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Abstract. We present an approach that leverages multiple datasets pos-
sibly annotated using different classes to improve the semantic segmenta-
tion accuracy on each individual dataset. We propose a new selective loss
function that can be integrated into deep networks to exploit training
data coming from multiple datasets with possibly different tasks (e.g.,
different label-sets). We show how the gradient-reversal approach for do-
main adaptation can be used in this setup. Thorought experiments on
semantic segmentation applications show the relevance of our approach.

Keywords: Deep learning, Convolutional neural networks, Semantic
segmentation, Domain adaptation, Multi-task learning.

1 Introduction

Semantic scene parsing (a.k.a. semantic full scene labeling) from RGB images
aims at segmenting an image into semantically meaningful regions, i.e. to pro-
vide a semantic class label for each pixel of an image—see Fig. 2 for examples of
labels in an outdoor context. Semantic scene parsing is useful for a wide range
of applications, for instance autonomous vehicles, automatic understanding and
indexing of video databases, etc. Most semantic scene parsing methods use su-
pervised machine learning algorithms and thus rely on densely labeled (manually
annotated) training sets which are very tedious to obtain. Only a small amount
of training data is currently available for this task, which makes this problem
stand out from other problems in vision (as for instance object recognition and
localization). This is a particularly stringent problem for the deep network mod-
els who are particularly needy in terms of training data.

Most datasets for scene parsing contain only several hundreds of images,
some of them only several dozen [6,15,9,13,14,18,19,22,25]. Additionally, com-
bining these datasets is a non-trivial task as target classes are often tailored to a
custom application. One good example of such label-set diversity can be found
within the KITTI Vision benchmark [4] which contains outdoor scene videos.
Many research teams work on this dataset since its release in 2013, tackling com-
puter vision tasks such as visual odometry, 3D object detection and 3D tracking
[9,13,14,18,19,22,25]. To tackle these tasks, several research teams have labeled
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parts of the original dataset, independently from the other teams and often for
different goals (among the works listed above, semantic segmentation is the final
goal only for [14] and [25]). In practice, the ground truth segmentation quality
varies and both the granularity and the semantics of the labels differ. This in-
consistency in the label-set is also true when using the Stanford Background [6]
and SIFT Flow [15] datasets in combination with or in addition to KITTI.

The contributions of this paper are threefold: i) we formalize a simple yet
effective selective loss function that can be used in shared deep network to exploit
training data coming from multiple datasets having different label-sets (different
segmentation tasks). ii) we show that the gradient-reversal approach for domain
adaptation [3] can be used but needs to be manipulated with care especially when
datasets are unbalanced, iii) we run thorough scene segmentation experiments
on 9 heterogeneously labeled datasets, underlining the impact of each part of
the approach.

2 Related Works

In this section, we first discuss state-of-the-art methods dealing with multiple
datasets, focusing in particular on feature and knowledge transfer methods in
the context of deep networks. We then discuss semantic scene parsing with an
emphasis on methods used for the KITTI benchmark.

Learning across datasets. Many recent papers [3,21,7,23,26] proposed meth-
ods to solve the problem of the transferability of deep features. Since CNNs
require a lot of labeled data to provide good features, the usual methods ex-
ploit features learned on one big dataset and adapt them to other datasets and
tasks [23]. In an extensive analysis about deep feature transfer, Yosinski et al.
[23] show that it is better to initialize lower layers from features learned on
a different (and maybe distant) task than using random weights. These trans-
ferred features improve generalization performance even after fine-tuning on a
new task. Hinton et al. [7] propose another way to transfer (or distill) knowledge
from one large network to a smaller one. The idea is for the small network to
learn both the outputs of the large network as well as the correct labels of the
data.

Considering the same task but datasets in multiple domains (different distri-
butions of input data), the theory of domain adaptation tells us that the most
similar the features are across domains [1,16,5], the better the adaptation will
be. Ganin and Lempitsky [3] follow this principle by learning features that are
invariant with respect to the shift between the source and target domains. In
order to do that, they train a domain classifier and reverse the gradient during
the backpropagation step in order to learn features that cannot help in discrim-
inating the domains.

In this paper we show how domain adaptation techniques can be integrated in
our proposed method to benefit from multiple heterogeneously labeled datasets
without compromising the classification accuracy on each dataset.
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Fig. 1. Network used for our experiments with different learning strategies ((a) and
(b)). (a) No Fusion is our baseline and consists in learning one network per dataset.
(b) Joint training consists in learning a single network with our selective loss function.

