Number of critical points of a Gaussian random field: Condition for a finite variance

Abstract : We study the number of points where the gradient of a stationary Gaussian random field restricted to a compact set in $\mathbb{R}^d$ takes a fixed value. We extend to higher dimensions the Geman condition, a sufficient condition on the covariance function under which the variance of this random variable is finite.
Type de document :
Article dans une revue
Statistics and Probability Letters, Elsevier, 2016, 118, pp.94-99. 〈10.1016/j.spl.2016.06.018〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01374125
Contributeur : Julie Fournier <>
Soumis le : jeudi 29 septembre 2016 - 17:39:15
Dernière modification le : mardi 10 octobre 2017 - 11:22:05

Identifiants

Collections

Relations

Citation

Anne Estrade, Julie Fournier. Number of critical points of a Gaussian random field: Condition for a finite variance. Statistics and Probability Letters, Elsevier, 2016, 118, pp.94-99. 〈10.1016/j.spl.2016.06.018〉. 〈hal-01374125〉

Partager

Métriques

Consultations de la notice

75