Semantic Segmentation via Multi-task, Multi-domain Learning

Damien Fourure¹ & Rémi Emonet¹ & Elisa Fromont¹
Damien Muselet¹ & Alain Tréméau¹ & Christian Wolf²

¹ Univ Lyon, UJM, CNRS, Lab Hubert Curien UMR5516, F-42000
² Université de Lyon, CNRS, France, INSA-Lyon, LIRIS, UMR5205, F-69621

Abstract. We present an approach that leverages multiple datasets possibly annotated using different classes to improve the semantic segmentation accuracy on each individual dataset. We propose a new selective loss function that can be integrated into deep networks to exploit training data coming from multiple datasets with possibly different tasks (e.g., different label-sets). We show how the gradient-reversal approach for domain adaptation can be used in this setup. Thorough experiments on semantic segmentation applications show the relevance of our approach.

Keywords: Deep learning, Convolutional neural networks, Semantic segmentation, Domain adaptation, Multi-task learning.

1 Introduction

Semantic scene parsing (a.k.a. semantic full scene labeling) from RGB images aims at segmenting an image into semantically meaningful regions, i.e. to provide a semantic class label for each pixel of an image—see Fig. 2 for examples of labels in an outdoor context. Semantic scene parsing is useful for a wide range of applications, for instance autonomous vehicles, automatic understanding and indexing of video databases, etc. Most semantic scene parsing methods use supervised machine learning algorithms and thus rely on densely labeled (manually annotated) training sets which are very tedious to obtain. Only a small amount of training data is currently available for this task, which makes this problem stand out from other problems in vision (as for instance object recognition and localization). This is a particularly stringent problem for the deep network models who are particularly needy in terms of training data.

Most datasets for scene parsing contain only several hundreds of images, some of them only several dozen [6,15,9,13,14,18,19,22,25]. Additionally, combining these datasets is a non-trivial task as target classes are often tailored to a custom application. One good example of such label-set diversity can be found within the KITTI Vision benchmark [4] which contains outdoor scene videos. Many research teams work on this dataset since its release in 2013, tackling computer vision tasks such as visual odometry, 3D object detection and 3D tracking [9,13,14,18,19,22,25]. To tackle these tasks, several research teams have labeled
parts of the original dataset, independently from the other teams and often for
different goals (among the works listed above, semantic segmentation is the final
goal only for [14] and [25]). In practice, the ground truth segmentation quality
varies and both the granularity and the semantics of the labels differ. This in-
consistency in the label-set is also true when using the Stanford Background [6]
and SIFT Flow [15] datasets in combination with or in addition to KITTI.

The contributions of this paper are threefold: i) we formalize a simple yet
effective selective loss function that can be used in shared deep network to exploit
training data coming from multiple datasets having different label-sets (different
segmentation tasks). ii) we show that the gradient-reversal approach for domain
adaptation [3] can be used but needs to be manipulated with care especially when
datasets are unbalanced, iii) we run thorough scene segmentation experiments
on 9 heterogeneously labeled datasets, underlining the impact of each part of
the approach.

2 Related Works

In this section, we first discuss state-of-the-art methods dealing with multiple
datasets, focusing in particular on feature and knowledge transfer methods in
the context of deep networks. We then discuss semantic scene parsing with an
emphasis on methods used for the KITTI benchmark.

Learning across datasets. Many recent papers [3,21,7,23,26] proposed meth-
ods to solve the problem of the transferability of deep features. Since CNNs
require a lot of labeled data to provide good features, the usual methods ex-
loit features learned on one big dataset and adapt them to other datasets and
tasks [23]. In an extensive analysis about deep feature transfer, Yosinski et al.
[23] show that it is better to initialize lower layers from features learned on
a different (and maybe distant) task than using random weights. These trans-
ferred features improve generalization performance even after fine-tuning on a
new task. Hinton et al. [7] propose another way to transfer (or distill) knowledge
from one large network to a smaller one. The idea is for the small network to
learn both the outputs of the large network as well as the correct labels of the
data.

Considering the same task but datasets in multiple domains (different distrib-
utions of input data), the theory of domain adaptation tells us that the most
similar the features are across domains [1,16,5], the better the adaptation will
be. Ganin and Lempitsky [3] follow this principle by learning features that are
invariant with respect to the shift between the source and target domains. In
order to do that, they train a domain classifier and reverse the gradient during
the backpropagation step in order to learn features that cannot help in discrim-
inating the domains.