Semantic Segmentation. Whereas the methods used for low level segmen-
tation are diverse, high level semantic segmentation is dominated by machine
learning. Learning methods range from random forests, to Support Vector Ma-
chines and deep learning who have been used in wide range of works [2,17,11].
Over years, segmentation algorithms have often been regularized through prob-
abilistic graphical models like Conditional Random Fields (CRF). These meth-
ods have also been combined with deep networks [2,20]. For the 7 subsets of the
KITTI dataset used in this paper [9,13,14,18,19,22,25], deep learning has never
been used to tackle the semantic segmentation step. For example, [14] shows
how to jointly classify pixels and predict their depth using a multi-class decision
stumps-based boosted classifier. [25] uses a random forest classifier to classify
segments of an image for different scales and sets of features. The aim of this
paper is to show how to learn across datasets (with possibly different tasks) to
improve the classification results. In particular, we do not optimize our method
to produce the best accuracy for each of the used dataset. For example, while
in KITTI many authors use rich features such as color, depth and temporal
features, and complex post processing, we only use the RGB channels for our
experiments and we do not take the label hierarchies into account. We also do
not use any post-processing step.

3 Proposed Approach

Problem statement. Given a set of images drawn from a set of K different
datasets, pairs made of an input patch xki and a target label yki are grouped into
sets Dk = {xki , yki }, where k=1 . . .K and i indexes patches. The label spaces are
different over the datasets, therefore each yki can take values in space Lk.



4 Fourure et. al.

Our goal is to learn a nonlinear mapping y = θ(x,Θ) with parameters Θ
which minimizes a empirical risk R[Θ,D]. The mapping θ is represented as a
convolutional neural network, where each layer itself is a nonlinear mapping
fl(Wlhl−1 + bl) where hl is the lth hidden representation, Wl and bl are the
weights and bias of the lth layer and fl(.) is the activation function of the lth layer.

We minimize the empirical risk, R[Θ,D] = 1
N

∑K
k=1

∑
i J(xki , y

k
i , Θ), where N

is the number of training samples and J is the loss function for each individual
sample. We use the cross entropy loss J(xki , y

k
i , Θ) = − log θ(xki , Θ)yki , where

θ(xki , Θ)yki is the network output for class yki .

Limitations of separate training. Considering K different datasets, the clas-
sical baseline approach is to train K separate mappings (models) θk, each defined
on its own label set Lk. This baseline approach is illustrated in Figure 1a. Un-
fortunately this basic approach presents the shortcoming that each mapping θk

is trained on its own dataset Dk, which requires minimizing over separate sets
of parameters Θk. In deep convolutional networks, the parameters Θk include
all convolution’s filters and the weights of all fully connected layers (overall, sev-
eral millions of parameters). Learning such a large amount of parameters from
limited (and generally small) amounts of training data is very challenging.

Joint feature training with selective loss. We propose to tackle this short-
coming by exploiting the hierarchical nature of deep models. On most classical
problems in computer vision, supervised training leads to a rising complexity
and specificity of the features over the layers [24]. In our case, we propose to
train a single deep network on the union of all individual datasets. This allows
the network to decide at every layer which features should be generic and which
ones should be task-specific. This joint training approach is illustrated in Fig-
ure 1b. There is one output unit per label in the union of all label sets Lk: the
output layer thus produces predictions for all considered datasets.

In a traditional multi-class setting, the network output is computed using
a soft-max function to produce a probability vector. However, with K different
datasets, this is counter-productive: it maximizes the target class probability but
minimizes the probability of all other classes, including the ones from different
label sets. This minimization is problematic when there exists a correlation be-
tween labels across different datasets. For example, in the KITTI dataset (see
Fig. 2 where all labels are reported) the class Tree of the dataset from He et al. [9]
is correlated with the class Vegetation from the dataset labeled by Kundu et al
[13]. A plain softmax, optimizing the probability of the Tree class will implicitly
penalize the probability of Vegetation, which is not a desired effect.

We thus define the dataset-wise soft-max (that produces a probabilities vec-
tor per dataset): for an input sample xki , y

k
i from dataset k (denoted x, y for

readability),

f(θ(x,Θ), y, k) =
eθ(x,Θ)y∑

j′∈Lk

eθ(x,Θ)j′
(1)
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During learning, the dataset-wise soft-max is combined with a selective cross-
entropy loss function as follows:

J ′(θ(x,Θ), y, k) = −θ(x,Θ)y + log(
∑
j′∈Lk

eθ(x,Θ)j′ ) (2)

Gradients are null for parameters involving output units corresponding to labels
from datasets l with l 6= k. This is equivalent to having a separate output layer
for each dataset and intermediate layers that are shared across datasets.

