In silico experimental evolution provides independent and challenging benchmarks for comparative genomics
Priscila Biller, Eric Tannier, Guillaume Beslon, Carole Knibbe

To cite this version:
Priscila Biller, Eric Tannier, Guillaume Beslon, Carole Knibbe. In silico experimental evolution provides independent and challenging benchmarks for comparative genomics. Journées ouvertes Biologie Informatique Mathématiques, Jun 2016, Lyon, France. pp.79-82, 2016. <hal-01375657>
In silico experimental evolution provides independent and challenging benchmarks for comparative genomics

Priscila Biller¹, Éric Tannier²,³, Guillaume Beslon³,⁴, Carole Knibbe*³,⁵

¹ University of Campinas [Campinas] (UNICAMP) – São Paulo, Brésil
² Laboratoire de Biométrie et Biologie Évolutive (LBBE) – CNRS : UMR5558, Université Claude Bernard - Lyon I, INRIA – 43 boulevard du 11 Novembre 1918, F-69 622 VILLEURBANNE Cedex, France
⁴ Laboratoire d’Informatique en Image et Systèmes d’Information (LIRIS) – Institut National des Sciences Appliquées [INSA], CNRS : UMR5205 – France
⁵ Laboratoire d’Informatique en Image et Systèmes d’Information (LIRIS) – Université Claude Bernard - Lyon I (UCBL), CNRS : UMR5205 – France

The following extended abstract is a highlight of [7].

A common concern in all evolutionary studies is the validity of the methods and results. Results relate to events that were supposed to occur in a deep past (up to 4 billion years) and they have no other trace today than the present molecules used by comparative methods.

As we cannot travel back in time to verify the results, there are several ways to assess the validity of molecular evolution studies: theoretical considerations about the models and methods (realism, consistency, computational complexity, robustness, model testing, ability to generate a statistical support or a variety of the solutions) [23], coherence with fossil records [25], or ancient DNA [11], or empirical tests when the solution is known, on experimental evolution [17] or simulations. Each method has its caveats. Models for inference have to adopt a compromise between realism, consistency and complexity. Ancient DNA is rarely available, usually not in an assembled shape. Fossils are also rare and provide a biased sampling of ancient diversity. Experimental evolution is expensive, time-consuming and limited in the number of generations it can provide.

Simulation is the most popular validation tool. Genome evolution can be simulated in silico for a much higher number of generations than in experimental evolution, much faster and at a lower cost. All the history can be recorded in details, and compared with the inference results. A problem with simulations, however, is that they necessarily oversimplify genome evolution processes. Moreover, very often, even if they are designed to be used by another team for inference [4, 15, 14, 10, 22], they encode the same simplifications as the inference methods. For example, only fixed mutations are generated because only these are visible by inference methods; selection is tuned to fit what is visible by the inference methods; genes are often evolutionary units in simulations because they are the units taken for inference. Everything is designed thinking of the possibilities of the inference methods.

This mode of ad-hoc simulation has been widely applied to test estimators of rearrangement distances, and in particular inversion distances [9, 12, 5, 21, 6]. The problem consists in comparing two genomes and estimating the number of inversions (a rearrangement that reverses the reading direction of a genomic segment) that have occurred in the evolutionary lineages separating them. To construct a solution, conserved genes or synteny blocks are detected in the two genomes, and a number of inversions explaining the differences in gene orders is estimated. A lot of work has
Priscila Biller et al.

consisted in finding shortest scenarios [13]. Statistical estimations need a model. The standard and most used model depicts genomes as permutations of genes and assumes that an inversion reverses a segment of the permutation, taken uniformly at random over all segments. When simulators are designed to validate the estimators, they also use permutations as models of gene orders, and inversions on segments of this permutations, chosen uniformly at random. Estimators show good performances on such simulations, but transforming a genome into a permutation of genes is such a simplification from both parts that it means nothing about any ability to estimate a rearrangement distance in biological data [8].

We propose to use simulations that were not designed for validation purposes. It is the case, in artificial life, of in silico experimental evolution [18], and in particular of the Aevol platform [19, 3]. Aevol contains, among many other features, all what is needed to test rearrangement inference methods. The genomes have gene sequences and non coding sequences organized in a chromosome, and evolve with inversions, in addition to substitutions, indels, duplications, losses, translocations. Rearrangements are chosen with a uniform random model on the genome, which should fit the goals of the statistical estimators, but is different from a uniform random model on permutations [8].

We tested 10 different estimators of inversion distance found in the literature, one shortest path estimator and 9 statistical estimators on 18 different datasets generated by Aevol. The difference with ad-hoc simulations is striking. Whereas good results were largely reported for ad-hoc simulations, most estimators completely fail to give a close estimate in a vast majority of conditions. As soon as the true number of events exceeds about n/3 (where n is the number of genes), most estimators significantly underestimate the true value. This highly contrasts with the claimed performances of these estimators. For example the shortest path estimator is supposed to have great chance of giving the right value up to n/2 [16], while all statistical estimators have been tested on simulations and reported to give the right value far above n [9, 20, 12, 5, 21, 2, 6, 8].

We argue, based on the differences in performances of some estimators, that our datasets are not artefactually difficult (nor purposely made difficult), and that the poor results encountered here are susceptible to reflect real results on biological data. Indeed part of the failure of the estimators can be explained by this ignorance of intergene sizes, because the only one handling intergene sizes performs significantly better. We investigated this further in [8].

Part of the discrepancy between the true value and the estimated value still remains unexplained. The complexity of the real scenarios probably blurs the signal that estimators are able to capture. But again, this complexity is not a specificity of Aevol, and is probably encountered in biological data. So by this simple experiment we can worry that none of the existing estimators of rearrangement distance would be able to produce a plausible value on real genomes.

We tested only the estimation of the number of inversions. But only with the runs we have already computed, a lot more can be done: estimation of the proportion of translocations (transposition of a block of DNA at another locus) as in [1], or estimating both inversions and duplications as in [24]. For the moment the sequences are made of 0s and 1s, which is not a problem to study gene order, but can be disturbing for sequence analyses. This way of coding sequences is on another hand a good sign that Aevol was not developed for benchmarking purposes. In a close future, nucleotidic and proteic sequences with the biological alphabet will be added to extend the benchmarking possibilities of the model.

Also we worked with only one lineage, and compare only two genomes here (final versus ancestral), because Aevol currently evolves only one population at a time. A useful addition will be speciation processes, in order to be able to compare several genomes.

As a final note, we would like to point out the singular kind of interdisciplinarity experimented in this study. Obviously communities from comparative genomics and artificial life have to work together in order to make such results possible. But, on the opposite, these results are only possible because both communities first worked in relative isolation. If they had defined their
working plans together, spoke to each other too often or influenced each other’s way of thinking evolutionary biology, the work would have lost some value. Indeed, what makes the difficulty here for comparative genomicists is that they have to infer histories on data for which they have no stranglehold on the processes, just as for biological data, but on which they also have the correct answer, just not as for biological data.

References


Mots clefs : simulation, genome evolution, inversion distance, intrachromosomal rearrangements, benchmark, individual based modeling, comparative genomics