In this paper we show how domain adaptation techniques can be integrated in
our proposed method to benefit from multiple heterogeneously labeled datasets
without compromising the classification accuracy on each dataset.
Semantic Segmentation. Whereas the methods used for low level segmentation are diverse, high level semantic segmentation is dominated by machine learning. Learning methods range from random forests, to Support Vector Machines and deep learning who have been used in wide range of works [2,17,11]. Over years, segmentation algorithms have often been regularized through probabilistic graphical models like Conditional Random Fields (CRF). These methods have also been combined with deep networks [2,20]. For the 7 subsets of the KITTI dataset used in this paper [9,13,14,18,19,22,25], deep learning has never been used to tackle the semantic segmentation step. For example, [14] shows how to jointly classify pixels and predict their depth using a multi-class decision stumps-based boosted classifier. [25] uses a random forest classifier to classify segments of an image for different scales and sets of features. The aim of this paper is to show how to learn across datasets (with possibly different tasks) to improve the classification results. In particular, we do not optimize our method to produce the best accuracy for each of the used dataset. For example, while in KITTI many authors use rich features such as color, depth and temporal features, and complex post processing, we only use the RGB channels for our experiments and we do not take the label hierarchies into account. We also do not use any post-processing step.

3 Proposed Approach

Problem statement. Given a set of images drawn from a set of K different datasets, pairs made of an input patch x_i^k and a target label y_i^k are grouped into sets $D_k = \{x_i^k, y_i^k\}$, where $k=1 \ldots K$ and i indexes patches. The label spaces are different over the datasets, therefore each y_i^k can take values in space \mathcal{L}^k.

Fig. 1. Network used for our experiments with different learning strategies (a) and (b)). (a) No Fusion is our baseline and consists in learning one network per dataset. (b) Joint training consists in learning a single network with our selective loss function.
Our goal is to learn a nonlinear mapping $y = \theta(x, \Theta)$ with parameters Θ which minimizes a empirical risk $R[\Theta, D]$. The mapping θ is represented as a convolutional neural network, where each layer itself is a nonlinear mapping $f_l(W_l h_{l-1} + b_l)$ where h_l is the l^{th} hidden representation, W_l and b_l are the weights and bias of the l^{th} layer and $f_l(.)$ is the activation function of the l^{th} layer. We minimize the empirical risk, $R[\Theta, D] = \frac{1}{N} \sum_{k=1}^{K} \sum_{i} J(x^k_i, y^k_i, \Theta)$, where N is the number of training samples and J is the loss function for each individual sample. We use the cross entropy loss $J(x^k_i, y^k_i, \Theta) = -\log \theta(x^k_i, \Theta)_{y^k_i}$, where $\theta(x^k_i, \Theta)_{y^k_i}$ is the network output for class y^k_i.

Limitations of separate training. Considering K different datasets, the classical baseline approach is to train K separate mappings (models) θ^k, each defined on its own label set L^k. This baseline approach is illustrated in Figure 1a. Unfortunately this basic approach presents the shortcoming that each mapping θ^k is trained on its own dataset D^k, which requires minimizing over separate sets of parameters Θ^k. In deep convolutional networks, the parameters Θ^k include all convolution's filters and the weights of all fully connected layers (overall, several millions of parameters). Learning such a large amount of parameters from limited (and generally small) amounts of training data is very challenging.

Joint feature training with selective loss. We propose to tackle this shortcoming by exploiting the hierarchical nature of deep models. On most classical problems in computer vision, supervised training leads to a rising complexity and specificity of the features over the layers [24]. In our case, we propose to train a single deep network on the union of all individual datasets. This allows the network to decide at every layer which features should be generic and which ones should be task-specific. This joint training approach is illustrated in Figure 1b. There is one output unit per label in the union of all label sets L^k: the output layer thus produces predictions for all considered datasets.

In a traditional multi-class setting, the network output is computed using a soft-max function to produce a probability vector. However, with K different datasets, this is counter-productive: it maximizes the target class probability but minimizes the probability of all other classes, including the ones from different label sets. This minimization is problematic when there exists a correlation between labels across different datasets. For example, in the KITTI dataset (see Fig. 2 where all labels are reported) the class Tree of the dataset from He et al. [9] is correlated with the class Vegetation from the dataset labeled by Kundu et al [13]. A plain softmax, optimizing the probability of the Tree class will implicitly penalize the probability of Vegetation, which is not a desired effect.

