A. Bergam, C. Bernardi, and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations, Mathematics of Computation, vol.74, issue.251, pp.1117-1138, 2005.
DOI : 10.1090/S0025-5718-04-01697-7

URL : https://hal.archives-ouvertes.fr/hal-00020615

J. Blechta, J. Málek, and M. Vohralík, Localization of the W ?1,q norm for local a posteriori efficiency, p.1332481, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332481

D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are p-robust, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.13-14, pp.1189-1197, 2009.
DOI : 10.1016/j.cma.2008.12.010

D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Mathematics of Computation, vol.77, issue.262, pp.651-672, 2008.
DOI : 10.1090/S0025-5718-07-02080-7

Z. Chen and J. Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Mathematics of Computation, vol.73, issue.247, pp.1167-1193, 2004.
DOI : 10.1090/S0025-5718-04-01634-5

P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Mathematics of Computation, vol.68, issue.228, pp.1379-1396, 1999.
DOI : 10.1090/S0025-5718-99-01093-5

D. A. Di-pietro, M. Vohralík, and S. Yousef, Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, Mathematics of Computation, vol.84, issue.291, pp.153-186, 2015.
DOI : 10.1090/S0025-5718-2014-02854-8

URL : https://hal.archives-ouvertes.fr/hal-00690862

V. Dolej?í, A. Ern, and M. Vohralík, A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.773-793, 2013.
DOI : 10.1137/110859282

V. Dolej?í, F. Roskovec, and M. Vlasák, A posteriori error estimates for nonstationary problems, proceedings of Enumath, 2016.

K. Eriksson, C. Johnson, L. ?. , and S. J. , Adaptive Finite Element Methods for Parabolic Problems II: Optimal Error Estimates in $L_\infty L_2 $ and $L_\infty L_\infty $, SIAM Journal on Numerical Analysis, vol.32, issue.3, pp.706-740, 1995.
DOI : 10.1137/0732033

A. Ern and F. Schieweck, Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs, Mathematics of Computation, vol.85, issue.301, pp.2099-2129, 2016.
DOI : 10.1090/mcom/3073

URL : https://hal.archives-ouvertes.fr/hal-00947695

A. Ern and M. Vohralík, A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation, SIAM Journal on Numerical Analysis, vol.48, issue.1, pp.198-223, 2010.
DOI : 10.1137/090759008

URL : https://hal.archives-ouvertes.fr/hal-00383692

A. Ern, I. Smears, and M. Vohralík, Equilibrated flux a posteriori error estimates in L 2 (H 1 )-norms for high-order discretizations of parabolic problems, in preparation. [17] , Discrete p-robust H(div)-liftings and a posteriori error analysis of elliptic problems with H ?1 source terms, submitted for publication. Preprint available at https

F. D. Gaspoz, C. Kreuzer, K. G. Siebert, and D. A. Ziegler, A convergent timespace adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution

E. H. Georgoulis, O. Lakkis, and J. M. Virtanen, A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems, SIAM Journal on Numerical Analysis, vol.49, issue.2, pp.427-458, 2011.
DOI : 10.1137/080722461

C. Kreuzer, Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic p-Laplacian, Calcolo, pp.50-79, 2013.

C. Kreuzer, C. A. Möller, A. Schmidt, and K. G. Siebert, Design and convergence analysis for an adaptive discretization of the heat equation, IMA Journal of Numerical Analysis, vol.32, issue.4, pp.1375-1403, 2012.
DOI : 10.1093/imanum/drr026

O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Mathematics of Computation, vol.75, issue.256, pp.1627-1658, 2006.
DOI : 10.1090/S0025-5718-06-01858-8

O. Lakkis, C. Makridakis, and T. Pryer, A comparison of duality and energy a posteriori estimates for $\mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ in parabolic problems, Mathematics of Computation, vol.84, issue.294, pp.1537-1569, 2015.
DOI : 10.1090/S0025-5718-2014-02912-8

C. Makridakis and R. H. Nochetto, Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems, SIAM Journal on Numerical Analysis, vol.41, issue.4, pp.1585-1594, 2003.
DOI : 10.1137/S0036142902406314

J. M. Melenk, -A posteriori Error Estimation, SIAM Journal on Numerical Analysis, vol.43, issue.1, pp.127-155, 2005.
DOI : 10.1137/S0036142903432930

J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM A posteriori error estimation and adaptive computational methods, Advances in Computational Mathematics, vol.15, issue.1/4, pp.311-331, 2001.
DOI : 10.1023/A:1014268310921

S. Nicaise and N. Soualem, error estimates for a nonconforming finite element discretization of the heat equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.2, pp.319-348, 2005.
DOI : 10.1051/m2an:2005009

M. Picasso, Adaptive finite elements for a linear parabolic problem, Computer Methods in Applied Mechanics and Engineering, vol.167, issue.3-4, pp.223-237, 1998.
DOI : 10.1016/S0045-7825(98)00121-2

S. Repin, Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl, vol.13, issue.9, pp.121-133, 2002.

D. Schötzau and C. Schwab, Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method, SIAM Journal on Numerical Analysis, vol.38, issue.3, pp.837-875, 2000.
DOI : 10.1137/S0036142999352394

D. Schötzau and T. P. Wihler, A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations, Numerische Mathematik, vol.25, issue.3, pp.475-509, 2010.
DOI : 10.1007/s00211-009-0285-8

I. Smears, Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method, accepted for publication in IMA Arxiv preprint available at http, Journal of Numerical Analysis, 2016.

R. Verfürth, A posteriori error estimates for nonlinear problems. $L^r(0,T;L^\rho(\Omega))$-error estimates for finite element discretizations of parabolic equations, Mathematics of Computation, vol.67, issue.224, pp.487-518, 1998.
DOI : 10.1090/S0025-5718-98-01011-4

T. Werder, K. Gerdes, D. Schötzau, and C. Schwab, hp-Discontinuous Galerkin time stepping for parabolic problems, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.49-50, pp.6685-6708, 2001.
DOI : 10.1016/S0045-7825(01)00258-4

J. Wloka, Partial differential equations, 1987.
DOI : 10.1017/CBO9781139171755