Gradient Reversal for Domain Adaptation. So far, our method trains a
single network on several datasets adapting for different label-sets, while ignoring
potential shift in the input domain between datasets. This is not a problem in
the case where the input data is sampled from a single distribution (e.g. for
the different subsets of KITTI). In other cases, a non neglectable shift in input
distribution does exist, for instance between the Stanford and SiftFlow data.

The theory of domain adaptation tells us that a better adaptation between
source and target domains can be achieved when the feature distributions of both
sets are closer to each other [1,16,5]. In the lines of Ganin and Lempitsky [3],
this can be achieved using an additional classifier trained on the same features,
which attempts to predict the domain of the input data. In the case of domain
invariant features, this classifier will achieve high error. More precisely, our full
mapping y = θ(x,Θ) is conceptually split into two parts: the feature extractor
f = θf (x,Θf ), which corresponds to the first convolutional layers and results in
features f , and the task classifier y = θt(f,Θt), which corresponds to the later
fully connected layers including the selective loss function. The domain classifier
is an additional mapping, which maps the features f to an estimated domain
d, given as d = θd(f,Θd) The goal here is to minimize the loss of the domain
classifier θd over its parameters Θd in order to train a meaningful classifier, and
to maximize the same loss over the features f , i.e. over the parameters Θf of the
feature extractor θf , in order to create domain invariant features. In the lines of
[3] this is achieved through a single backpropagation pass over the full network
implementing θf , θt and θd, inversing the gradients between the domain classifier
θd and the feature extractor θf . In practice, the gradients are not only inversed,
they are multiplied with a hyper-parameter −λ, which controls the importance
of the task classifier and the domain one, as in [3].

Our experiments described in Section 4 show, that this domain adaptation
step is also useful and important in our more general setting where results are
requested for different tasks.

4 Experimental Results

Training details For all experiments we used a network architecture illustrated
at the top of Figure 1. This architecture is a modified version of Farabet et al.[2].
The first two convolutional layers are composed by a bank of filters of size 7×7
followed by ReLU [12] units, 2×2 maximum pooling and batch normalization
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He	et	al. Road Building Sky Tree Sidewalk Car Pedestrian Bicyclist Veg. Misc

Kunduet	al.	 Road Building Sky Veg. Sidewalk Car Pedestrian Cyclist Pole Sign Fence

Ladicky et	al. Road Building Sky Tree Sidewalk Car Pedestrian Bike Column Sign Fence Grass

Ros	et	al. Road Building Sky Veg. Sidewalk Car Pedestrian Cyclist Pole Sign Fence

Sengupta et	al. Road Building Sky Veg. Pavement Car Pedestrian Poles Signage Fence

Xu	et	al. Ground Infras. Sky Veg. Movable

Zhang	et	al. Road Building Sky Veg. Sidewalk Car Pedestrian Cyclist Signage Fence

Data Train Val Test Total
He [9] 32 7 12 51

Ku [13] 28 7 15 50
La [14] 24 6 30 60
Ro [18] 80 20 46 146
Se [19] 36 9 25 70
Xu [22] 56 14 37 107
Zh [25] 112 28 112 252
Total 368 91 277 736

Fig. 2. The 68 labels (with the original colors) used by the different authors to annotate
their subset of the KITTI benchmark as well as the number of images (and their
train/validation/split decomposition, see details in Section 4) in each subset.

[10] units. The last convolutional layer is a filter bank followed by a ReLU unit,
a batch normalization unit and dropout [8] with a drop factor of 30%. The first
fully connected linear layer is then followed by a ReLU unit and the last layer
is followed by our dataset-wise softmax unit. To train the network, each RGB
image is transformed into YUV space. A training input example is composed
of a patch xi of size 46x46 cropped from an image, the dataset k from which
the image comes from, and yki , the label of the center pixel of the patch xi.
Stochastic gradient descent with a mini-batch of size 128 was used to update
the parameters. We used early stopping on a validation set in order to stop the
training step before over-fitting. The only data augmentation strategy that we
used is an horizontal flip of patches.

