum
p2

is simply set to zero.

Since the supplementary equations of the PML-ODE system (15) do not involve spatial differential
operators, the derivation of the scheme is straightforward. In addition to the above scheme for the governing
equations of p and u, ordinary differential equations will be only local, at each node of each element, for
the supplementary fields p(1), p(2), v and w. We use the same time-stepping scheme for both partial and
ordinary differential equations.

3.2 Description of the benchmark

The computational domain Ω is the half of an ellipsoid, with axes of lengths 330m (x−direction) and 120m
(y− and z−directions), respectively. A symmetry boundary condition is used in the section of the semi-
ellipsoid, and the shell is extended with a PML Σ (Figure 3). To generate the wavefront, a Gaussian pulse
is prescribed as initial condition on the pressure,

p(x, 0) = e−r2/R2

with r = ∥x− x0∥, x0 = (−122.5 m, 0 m, 20 m) and R = 7.5 m, while the other fields are initially set to
zero. With this setting, the initial pressure is negligible inside the PML. We use the physical parameters
c = 1.5 km/s and ρ = 1 kg/m3.

The mesh is made of tetrahedra in the truncated domain Ω and prisms in the layer Σ, with element
sizes between 3 m and 5 m. The mesh of the layer is generated by extrusion. The main reason is that it
can be automatically done for truncated domain of any shape with a regular enough boundary Υ. It does
not require the analytic representation of the external boundary Γ of the layer. With an ellipsoidal domain,
the external boundary Γ is not an ellipsoid (see e.g. [74]), and, to the best of our knowledge, no analytical
representation is known. Ideally, a mesh with curvilinear elements should be used in order to exactly follow
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the interface Υ and the boundary Γ that are curved. Elements with planar faces could be used with a lower
computational cost, but the approximate polynomial representations of the surfaces introduce a geometric
error. To reduce the global error, it is not clear if using curvilinear elements is computationally more efficient
than using elements with planar faces and a thicker layer. In this paper, we consider only elements with
planar faces.

We consider different thicknesses for the layer (1, 3 and 5 mesh cells) and both first-degree and second-
degree basis functions. All the meshes are generated with Gmsh [33]. The time-stepping is made with the
fourth-order Runge-Kutta scheme. The time step ∆t is equal to 0.05 ms and 0.025 ms for first-degree and
second-degree basis functions, respectively.

Two alternative absorption functions σ(ξ1) are considered: the hyperbolic function σh and the shifted
hyperbolic function σsh, defined as

σh(ξ1) =
c

δ − ξ1
,

σsh(ξ1) =
c

δ

ξ1
δ − ξ1

.

It has been shown in previous works [16, 17, 57, 58] that both these functions do not require the tuning
of parameters. In particular, we have shown [58] that σsh is a good choice for a discontinuous Galerkin
implementation with a Cartesian PML formulation similar to the PML-PDE system (13). Here, both
functions are tested with both PML systems (13) and (15).

The PML formulations require to know the coordinate ξ1, the principal curvatures κ2 and κ3, and the
local orthonormal frame (e1, e2, e3). Both ξ1 and e1 are computed numerically by finding, in the initialization
of the simulation, the closest node belonging to the mesh of the surface Υ. To define the principal curvatures
and the other vectors, we use the fact that the domain is an ellipsoid of revolution. Then, e2 belongs to
the plane tangent to Υ and is oriented towards one pole, and e3 is perpendicular to both e2 and e3. κ2

corresponds to the curvature of an ellipse [76],

κ2 =
axay

[p2x(ay/ax)
2 + (p2y + p2z)(ax/ay)

2]3/2
,

and κ2 is obtained from the Gaussian curvature G of an ellipsoid [77],

G = κ2κ3 =
(axayaz)

2

[(pxayaz/ax)2 + (pyaxaz/ay)2 + (pzaxay/az)2]2
.

In these formulas, ax, ay and az are the semi-axes of the ellipsoid and px, py and pz are the Cartesian
coordinates of p(ξ2, ξ3). Let us note that, in our case, ay = az.

3.3 Validation and comparison

Figure 4 shows snapshots of the pressure p at different instants with a three-cells layer and the PML-PDE
formulation. A spherical wave is generated by the initial pulse. As time goes by, the spherical wavefront
reaches the PML with different angles of incidence, and propagates along the interface at a nearly grazing
incidence. We observe that the spherical wave is not deformed near the interface, as we wished for, and the
pressure is damped inside the layer.

The simulation is performed with different settings over the period [0 ms, 500 ms]. This includes a first
phase where the wavefront is traveling in the truncated domain (before t = 200 ms) and a second phase
where the wavefront has left the domain (after t = 200 ms). For all the settings, the difference between the
numerical solution and the exact solution is quantified using the relative error defined as

Error(t) =

∫
Ω

(
1

2ρc2
(pexact(t,x)− pnum(t,x))

2
+

ρ

2
∥uexact(t,x)− unum(t,x)∥2

)
dx∫

Ω

(
1

2ρc2
(pexact(0,x))

2
+

ρ

2
∥uexact(0,x)∥2

)
dx

,
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t = 0 ms

t = 50 ms

t = 100 ms

t = 150 ms

t = 200 ms

Figure 4: Snapshots of the solution of the three-dimensional benchmark at different instants. Colored surfaces are
iso-surfaces of p(x, t). The inner and outer white surfaces correspond to the interior and exterior boundaries of the
PML, respectively.
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where the exact solution is given by

pexact(t,x) =
1

2

(
r − ct

r
e−(r−ct)2/R2

+
r + ct

r
e−(r+ct)2/R2

)
,

u exact(t,x) =
1

2cρ

[(
R2

2r2
+

r − ct

r

)
e−(r−ct)2/R2

−
(
R2

2r2
+

r + ct

r

)
e−(r+ct)2/R2

]
x− x0

r
.

