Weakly-supervised text-to-speech alignment confidence measure

Guillaume Serrière 1 Christophe Cerisara 1 Dominique Fohr 2 Odile Mella 2
1 SYNALP - Natural Language Processing : representations, inference and semantics
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
2 MULTISPEECH - Speech Modeling for Facilitating Oral-Based Communication
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : This work proposes a new confidence measure for evaluating text-to-speech alignment systems outputs, which is a key component for many applications, such as semi-automatic corpus anonymization, lips syncing, film dubbing, corpus preparation for speech synthesis and speech recognition acoustic models training. This confidence measure exploits deep neural networks that are trained on large corpora without direct supervision. It is evaluated on an open-source spontaneous speech corpus and outperforms a confidence score derived from a state-of-the-art text-to-speech aligner. We further show that this confidence measure can be used to fine-tune the output of this aligner and improve the quality of the resulting alignment.
Type de document :
Communication dans un congrès
International Conference on Computational Linguistics (COLING), Dec 2016, Osaka, Japan. Proceedings of the 26th International Conference on Computational Linguistics (COLING)
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01378355
Contributeur : Christophe Cerisara <>
Soumis le : lundi 10 octobre 2016 - 09:04:15
Dernière modification le : vendredi 9 février 2018 - 13:20:05
Document(s) archivé(s) le : samedi 4 février 2017 - 00:20:24

Fichier

170_Paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01378355, version 1

Citation

Guillaume Serrière, Christophe Cerisara, Dominique Fohr, Odile Mella. Weakly-supervised text-to-speech alignment confidence measure. International Conference on Computational Linguistics (COLING), Dec 2016, Osaka, Japan. Proceedings of the 26th International Conference on Computational Linguistics (COLING). 〈hal-01378355〉

Partager

Métriques

Consultations de la notice

337

Téléchargements de fichiers

95