Color Image Steganalysis Based On Steerable Gaussian Filters Bank
Hasan Abdulrahman, Marc Chaumont, Philippe Montesinos, Baptiste Magnier

To cite this version:
Hasan Abdulrahman, Marc Chaumont, Philippe Montesinos, Baptiste Magnier. Color Image Steganalysis Based On Steerable Gaussian Filters Bank. IH

HAL Id: hal-01374101
https://hal.archives-ouvertes.fr/hal-01374101
Submitted on 29 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Color Image Steganalysis Based on Steerable Gaussian Filters Bank

Hasan ABDULRAHMAN
Montpellier University
Ecole des Mines d’Alès, LGI2P
30035 Nîmes Cedex 1, France.
Hasan.abdulrahman@mines-ales.fr

Marc CHAUMONT
Nîmes University, Montpellier University
Place Gabriel Péri, 30000 Nîmes
UMR5506-LIRMM, 34095 Montpellier Cedex 5, France.
Marc.Chaumont@lirmm.fr

Philippe MONTESINOS
Ecole des Mines d’Alès, LGI2P
30035 Nîmes Cedex 1, France.
Philippe.montesinos@mines-ales.fr

Baptiste MAGNIER
Ecole des Mines d’Alès, LGI2P
30035 Nîmes Cedex 1, France.
Baptiste.magnier@mines-ales.fr

ABSTRACT
This article deals with color images steganalysis based on machine learning. The proposed approach enriches the features from the Color Rich Model by adding new features obtained by applying steerable Gaussian filters and then computing the co-occurrence of pixel pairs. Adding these new features to those obtained from Color-Rich Models allows us to increase the detectability of hidden messages in color images. The Gaussian filters are angled in different directions to precisely compute the tangent of the gradient vector. Then, the gradient magnitude and the derivative of this tangent direction are estimated. This refined method of estimation enables us to unearth the minor changes that have occurred in the image when a message is embedded. The efficiency of the proposed framework is demonstrated on three stenographic algorithms designed to hide messages in images: S-UNIWARD, WOW, and Synch-HILL. Each algorithm is tested using different payload sizes. The proposed approach is compared to three color image steganalysis methods based on computation features and Ensemble Classifier classification: the Spatial Color Rich Model, the CFA-aware Rich Model and the RGB Geometric Color Rich Model.

Keywords
Steganalysis; steganography; steerable Gaussian filters.

1. INTRODUCTION
Steganography is the art and science of hiding messages inside a digital medium in such a way that only the sender and the receiver, can view the hidden message. The goal of steganalysis is to detect the presence of hidden messages in digital media. The practical performance (i.e. security) of different steganographic techniques is rated by the detectability (for example the average testing error of the steganalyser) for a given relative payload size; additionally the computational complexity could be taken into account [17].

In 2015, color steganalysis has been studied by integrating the modern adaptive embedding method in an experimental evaluation. Previous steganalysis methods did not use recent grey-level embedding algorithms [7], [25], [15], [19] or did not use a machine learning approach with Rich-Model features [11], [24].

Three color image steganalysis methods, based on a machine learning approach fed with rich model features are now well established. For these three methods, the machine learning algorithm is the Ensemble Classifier [16], and the rich features are: the Spatial Color Rich Model abbreviated to CRM [10], the CFA-aware Rich Model abbreviated to CFARM [9], and the RGB Geometric Color Rich Model abbreviated to GCRM (RGB for the Red, Green and Blue channels) [2]. Note that among these three features, the GCRM which is an extension of the CCRM (Correlation Color Rich Model [1]) seems to be the equivalent or better than the CRM and CFARM when recent adaptive grey-level embedding algorithms are used for embedding independently in each color channel. Additionally, note that a recent independent study has shown that CCRM was the most reliable method in every case, even when the algorithm was embedding adaptively with a synchronization of the embedding between the color channels [23].

At the beginning of 2016, GCRM is the natural choice for computing features that will be used for a color steganalysis (machine learning approach) for modern color embedding algorithms.

The rest of this paper is organized as follows. Section 2 describes the latest recent methods in color steganalysis by recalling the CRM [10], the CFARM [9] and the GCRM [2]. Then, we present a detailed description of our proposed method in Section 3; the steerable Gaussian filters computation is demonstrated and the feature set is presented. Experimental results and comparisons are given in Section 4. In this section, we also present the databases and show the performance of the proposed method. Finally, Section 5 gives some conclusions and perspectives.