The error corresponds to the ratio of the energy associated with the error fields to the energy associated
with the initial fields in the truncated domain Ω.

Figure 5 shows the time-evolution of the error when the absorbing boundary condition (ABC) and three-
cells PMLs are used as truncation technique. Both first-degree and second-degree basis functions are tested.
During the period [0ms, 200ms], all the PMLs exhibit a similar error for each polynomial degree. This error
dramatically decreases when increasing the degree from one to two. By contrast, the error corresponding to
the ABC is larger and stays at the same level (between 10−2 and 10−1) for both polynomial degrees. These
observations are coherent with the properties of these truncation techniques. The considered ABC is only a
first-order approximation that cannot simulate oblique outgoing waves without any reflection. The observed
error then is dominated by the modeling error associated with spurious reflected waves already present at
the continuous level. For the PMLs, the significant decay of error indicates that numerical errors dominate.

In the second phase of the simulation (after t = 200ms), the ABC error curves are decreasing and similar
with both polynomial degrees. The error is dominated by the modeling error corresponding to the multiple
reflections of the initial wavefront that are leaving the domain. With the PMLs, the error curves are in a
quite large range (between 10−7 and 10−5) and have slightly different behaviors, which confirms that the
kind of PML formulation and the absorption function impact the error. For both degrees, the error is far
higher with the ABC than with the PMLs at the beginning of the second phase, but the ABC error goes
under the error obtained with some PMLs at the end of the simulation. While the ABC error is dramatically
decreasing during the second phase, the PML errors are only slightly decreasing or even slightly increasing.
This phenomenon could be explained by the linear growing modes that can be generated inside the PML
and that can pollute the long-duration solution (see the end of section 3.3).

In order to compare the PML implementations, we now consider the mean value of the relative error
over the period [250 ms, 500 ms], where the PMLs exhibit different errors. Figure 6 shows the mean error
as function of the total runtime when using 2 Dual-Core Intel Xeon Processors L5420. All the one-cell
PMLs provide similar errors for similar computational costs. For three-cells and five-cells layers, the PML-
PDE implementation is more accurate with the shifted hyperbolic absorption function σsh than with the

(a) 1st degree (b) 2nd degree
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Figure 5: Time-evolution of the error inside the domain Ω with the absorbing boundary condition (ABC) and three-
cells PMLs. First-degree (a) and second-degree (b) basis functions are considered with both PML formulations and
both absorbing functions.
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Figure 6: Mean error over the period [250 ms, 500 ms] as a function of the runtime. The three points of each curve
correspond to one-cell (left), three-cells (middle) and five-cells (right) layers.

hyperbolic one σh. This result is coherent with the conclusions of previous works with similar formulations
[57, 58]. For the PML-ODE implementation, both functions provide quite similar results. σh is slightly better
than σsh with a three-cells layer, while the converse is true with a five-cells layer. Finally, the PML-PDE
implementation (with the shifted hyperbolic function) is more efficient than the PML-ODE. For a five-cells
layer, it even provides a more accurate result with a smaller runtime.

3.4 Illustration of application

Our strategy is now illustrated by the scattering of a submarine placed in the center of the ellipsoidal domain.
The submarine is approximately 120 m in length, and the dimensions of the ellipsoid are not changed. The
PML-PDE is used together with the shifted hyperbolic absorption function σsh and the first-order ABC
to terminate the layer. The mesh is made of 183,707 tetrahedra (truncated domain) and 62,650 prisms
(five-cells layer). First-degree basis functions are used. There are 7,450,112 degrees of freedom.

Figure 7 shows snapshots of the pressure p at different instants. The spherical wave generated by the
initial pulse hits the front of the submarine, and creates perturbations in the pressure field. The wavefront
propagates along the submarine and is nearly grazing at the boundary of the domain. The perturbations, as
well as the primary spherical wave, have correctly left the front zone at t = 200ms. These results have been
obtained using 8 Dual-Core Intel Xeon Processors L5420. The total runtime was 1 h 40 min, corresponding
to the period [0 ms, 200 ms] and to 8000 time steps.

4 Conclusion

This paper is dedicated to generalizing PML formulations for acoustic wave propagation with generally-
shaped convex domains, which offers flexibility when choosing the shape of the computational domain. Our
strategy is based on the complex stretch of a specific curvilinear coordinate in the time-harmonic equations,
and on the use of supplementary differential equations to write the time-domain PML formulations.

Two time-dependent PML formulations have been derived for the pressure-velocity system. One formula-
tion involves supplementary PDEs, while only ODEs are required for the other. Both have been implemented
in a discontinuous Galerkin finite-element solver and tested with a three-dimensional benchmark. The best
accuracy is observed with the PML-PDE formulation, despite an approximation made during the imple-
mentation. That formulation is faster than the other, but the complete version requires the knowledge
of supplementary geometrical information. In a more applicative context, we believe that all the required
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t = 0 ms

t = 50 ms

t = 100 ms

t = 150 ms

t = 200 ms

Figure 7: Snapshots of the solution of the three-dimensional benchmark at different instants. Colored surfaces are
iso-surfaces of p(x, t). The inner and outer white surfaces correspond to the interior and exterior boundaries of the
PML, respectively

17



geometrical parameters could be evaluated numerically or provided by the underlying CAD software in an
automatic manner.

The approach is quite general and offers a wide range of extensions. Since the PML equations are written
at the continuous level, they can be implemented with other numerical methods. As explained at the end of
section 2.3, the formulations can be adapted to deal with domains having corners, though they have been
derived assuming that the domain border was regular enough. The formulations can also be improved using
a complex coordinate stretch with a frequency shift [50, 65].
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