We thus define the dataset-wise soft-max (that produces a probabilities vector per dataset): for an input sample x^k_i, y^k_i from dataset k (denoted x, y for readability),

$$f(\theta(x, \Theta), y, k) = \frac{e^{\theta(x, \Theta)_y}}{\sum_{j' \in L^k} e^{\theta(x, \Theta)_{j'}}}$$

(1)
During learning, the dataset-wise soft-max is combined with a selective cross-entropy loss function as follows:

$$J'(\theta(x, \Theta), y, k) = -\theta(x, \Theta)_y + \log(\sum_{j' \in L_k} e^{\theta(x, \Theta)_{j'}})$$ (2)

Gradients are null for parameters involving output units corresponding to labels from datasets l with $l \neq k$. This is equivalent to having a separate output layer for each dataset and intermediate layers that are shared across datasets.

Gradient Reversal for Domain Adaptation. So far, our method trains a single network on several datasets adapting for different label-sets, while ignoring potential shift in the input domain between datasets. This is not a problem in the case where the input data is sampled from a single distribution (e.g. for the different subsets of KITTI). In other cases, a non neglectable shift in input distribution does exist, for instance between the Stanford and SiftFlow data.

The theory of domain adaptation tells us that a better adaptation between source and target domains can be achieved when the feature distributions of both sets are closer to each other [1,16,5]. In the lines of Ganin and Lempitsky [3], this can be achieved using an additional classifier trained on the same features, which attempts to predict the domain of the input data. In the case of domain invariant features, this classifier will achieve high error. More precisely, our full mapping $y = \theta(x, \Theta)$ is conceptually split into two parts: the feature extractor $f = \theta_f(x, \Theta_f)$, which corresponds to the first convolutional layers and results in features f, and the task classifier $y = \theta_t(f, \Theta_t)$, which corresponds to the later fully connected layers including the selective loss function. The domain classifier is an additional mapping, which maps the features f to an estimated domain d, given as $d = \theta_d(f, \Theta_d)$ The goal here is to minimize the loss of the domain classifier over its parameters Θ_d in order to train a meaningful classifier, and to maximize the same loss over the features f, i.e. over the parameters Θ_f of the feature extractor θ_f, in order to create domain invariant features. In the lines of [3] this is achieved through a single backpropagation pass over the full network implementing θ_f, θ_t and θ_d, inverting the gradients between the domain classifier θ_d and the feature extractor θ_f. In practice, the gradients are not only inverted, they are multiplied with a hyper-parameter $-\lambda$, which controls the importance of the task classifier and the domain one, as in [3].

Our experiments described in Section 4 show, that this domain adaptation step is also useful and important in our more general setting where results are requested for different tasks.

4 Experimental Results

Training details For all experiments we used a network architecture illustrated at the top of Figure 1. This architecture is a modified version of Farabet et al.[2]. The first two convolutional layers are composed by a bank of filters of size 7×7 followed by ReLU [12] units, 2×2 maximum pooling and batch normalization.
Datasets details The KITTI dataset [4] has been partially labeled by seven research groups [9,13,14,18,19,22,25] resulting in 736 labeled images (with almost no images in common) that are split into: a train set, a validation set and a test set. When the information was given by the author, we used the same train/test set as them, otherwise we randomly split them into approximately 70% of data for the training and validation set and 30% data for the test set, ensuring that any two images from the same video sequence end up in the same split. The labels used in the different subsets of the KITTI dataset are summarized in Fig. 2. We sample on average 390,000 patches in each video frame (depending on its size). This results into a dataset of about 280 million patches suitable to train a deep learning architecture. As mentioned in Section 2, the different labels provided by the different teams are not always consistent. As illustrated in Fig. 2, we can see that the granularity and the semantics of the labels may be very different from one labeling to another. For example, Ladicky et al. separate the Trees from the Grass. However, this might correspond to the Vegetation labels in the subset from Xu et al. but might also correspond (in the case of Grass) to the labels Ground. He et al. have not used the labels Pole, Sign or Fence used in most other labelings. These labels are likely to overlap with the label Building of He et al. but then, this Building class cannot be consistent anymore with the other labelings that contain the label Building in other subsets. Some groups have used the label Bike and some others have used the label Cyclist. Those
two labels are likely to overlap but in one case a team has focused on the entire entity "cyclist on a bike" whereas another has only focused on the bike device.