Datasets details The KITTI dataset [4] has been partially labeled by seven
research groups [9,13,14,18,19,22,25] resulting in 736 labeled images (with almost
no images in common) that are split into: a train set, a validation set and a test
set. When the information was given by the author, we used the same train/test
set as them, otherwise we randomly split them into approximately 70% of data
for the training and validation set and 30% data for the test set, ensuring that
any two images from the same video sequence end up in the same split. The labels
used in the different subsets of the KITTI dataset are summarized in Fig. 2. We
sample on average 390.000 patches in each video frame (depending on its size).
This results into a dataset of about 280 million patches suitable to train a deep
learning architecture. As mentioned in Section 2, the different labels provided
by the different teams are not always consistent. As illustrated in Fig. 2, we can
see that the granularity and the semantics of the labels may be very different
from one labeling to another. For example, Ladicky et al. separate the Trees
from the Grass. However, this might correspond to the Vegetation labels in the
subset from Xu et al. but might also correspond (in the case of Grass) to the
labels Ground. He et al. have not used the labels Pole, Sign or Fence used in
most other labelings. These labels are likely to overlap with the label Building
of He et al. but then, this Building class cannot be consistent anymore with the
other labelings that contain the label Building in other subsets. Some groups
have used the label Bike and some others have used the label Cyclist. Those
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7 KITTI Stanford + SiftFlow 7 KITTI + Stanford 7 KITTI + SiftFlow
Methods Global Avg. IoU Global Avg. IoU Global Avg. IoU Global Avg. IoU
No Fusion 77.35 54.51 41.99 72.66 33.24 25.84 77.09 55.64 43.10 76.72 45.18 34.73

jt 80.71 58.62 46.21 73.99 36.52 28.31 79.64 58.97 46.43 79.1 48.08 37.52
jt+gr - - - 73.26 34.07 26.37 79.82 58.82 46.43 79.65 48.08 37.76
jt+de 80.84 58.89 46.32 73.51 37.08 28.71 80.02 59.23 46.78 78.37 45.51 35.84

jt+gr+de - - - 74.17 35.89 27.60 80.46 59.02 46.91 79.65 48.33 37.62

Table 1. Pixel (Global) and class (Avg.) accuracies and Intersection over Union (IoU)
results for the combinations of each pair of datasets: 7 KITTI (7 heterogeneously
labeled subsets of the KITTI dataset), Stanford and Siftflow with different training
strategies: nf=No Fusion (see Fig. 1a); jt= Joint training (see Fig. 1b); de=Dataset
Equilibrium; gr=Gradient Reversal. Best results are highlighted in bold.

two labels are likely to overlap but in one case a team has focused on the entire
entity ”cyclist on a bike” whereas another has only focused on the bike device.

In addition to the KITTI dataset, we use two other scene labeling datasets:
Stanford Background [6] and SIFT Flow [15]. The Stanford Background
dataset contains 715 images of outdoor scenes having 9 classes. Each image has a
resolution of 320×240 pixels. We randomly split the images to keep 80% of them
for training and 20% for testing. From these images, we extract a total of 40
millions patches. The SIFT Flow dataset contains 2688 manually labeled images
of 256×256. The dataset has 2488 training and 200 test images containing 33
classes of objects. From this we extract 160 millions patches.

4.1 Segmentation results with different training strategies

Table 1 and Fig. 3 show the results obtained for all our training strategies. We
report global accuracy, average accuracy and the Intersection over Union(IoU)
measure. Global is the number of correctly classified pixels (True Positive) over
the total number of pixels (also called recall or pixel accuracy), Average is the
average of this recall per class (also called the class accuracy) and IoU is the ratio
TP/(TP + FP + FN) where TP is the number of True Positive and FP ,FN
are respectively the False Positive and False Negative averaged across all classes
All results (global, average and IoU) are averaged over the considered datasets,
taking into account their relative number of patches.

No Fusion. The first learning strategy implemented consists in learning one
network per dataset with the architecture described in Section 4 and illustrated
in figure 1.a. This is our baseline, and the results for this strategy are shown
in the rows described as No Fusion. State of the art performances for the
different KITTI sub datasets are (respectively for global and average accura-
cies): (92.77, 68.65) for He et al. [9]; (97.20, non reported) for Kundu et al. [13];
(82.4, 72.2) for Ladicky et. al. [14]; (51.2, 61.6) for Ros et al. [18]; (90.9, 92.10) for
Sengupta et al. [19]; (non reported, 61.6) for Xu et al. [22]; and (89.3, 65.4) for
Zhang et al. [25]. For Stanford with 8 classes (resp. SIFT Flow), [20] reports a
global accuracy of 82.3 (resp. 80.9), a pixel accuracy of 79.1 (resp. 39.1) and an
IoU of 64.5 (resp. 30.8). These isolated results are better (except for Ros et al.
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Fig. 3. (a): ground truth image from [18]. (b), (c): our pixel classification results
for the corresponding image using the JT+DE strategy (see Table 1) for the label-set
outputs corresponding respectively to [18] and to [13].

in Table 1) than the averages reported in our tables. This can be explained by
the fact that: [13,19,14,18,20] only show results computed from a subset of their
labels (e.g. the label pedestrian is ignored in [19,14,18]); the features used by
all methods on KITTI are richer (e.g. depth and time); and the proposed meth-
ods always combine multiple classifiers tuned on one particular sub-dataset. To
assess our contributions, we believe that No Fusion is the fairest baseline.

