Optimal Transport for Domain Adaptation

Abstract : Domain adaptation is one of the most chal- lenging tasks of modern data analytics. If the adapta- tion is done correctly, models built on a specific data representation become more robust when confronted to data depicting the same classes, but described by another observation system. Among the many strategies proposed, finding domain-invariant representations has shown excel- lent properties, in particular since it allows to train a unique classifier effective in all domains. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labeled samples of the same class in the source domain to remain close during transport. This way, we exploit at the same time the labeled samples in the source and the distributions observed in both domains. Experiments on toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches. In addition, numerical experiments show that our approach leads to better performances on domain invariant deep learning features and can be easily adapted to the semi- supervised case where few labeled samples are available in the target domain.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2016
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01377220
Contributeur : Nicolas Courty <>
Soumis le : jeudi 6 octobre 2016 - 15:17:10
Dernière modification le : mardi 3 octobre 2017 - 14:52:10
Document(s) archivé(s) le : vendredi 3 février 2017 - 16:19:10

Fichier

OTPAMI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01377220, version 1

Citation

Nicolas Courty, Rémi Flamary, Devis Tuia, Alain Rakotomamonjy. Optimal Transport for Domain Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2016. 〈hal-01377220〉

Partager

Métriques

Consultations de
la notice

229

Téléchargements du document

247