In addition to the KITTI dataset, we use two other scene labeling datasets: Stanford Background [6] and SIFT Flow [15]. The Stanford Background dataset contains 715 images of outdoor scenes having 9 classes. Each image has a resolution of 320×240 pixels. We randomly split the images to keep 80% of them for training and 20% for testing. From these images, we extract a total of 40 millions patches. The SIFT Flow dataset contains 2688 manually labeled images of 256×256. The dataset has 2488 training and 200 test images containing 33 classes of objects. From this we extract 160 millions patches.

4.1 Segmentation results with different training strategies

Table 1 and Fig. 3 show the results obtained for all our training strategies. We report global accuracy, average accuracy and the Intersection over Union (IoU) measure. Global is the number of correctly classified pixels (True Positive) over the total number of pixels (also called recall or pixel accuracy). Average is the average of this recall per class (also called the class accuracy) and IoU is the ratio \(TP/(TP + FP + FN) \) where \(TP \) is the number of True Positive and \(FP, FN \) are respectively the False Positive and False Negative averaged across all classes. All results (global, average and IoU) are averaged over the considered datasets, taking into account their relative number of patches.

<table>
<thead>
<tr>
<th>Methods</th>
<th>7 KITTI</th>
<th>Stanford + SiftFlow</th>
<th>7 KITTI + Stanford</th>
<th>7 KITTI + SiftFlow</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Fusion</td>
<td>77.35 54.51 41.99</td>
<td>72.66 33.24 25.84</td>
<td>77.09 55.64 43.10</td>
<td>76.72 45.18 34.74</td>
</tr>
<tr>
<td>JT</td>
<td>80.71 58.62 46.21</td>
<td>74.99 46.52 28.31</td>
<td>79.64 58.97 46.43</td>
<td>79.1 48.08 37.52</td>
</tr>
<tr>
<td>JT+GR</td>
<td>-</td>
<td>-</td>
<td>74.26 34.07 26.37</td>
<td>79.82 58.82 46.43</td>
</tr>
<tr>
<td>JT+GR+DE</td>
<td>80.84 58.89 46.32</td>
<td>75.51 37.08 28.71</td>
<td>80.46 59.09 46.91</td>
<td>79.65 48.33 37.62</td>
</tr>
</tbody>
</table>

Table 1. Pixel (Global) and class (Avg.) accuracies and Intersection over Union (IoU) results for the combinations of each pair of datasets: 7 KITTI (7 heterogeneously labeled subsets of the KITTI dataset), Stanford and Siftflow with different training strategies: \(\text{NF}=\text{No Fusion} \) (see Fig. 1a); \(\text{JT}=\text{Joint training} \) (see Fig. 1b); \(\text{DE}=\text{Dataset Equilibrium} \); \(\text{GR}=\text{Gradient Reversal} \). Best results are highlighted in bold.

No Fusion. The first learning strategy implemented consists in learning one network per dataset with the architecture described in Section 4 and illustrated in figure 1.a. This is our baseline, and the results for this strategy are shown in the rows described as No Fusion. State of the art performances for the different KITTI sub datasets are (respectively for global and average accuracies): (92.77, 68.65) for He et al. [9]; (97.20, non reported) for Kundu et al. [13]; (82.4, 72.2) for Ladicky et. al. [14]; (51.2, 61.6) for Ros et al. [18]; (90.9, 92.10) for Sengupta et al. [19]; (non reported, 61.6) for Xu et al. [22] and (89.3, 65.4) for Zhang et al. [25]. For Stanford with 8 classes (resp. SIFT Flow), [20] reports a global accuracy of 82.3 (resp. 80.9), a pixel accuracy of 79.1 (resp. 39.1) and an IoU of 64.5 (resp. 30.8). These isolated results are better (except for Ros et al.
in Table 1) than the averages reported in our tables. This can be explained by
the fact that: [13,19,14,18,20] only show results computed from a subset of their
labels (e.g. the label pedestrian is ignored in [19,14,18]); the features used by
all methods on KITTI are richer (e.g. depth and time); and the proposed meth-
ods always combine multiple classifiers tuned on one particular sub-dataset. To
assess our contributions, we believe that No Fusion is the fairest baseline.