2. COLOR STEGANALYSIS METHODS
Over the last ten years, most of the steganalysis methods are dealing with grayscale images [14], there exist very few steganalysis methods dealing with color images. The most recent methods
in color image steganalysis are explained in detail in the three following subsections.

2.1 Color rich model method

Goljan et al. [10] have introduced very efficient color image features, the CRM, which is an extension of the Spatial Rich Model [6], produced from two different sets of features. In order to compute these features, firstly they extracted the noise residual from each color channel separately: the red (R), green (G), and blue (B) channels. On each channel they applied the same computation, as a grayscale image \( I \). Let us note \( I(x, y) \) a pixel value of an 8-bit grayscale cover image at coordinates \((x, y)\). Then, the noise residual is computed using the following formula:

\[
R(x, y) = I(x, y) - c \cdot I(x, y) - N(x, y),
\]

where: \( c \in \mathbb{N} \), is the residual order, \( N(x, y) \) is a local neighborhood of pixel \( I(x, y) \) and \( I(x, y)(\cdot) \) represents a predictor of \( c \cdot I(x, y) \), with \( I(x, y) \not\in N(x, y) \) and \( I(x, y) \in \{0, ..., 255\} \).

All of the submodels \( R(x, y) \in \mathbb{R}^{1 \times n_2} \) are formed from noise residual images using a size of \( m \times m \), with \( n_1, n_2 \) and \( m \in \mathbb{N}^* \), by applying a rounding and a truncation: 

\[
\text{round} \left( \frac{R(x, y)}{q} \right),
\]

where,

- \( R(x, y) = \begin{cases} \text{round}(u) & \text{for } u \in [-T, T], u \in \mathbb{R} \\ \text{ trunc}(u) & \text{for } T \cdot \text{sign}(u) \text{ otherwise.} \end{cases} \)
- \( q \) represents the quantization step,
- \( \text{round} \) is a function for rounding to an integer value.

Moreover, the color noise residuals are computed as in Eq.1 on the demosaiced image for the CRM features. Secondly, spatial co-occurrence are computed and the inter-channel co-occurrence matrices, as a feature set.

On the one hand, the Spatial Rich Model (SRMQ1) [6] with a fixed quantization \( q = 1 \) and a truncation \( T = 2 \) yields a dimensionality of 12,753 features. These features are computed from each \( R, G \) and \( B \) color channel separately. On the other hand, from the same noise residuals (i.e. SRMQ1), a collection of 3D color co-occurrence matrices are built (CRMQ1), taking three color values at the same position and computing co-occurrence matrices across the three channels. With a fixed truncation \( T = 3 \) and a quantization \( q = 1 \), CRMQ1 produces 5,404 features. Finally, for this method, the two sets of features are gathered in a one dimensional vector to produce 18,157 features as a final set of features.

2.2 CFA-aware features method

Goljan et al. introduced in [9] the CFA-aware Color Rich Model, noted CFARM, for color image steganalysis. The features are made up of two parts, the first one is the CRM explained in the previous Section, with \( T \in \{2, 3\} \). The second part is the CFA-aware feature, consisting of three combinations: \( RB/GG \) split, \( R/B/GG \) split and \( N/O/INI \) split. Then, in order to capture the inter-channel and intra-channel dependencies, four 3D co-occurrence matrices are built to extract features from and between the color channels, according to the structure of the Bayer CFA. In the CFARM approach [9], the authors assume that the upper left pixel corresponds to a non-interpolated pixel from the blue channel of the Bayer CFA.

Four index sets are introduced, corresponding to the geometric structure of the CFA map:

\[
\mathcal{I}_B = \{(x, y)|x \text{ even}, y \text{ even}\}, \mathcal{I}_R = \{(x, y)|x \text{ odd}, y \text{ odd}\}, \mathcal{I}_G = \{(x, y)|x \text{ odd}, y \text{ even}\}, \mathcal{I}_G2 = \{(x, y)|x \text{ even}, y \text{ odd}\}.
\]

Three combinations of features are generated to form the total number of features with the CRM set:

1. \( RB/GG \) split produces 4,146 features,
2. \( R/B/GG \) split produces 10,323 features,
3. \( N/O/INI \) split produces 5,514 features.

Finally, all four sets of features are gathered in a one dimensional vector, which are ready to enter to the classifier.