Joint Training (JT). The second alternative strategy consists in learning one
single network (illustrated in Figure 1b) with all the datasets using the selective
loss function detailed in Section 3. We can see that this strategy gives better
results than our baseline for all combination of datasets (for example, in Table 1,
learning with all the subsets of KITTI gives, on average for all the 7 subsets, an
improvement of +3.36 on the Global accuracy, of +4.11 on the Average accuracy
and of +4.22 on the IoU). These results confirm that Joint Training allows us to
increase the number of data used to train the network even if the datasets have
different label-sets. For the sake of completeness and to evaluate the contribution
of the selective loss over the mere augmentation of data, we trained our network
with pairs of datasets where one dataset was used to initialize the weights of
the convolutional part of the network and the other (usually the smaller one)
was used to fine-tune the network. The results, not given here for lack of space,
consistently show that this fine-tuning approach increases all the performance
measures but at a lower extent than when using our method.

Gradient Reversal (GR) and Dataset Equilibrium (DE). As explained in
Section 3, our selective loss does not full exploit datasets with different distribu-
tions. Thus we combine it with the gradient reversal techniques. Using gradient
reversal for the KITTI dataset does not make sense since the sub-datasets all
come from the same distribution. Table 1 shows that adding this gradient reversal
does not always improve the performance (e.g., when learning with SIFT Flow
and Stanford, the performance measures are worse than for JT ). Starting from
the intuition that unbalanced datasets can be an issue for GR, we experimented
with weighting the contribution of each patch on the gradient computation de-
pending on the size of the dataset this patch come from. The results show the
importance of this Dataset Equilibrium step, even for the KITTI dataset alone.
Most best results are obtained when the joint training approach is combined
both with Dataset Equilibrium and with Gradient Reversal.
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Fig. 4. Left: the empiri-
cal label correlation matrix.
Each line corresponds to the
average of the predictions of
the network for a given tar-
get class (among the 68 la-
bels given in Fig. 2). Darker
cells indicate higher prob-
abilities. Non-diagonal red
cells correspond to labels
highly correlated with the
target (main diagonal) la-
bel. Below: detailed line of
the correlation matrix cor-
responding to the label Car
from the sub-dataset of He.
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4.2 Detailed analysis on correlations across tasks

We computed a label correlation matrix for all sub-datasets of the KITTI dataset,
shown in Figure 4, by averaging the predictions made by the network for each
target class label (from one of the 7 possible labelings). The (full) diagonal of
the matrix gives the correlation rates between the expected target labels. In each
line, the other non-zero values correspond to the labels correlated with the target
label yki . A diagonal is visible inside each block, including off-diagonal blocks,
in particular for the first 5 labels of each block. This means that, as expected,
these first 5 labels are all correlated across datasets. For instance, the label Road
from He et al. is correlated with the label Road from Kundu et al. with the Road
from Ladicky et al. etc. A second observation is that the correlation matrix is
not symmetric. For example, the classes Building, Poles, Signage and Fence from
Sengupta et al. have (as already discussed in Section 4) a high correlation with
the class Infrastructure from Xu et al., meaning that these classes overlap. On
the contrary, the class Infrastructure from Xu et al. has a very high correlation
with the class Building from Sengupta et al. and a limited one with the classes
Poles, Signage and Fence. This is due to the label distributions: the Building
class from Sengupta et al. is more represented than the three other classes, so
Infrastructure from Xu et al. is more correlated to Building.
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5 Conclusion

In this paper, we considered the problem of multi-task multi-domain learning: we
want to exploit multiple datasets that have related inputs (e.g. images) but that
have been annotated for different tasks. This problem is important in two major
situations: to fuse existing (small) datasets and to reuse existing dataset(s) for
a related custom (new) task. We introduced a new selective loss function for
deep networks that makes it possible to learn jointly across different tasks. We
provide experimental results on semantic segmentation computer vision tasks
with a total of 9 datasets. The results show that our approach allows to jointly
learn from multiple datasets and to outperform per-task learning and classical
fine-tuning based approaches. We also show that the domain adaptation methods
(gradient reversal) can be applied for multi-task multi-domain learning but needs
to be used with care and requires to balance the different datasets. An important
perspective of this work is to design a strategy to practically take into account
the correlations between labels highlighted by our method.
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