Joint Training (JT). The second alternative strategy consists in learning one
single network (illustrated in Figure 1b) with all the datasets using the selective
loss function detailed in Section 3. We can see that this strategy gives better
results than our baseline for all combination of datasets (for example, in Table 1,
learning with all the subsets of KITTI gives, on average for all the 7 subsets, an
improvement of +3.36 on the Global accuracy, of +4.11 on the Average accuracy
and of +4.22 on the IoU). These results confirm that Joint Training allows us to
increase the number of data used to train the network even if the datasets have
different label-sets. For the sake of completeness and to evaluate the contribution
of the selective loss over the mere augmentation of data, we trained our network
with pairs of datasets where one dataset was used to initialize the weights of
the convolutional part of the network and the other (usually the smaller one)
was used to fine-tune the network. The results, not given here for lack of space,
consistently show that this fine-tuning approach increases all the performance
measures but at a lower extent than when using our method.

Gradient Reversal (GR) and Dataset Equilibrium (DE). As explained in
Section 3, our selective loss does not full exploit datasets with different distribu-
tions. Thus we combine it with the gradient reversal techniques. Using gradient
reversal for the KITTI dataset does not make sense since the sub-datasets all
come from the same distribution. Table 1 shows that adding this gradient reversal
does not always improve the performance (e.g., when learning with SIFT Flow
and Stanford, the performance measures are worse than for JT). Starting from
the intuition that unbalanced datasets can be an issue for GR, we experimented
with weighting the contribution of each patch on the gradient computation de-
pending on the size of the dataset this patch come from. The results show the
importance of this Dataset Equilibrium step, even for the KITTI dataset alone.
Most best results are obtained when the joint training approach is combined
both with Dataset Equilibrium and with Gradient Reversal.
4.2 Detailed analysis on correlations across tasks

We computed a label correlation matrix for all sub-datasets of the KITTI dataset, shown in Figure 4, by averaging the predictions made by the network for each target class label (from one of the 7 possible labelings). The (full) diagonal of the matrix gives the correlation rates between the expected target labels. In each line, the other non-zero values correspond to the labels correlated with the target label y_k^i. A diagonal is visible inside each block, including off-diagonal blocks, in particular for the first 5 labels of each block. This means that, as expected, these first 5 labels are all correlated across datasets. For instance, the label Road from He et al. is correlated with the label Road from Kundu et al. with the Road from Ladicky et al. etc. A second observation is that the correlation matrix is not symmetric. For example, the classes Building, Poles, Signage and Fence from Sengupta et al. have (as already discussed in Section 4) a high correlation with the class Infrastructure from Xu et al., meaning that these classes overlap. On the contrary, the class Infrastructure from Xu et al. has a very high correlation with the class Building from Sengupta et al. and a limited one with the classes Poles, Signage and Fence. This is due to the label distributions: the Building class from Sengupta et al. is more represented than the three other classes, so Infrastructure from Xu et al. is more correlated to Building.
5 Conclusion

In this paper, we considered the problem of multi-task multi-domain learning: we want to exploit multiple datasets that have related inputs (e.g. images) but that have been annotated for different tasks. This problem is important in two major situations: to fuse existing (small) datasets and to reuse existing dataset(s) for a related custom (new) task. We introduced a new selective loss function for deep networks that makes it possible to learn jointly across different tasks. We provide experimental results on semantic segmentation computer vision tasks with a total of 9 datasets. The results show that our approach allows to jointly learn from multiple datasets and to outperform per-task learning and classical fine-tuning based approaches. We also show that the domain adaptation methods (gradient reversal) can be applied for multi-task multi-domain learning but needs to be used with care and requires to balance the different datasets. An important perspective of this work is to design a strategy to practically take into account the correlations between labels highlighted by our method.

Acknowledgment

Authors acknowledge the support from the ANR project SoLStiCe (ANR-13-BS02-0002-01). They also want to thank Nvidia for providing two Titan X GPU.

References

22. Xu, P., Davoine, F., Bordes, J.B., Zhao, H., Denoeux, T.: Information fusion on oversegmented images: An application for urban scene understanding. In: IAPR MVA (2013) 1, 3, 6, 7