2.3 RGB channel geometric method

Abdulrahman et al. [2] proposed the RGB Geometric Color Rich Model (GCRM). The authors show that if one channel has been affected by a steganography method, the inter channel correlation will measure the local modifications. On this basis, they proposed two types of features computed between color image channels. The first type of features reflects local Euclidean transformations through the computation of the cosine of the angle between channel gradients called \( \nabla R, \nabla G, \nabla B \) (for red, green, and blue). For example, the cosine of the rotation angle, between the red and the green channel gradients:

\[
C_{RG} = \frac{\nabla R \cdot \nabla G}{|\nabla R||\nabla G|}.
\]

The second gives complementary information on the angle through the computation of the sine of the angle between channel gradients. Indeed, computing the horizontal and vertical image derivatives of all channels allows us to increase the steganalysis by computing local deformations between channels. For the red and green channels, let us note these derivatives \( R_x, G_x \) for the horizontal and \( R_y, G_y \) for the vertical ones. Thus, for the red and green channels, the sine is given by the following formula:

\[
S_{RG} = \frac{R_x \cdot G_y - R_y \cdot G_x}{|\nabla R||\nabla G|}.
\]

At the end, they obtained 4 geometrical measures: \( C_{RG} \), cosine between \( R \) and \( G \), \( C_{BG} \), cosine between \( R \) and \( B \), \( S_{RB} \), sine between \( R \) and \( B \), and \( S_{RG} \) between \( R \) and \( B \). Those geometrical measurements allow to generate 6,000 features, based on local Euclidean and mirror transformations, when using co-occurrence matrices with a fixed truncation \( T=1 \) and different values for the quantization \( q \in \{0.1, 0.3, 0.5, 0.7, 0.9, 1\} \). Concatenate these features with those from CRM [10] increases the detectability of hidden messages in color images [2], [23].

3. THE PROPOSED METHOD

In order to be less visible, most of the steganographic methods modify the pixel values in the texture/edge areas [22], [13], [18]... Our proposition is to enrich the CRM method by introducing new sets of features obtained by applying steerable Gaussian filters and then computing the co-occurrence of pixel pairs in eight different directions.

The proposed features are composed of two distinctive sets. The first set, produced by [10], is made of 18,157 features. The second is made of 4,406 features. In the first step, we computed a tangent vector to contour for each pixel and for each channel. This tangent vector corresponds to the edge direction and is orthogonal to the gradient vector. Then, in the second step, the co-occurrence matrices are computed, firstly, on the three gradient magnitude images and afterwards, on the three derivative images related to the tangent vectors.

3.1 Steerable Gaussian filters

In the domain of image analysis, the estimation of a precise gradient is crucial, and is often based on the computation of local derivatives.
When using filters with image derivatives in only two directions, the $x$ and $y$ (i.e. $0^\circ$ and $90^\circ$), the gradient estimation is not accurate enough to describe the geometrical structures in the image. Using an orientation filter bank can improve the quality of the gradient estimation; indeed, its orientation and its magnitude are far more accurate.

Due to multiple orientations, a filter bank allows us to better detect image features such as edges. One of the most popular filter banks is the steerable filters. As a solution to the above stated problem, Freeman and Adelson [5] introduced an elegant way for steerable filters that can be directed at specific angles using a linear combination of isotropic filters like Gaussian derivatives. Let us note the basic derivatives of Gaussian filters $\partial G_\sigma / \partial x$ and $\partial G_\sigma / \partial y$ along the $x$-axis and $y$-axis respectively, for example:

$$
\begin{align*}
\frac{\partial G_\sigma (x, y)}{\partial x} &= -\frac{x}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}, \\
\frac{\partial G_\sigma (x, y)}{\partial y} &= -\frac{y}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}},
\end{align*}
$$

(5)

with $\sigma$ the standard-deviation of the Gaussian filter.

Freeman and Adelson have shown that the first order directional Gaussian derivative $G_{\sigma, \theta}$ at an angle $\theta$ can be generated by a linear combination of a rotation of the basic derivatives of isotropic Gaussian filters (illustrated in Fig. 1 (a) and (b)):

$$
G_{\sigma, \theta}(x, y, \sigma) = \cos(\theta) \frac{\partial G_\sigma (x, y)}{\partial x} + \sin(\theta) \frac{\partial G_\sigma (x, y)}{\partial y}.
$$

(6)

The image derivative $I_{\sigma, \theta}$ is obtained by convolving the original grayscale image $I$ with the oriented Gaussian kernels $G_{\sigma, \theta}$:

$$
I_{\sigma, \theta}(x, y) = (I * G_{\sigma, \theta})(x, y).
$$

(7)

Finally, the gradient magnitude $\|\nabla I(x, y)\|$ is calculated as the maximum absolute value response to the oriented operator $G_{\sigma, \theta}$:

$$
\|\nabla I(x, y)\| = \max_{\theta \in [0, 180]} (|I_{\sigma, \theta}(x, y)|),
$$

(8)

$$
\theta_m = \arg\max_{\theta \in [0, 180]} (|I_{\sigma, \theta}(x, y)|).
$$

(9)

Note that $\theta_m$ represents the kernel angle and it differs from the gradient angle which is equal to $(\theta_m + 90^\circ) \ [180^\circ]$.

In this work, the Gaussian filters are angled in different directions to compute the more precise gradient magnitude $\|\nabla I\|$ and its associated kernel angle $\theta_m$. Thus, $\|\nabla I\|$ corresponds to the absolute value of the image derivative for the kernel angled at $\theta_m$, as illustrated in Fig. 1(c). Note that $\|\nabla I\|$ and $\theta_m$ are different for each pixel of $I$. These techniques are applied to the three color channels $R, G$ and $B$ to obtain three gradient magnitude images $\|\nabla R\|, \|\nabla G\|$ and $\|\nabla B\|$ (see Fig. 1(b)).

As pointed out previously, the steganographic methods essentially modifies the pixel values in the textures and edge areas. For the edge areas, the embedding modifications have to be detected along the “isophote” lines i.e. along the curves of constant intensity when considering an image as a surface. This led us to consider the orthogonal vector to the gradient named the tangent vector, instead of the gradient; this means that the derivative along the edge must be computed. This derivative corresponds to the result of the convolution of the image with the steerable kernel angled at $(\theta_m + 90^\circ) \ [180^\circ]$ and is orthogonal to the kernel used for the gradient estimation (as illustrated in Fig. 2). The derivative image is named $I_{\sigma, (\theta_m + 90^\circ) \ [180^\circ]}$.

For a color image, each channel is considered separately. The tangent derivatives $^1$, as illustrated in Fig. 1 (b), are respectively computed for each pixel at position $(x, y)$ of each channel and named: $R_{\sigma, (\theta_m + 90^\circ) \ [180^\circ]}(x, y)$ for the red, $G_{\sigma, (\theta_m + 90^\circ) \ [180^\circ]}(x, y)$ for the green, and $B_{\sigma, (\theta_m + 90^\circ) \ [180^\circ]}(x, y)$ for the blue channel. Fig. 1 (b) shows an example of steerable Gaussian filters used to compute these new features. In our method, the Gaussian filters are angled in different directions to compute a precise gradient and a precise derivative along isophote lines. In order to detect the slight changes in the images, our experiments (see Section 4.2) leads to a $\sigma = 0.7$, with a filter support for the size $3 \times 3$ pixels, a rotation step for the filters bank $\Delta \theta = 10^\circ$, and a rotation range such as $\theta \in \{0^\circ, ..., 180^\circ - \Delta \theta\}$ (it leads to 18 filter orientations as represented in Fig. 1 (a)).

**3.2 Complete feature set**

As explained in Fig. 1 (b), Eq.8 and detailed above, the co-occurrence matrices are completed from the three gradient magnitude images

\[\text{Figure 1: Steerable filters are used to compute a gradient and to estimate precise edges directions.}\]

\[\text{Figure 2: Positions of the steerable filters at the level of the edges to build the gradient image $\|\nabla I\|$ and image derivative $I_{\sigma, (\theta_m + 90^\circ) \ [180^\circ]}(x, y)$.}\]
and also the three derivative images using their edge directions:

\[
\begin{align*}
\|\nabla R\|, & \quad \|\nabla G\|, & \quad \|\nabla B\|, \\
R_{r,(\theta_m+90)[180^\circ]}, & \quad G_{r,(\theta_m+90)[180^\circ]}, & \quad B_{r,(\theta_m+90)[180^\circ]},
\end{align*}
\]

Before we make the co-occurrence computation, different truncations are applied. For the gradient magnitude images, the truncation \( T \in \{2, 3\} \), and for the derivative images, \( T \in \{1, 2, 3\} \). Thus this leads to 2 triplets of quantized-truncated gradient magnitude images, and 3 triplets of quantized-truncated derivative images. Then, the pairs co-occurrence matrices are computed, like the Subtractive Pixel Adjacency Model (SPAM) [21], with eight directions for the scan images. These direction feature subsets are as follows: \( F^K_r, F^K_d, F^K_m \), \( F^K_d, F^K_m \), \( F^K_m \), and \( F^K_m \). 2808 features are created by the gradient magnitude and 1598 by the derivative images. All features are gathered in to a one dimension vector to erect a dimensionality of 4406 features. As a final set for the proposed method, 22,563 features are obtained, by concatenating these features with those obtained from CRM [10].

4. EXPERIMENTAL RESULTS

All the experiments were carried out on 10,000 color images of size \( 512 \times 512 \). All detectors were trained as binary classifiers implemented using the ensemble classifier\(^2\) [16] with default settings.

4.1 Setup database

In order to build our image database, the full-resolution raw images were collected from two subsets which are the most standard (i.e. 3500 full-resolution Nikon digital camera raw color images from the Dresden Image Database [8] and 1000 Canon digital camera raw color images from the Break Our Steganographic System (BOSSBase1\(^7\)) [3]). Afterwards, the RGB color images are obtained by using the Patterned Pixel Grouping (PPM) demosaicking algorithm named “dcraw\(^4\). Finally, from each color RGB image, we randomly extracted five cropped images measuring \( 512 \times 512 \). Finally, the cropped images having the higher variation correspond to those exploited in the used steganography algorithms. As a result, the final number of RGB cropped images is 10,000. Moreover, in this last process, the cropped images are extracted carefully so that the CFA map layout always stays the same, as illustrated in Fig. 3.

Three spatial domain steganography algorithms are used to produce stego images:

- Spatial UNIversal Wavelet Relative Distortion (S-UNIWARD)\(^5\) [13],
- Wavelet Obtained Weights (WOW)\(^6\) [12],
- Synchronizing Selection Channel (Synch-HILL)\(^7\) [4].

As explained in [20], the steganography methods have an important impact on the performance of the general methodology. These algorithms are used to embed messages into color images by decomposing the \( R, G \) and \( B \) channels like three gray-scale images.

\(^2\)The Ensemble classifier is available at http://dde.binghamton.edu/download/ensemble.

\(^3\)BOSSBase can be accessed at http://www.agents.cz/boss/BOSSFinal.

\(^4\)dcraw code is available at http://www.cybercom.net/~defin/dcraw.

\(^5\)The Matlab version of S-UNIWARD is available at http://dde.binghamton.edu/download/stego_algorithms.

\(^6\)The Matlab version of WOW is available at http://dde.binghamton.edu/download/stego_algorithms.

\(^7\)The Matlab version of Synch-HILL is available at http://dde.binghamton.edu/download/stego_algorithms.

and embedding the same proportion payload into each channel. Finally, 10,000 color images were used to test each of the seven different payload sizes: \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5\} Bit Per Channel (BPC).

4.2 Performance of the proposed method

To evaluate the performance of the proposed method, all steganalyzers were implemented as binary classifiers using the ensemble classifier [16]. In this paper, the detection accuracy is measured by using the average of testing errors under equal priors: \( P_E = \min_{F_A} \frac{1}{2} \left[ P_{FA} + P_{MD} \left( F_{FA} \right) \right] \), where, \( F_{FA} \) represents the false alarm probability and \( P_{MD} \) the missed detection probability. 5000 cover images are randomly chosen from the database for the training sets and 5000 stego images for the testing sets. The ensemble classifiers apply a vote to estimate the error of detection. This process is repeated 10 times to obtain \( P_E \) which quantify the detectability and are collected for each method and each payload in order to evaluate the steganalysis method.

As explained in Section 3.1, the experiments were run in such a way as to find the best filter bank parameters: the scale of the steerable filters \( \sigma \) (Eq. 6) and the rotation step \( \Delta \theta \) with angles evenly drawn from 0° to 180°. These experiments have been led using S-UNIWARD with a payload size of 0.3 bpc with the use of the 22,563 features obtained by concatenating the CRM with the gradient features. Table 1 shows that \( \sigma = 0.7 \) with \( \Delta \theta = 10^\circ \) corresponds to the optimal parameters for the steerable filters operation in this steganalysis work because, compared to the other parameters, they bring the best detection rate.

Table 1: The probability of error \( P_E \) to determine the efficient standard deviation (\( \sigma \)) and angle step (\( \Delta \theta \)) employed for steerable Gaussian filters using S-UNIWARD steganography method payload 0.3 bpc.

<table>
<thead>
<tr>
<th>( \Delta \theta )</th>
<th>( \sigma )</th>
<th>Mask size</th>
<th>( P_E )</th>
<th>Detection rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1559 ± 0.0022</td>
<td>84.41 %</td>
</tr>
<tr>
<td>10°</td>
<td>1</td>
<td>5×5</td>
<td>0.1896 ± 0.0031</td>
<td>81.04 %</td>
</tr>
<tr>
<td>10°</td>
<td>2</td>
<td>10×10</td>
<td>0.2028 ± 0.0037</td>
<td>79.72 %</td>
</tr>
<tr>
<td>10°</td>
<td>3</td>
<td>15×15</td>
<td>0.2539 ± 0.0036</td>
<td>76.41 %</td>
</tr>
<tr>
<td>5°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1768 ± 0.0025</td>
<td>82.32 %</td>
</tr>
<tr>
<td>10°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1559 ± 0.0022</td>
<td>84.41 %</td>
</tr>
<tr>
<td>15°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1602 ± 0.0026</td>
<td>83.98 %</td>
</tr>
<tr>
<td>20°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1653 ± 0.0019</td>
<td>83.47 %</td>
</tr>
<tr>
<td>30°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1854 ± 0.0027</td>
<td>81.46 %</td>
</tr>
<tr>
<td>45°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1893 ± 0.0012</td>
<td>81.07 %</td>
</tr>
<tr>
<td>90°</td>
<td>0.7</td>
<td>3×3</td>
<td>0.1996 ± 0.0031</td>
<td>80.04 %</td>
</tr>
</tbody>
</table>
The experimental results are given in Table 2. Three algorithms have been tested: S-UNIWARD, WOW and Synch-HILL with different relative payloads sizes: {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Furthermore, the proposed method is tested against three other approaches: CRM [10], CFARM [9] and GCRM [2].

Table 2 demonstrates that the proposed method registered the highest performance. As an example, detection rates for, at a time, S-UNIWARD, WOW and Synch-HILL for a payload of 0.5 bpc are 88.83%, 87.94% and 87.75% respectively using the proposed approach, to the contrary of the other three compared methods. The CRM method [10] achieved 86.14%, 85.27% and 85.25% respectively using the proposed approach, to the contrary of the other three compared methods. The CRM method [10] achieved 86.14%, 85.27% and 85.25% respectively using the proposed approach, to the contrary of the other three compared methods. The CRM method [10] achieved 86.14%, 85.27% and 85.25% respectively using the proposed approach, to the contrary of the other three compared methods. The CRM method [10] achieved 86.14%, 85.27% and 85.25% respectively using the proposed approach, to the contrary of the other three compared methods. The CRM method [10] achieved 86.14%, 85.27% and 85.25% respectively using the proposed approach, to the contrary of the other three compared methods.

In order to increase the detectability rate of the GCRM method [2], another experiment has been performed by concatenating the GCRM [2] features with the new proposed features in one dimensional vector to produce 28,563 features. These new dimensional vectors achieved 85.03% for S-UNIWARD, and 85.07% for Synch-HILL steganography methods payload 0.3 bpc as a detection rate. It obtains a difference of 1.26%, 1.14% respectively more than GCRM [2] alone and this result is close (slightly better) to our proposed approach results (less than 1%).

5. CONCLUSIONS

This article presents new features for color image steganalysis. Applying a Gaussian filters bank, to an order of 1, in different directions, enabled us to detect the slight changes in the images which occurred as a result of embedding the message.

The proposed approach treats the three color channels separately. Firstly, as steerable filters estimate precisely the edge directions in images, features correspond to the three image derivatives along the edges and the three gradient magnitude images. Secondly, features are extracted from these six images using the co-occurrence matrices of pixel pairs. Finally, our proposed features are integrated with the CRM features [10] to get the new approach. To evaluate the per-
formance of the new approach, the embedding algorithms used are S-UNIWARD, WOW, and Synch-HILL at different payloads.

Experimental results show that fusing proposed features with those obtained by CRM allows in the majority of cases, the detectability of hidden messages in the color images. Additionally, the new approach achieved higher detection rates than the three recent steganalysis approaches: CRM, CFARM, and GCRM. This observed detection improvement is due to a fine estimation of the tangent vector which is used for the estimation of the image derivatives in the edges directions. The proposed features allow the Ensemble Classifier to reveal the hidden message between the stego and cover images.

Eventually, future works consist of better understanding WOW-CMD-C or HILL-CMD-C [23] embedding algorithms, which synchronize the color selection channel during the embedding process.

6. REFERENCES


