Ultrafast imaging in biomedical ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.61, issue.1, pp.102-119, 2014. ,
DOI : 10.1109/TUFFC.2014.2882
Understanding contrast improvements from capon beamforming, 2014 IEEE International Ultrasonics Symposium, pp.1694-1697, 2014. ,
DOI : 10.1109/ULTSYM.2014.0420
The homogeneity map method for speckle reduction in diagnostic ultrasound images, Measurement, vol.68, pp.100-110, 2015. ,
DOI : 10.1016/j.measurement.2015.02.047
Despeckling of medical ultrasound images, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.53, issue.1, pp.64-78, 2006. ,
DOI : 10.1109/TUFFC.2006.1588392
Ultrasound image segmentation: a survey, IEEE Transactions on Medical Imaging, vol.25, issue.8, pp.987-1010, 2006. ,
DOI : 10.1109/TMI.2006.877092
URL : https://hal.archives-ouvertes.fr/hal-00338658
Segmentation of Skin Lesions in 2-D and 3-D Ultrasound Images Using a Spatially Coherent Generalized Rayleigh Mixture Model, IEEE Transactions on Medical Imaging, vol.31, issue.8, pp.1509-1520, 2012. ,
DOI : 10.1109/TMI.2012.2190617
A restoration framework for ultrasonic tissue characterization, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.58, issue.11, pp.2344-2360, 2011. ,
DOI : 10.1109/TUFFC.2011.2092
URL : https://hal.archives-ouvertes.fr/hal-00688924
Diagnostic Ultrasound Imaging: Inside Out, 2004. ,
Wavelet restoration of medical pulse-echo ultrasound images in an EM framework, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, issue.3, pp.550-568, 2007. ,
DOI : 10.1109/TUFFC.2007.278
Deconvolution of in vivo ultrasound B-mode images, Ultrason. Imag, vol.15, issue.2, pp.122-133, 1993. ,
Restoration of medical ultrasound images using two-dimensional homomorphic deconvolution, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.42, issue.4, pp.543-554, 1995. ,
DOI : 10.1109/58.393097
Blind Deconvolution of Medical Ultrasound Images: A Parametric Inverse Filtering Approach, IEEE Transactions on Image Processing, vol.16, issue.12, pp.3005-3019, 2007. ,
DOI : 10.1109/TIP.2007.910179
A novel approach to the 2-D blind deconvolution problem in medical ultrasound, IEEE Transactions on Medical Imaging, vol.24, issue.1, pp.86-104, 2005. ,
DOI : 10.1109/TMI.2004.838326
Restoring Images Degraded by Spatially Variant Blur, SIAM Journal on Scientific Computing, vol.19, issue.4, pp.1063-1082, 1998. ,
DOI : 10.1137/S106482759528507X
Two-dimensional blind Bayesian deconvolution of medical ultrasound images, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.10, pp.2140-2153, 2008. ,
DOI : 10.1109/TUFFC.914
A blind deconvolution approach to ultrasound imaging, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.59, issue.2, pp.271-280, 2012. ,
Variational Pairing of Image Segmentation and Blind Restoration, Computer Vision (Lecture Notes in Computer Science), pp.166-177, 2004. ,
DOI : 10.1007/978-3-540-24671-8_13
Mumford and Shah Model and its Applications to Image Segmentation andImage Restoration, Handbook of Mathematical Methods in Imaging, pp.1095-1157, 2011. ,
DOI : 10.1007/978-0-387-92920-0_25
A Two-Stage Image Segmentation Method for Blurry Images with Poisson or Multiplicative Gamma Noise, SIAM Journal on Imaging Sciences, vol.7, issue.1, pp.98-127, 2014. ,
DOI : 10.1137/130920241
Joint NDT Image Restoration and Segmentation Using Gauss–Markov–Potts Prior Models and Variational Bayesian Computation, IEEE Transactions on Image Processing, vol.19, issue.9, pp.2265-2277, 2010. ,
DOI : 10.1109/TIP.2010.2047902
Joint image reconstruction and segmentation using the Potts model, Inverse Problems, vol.31, issue.2, pp.1-29, 2015. ,
DOI : 10.1088/0266-5611/31/2/025003
Coupling Image Restoration and Segmentation: A Generalized Linear Model/Bregman Perspective, International Journal of Computer Vision, vol.18, issue.9, pp.69-93, 2013. ,
DOI : 10.1007/s11263-013-0615-2
A segmentation-based regularization term for image deconvolution, IEEE Transactions on Image Processing, vol.15, issue.7, pp.1973-1984, 2006. ,
DOI : 10.1109/TIP.2006.873446
Improved parameter estimates based on the homodyned K distribution, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.56, issue.11, pp.2471-2481, 2009. ,
DOI : 10.1109/TUFFC.2009.1334
Nakagami imaging with small windows, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.887-890, 2011. ,
DOI : 10.1109/ISBI.2011.5872546
Statistical Modeling of the Radio-Frequency Signal for Partially- and Fully-Developed Speckle Based on a Generalized Gaussian Model with Application to Echocardiography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.54, issue.10, pp.2189-2194, 2007. ,
DOI : 10.1109/TUFFC.2007.515
Expectation Maximization for Joint Deconvolution and Statistics Estimation, Acoust. Imag, vol.30, issue.11, pp.335-343, 2011. ,
DOI : 10.1007/978-90-481-3255-3_38
Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors, IEEE Transactions on Image Processing, vol.25, issue.8, 2015. ,
DOI : 10.1109/TIP.2016.2567074
URL : https://hal.archives-ouvertes.fr/hal-01374064
Estimating the Granularity Coefficient of a Potts-Markov Random Field Within a Markov Chain Monte Carlo Algorithm, IEEE Transactions on Image Processing, vol.22, issue.6, pp.2385-2397, 2013. ,
DOI : 10.1109/TIP.2013.2249076
MCMC for doublyintractable distributions, Proc. 22nd Annu. Conf. Uncertainty Artif. Intell (UAI), pp.356-366, 2006. ,
Spatial interaction and the statistical analysis of lattice systems, J. Roy. Statist. Soc. B (Methodol, vol.36, issue.2, pp.192-236, 1974. ,
A Hierarchical Bayesian Model for Frame Representation, IEEE Transactions on Signal Processing, vol.58, issue.11, pp.5560-5571, 2010. ,
DOI : 10.1109/TSP.2010.2055562
URL : https://hal.archives-ouvertes.fr/hal-00853350
Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970. ,
DOI : 10.1093/biomet/57.1.97
MCMC using Hamiltonian dynamics, " in Handbook of Markov Chain Monte Carlo (Chapman and Hall/CRC Handbooks of Modern Statistical Methods), 2011. ,
The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res, vol.15, issue.1, pp.1593-1623, 2014. ,
Optimal tuning of the hybrid Monte Carlo algorithm, Bernoulli, vol.19, issue.5A, pp.1501-153412, 2013. ,
DOI : 10.3150/12-BEJ414
Blind Deconvolution of Sparse Pulse Sequences Under a Minimum Distance Constraint: A Partially Collapsed Gibbs Sampler Method, IEEE Transactions on Signal Processing, vol.60, issue.6, pp.2727-2743, 2012. ,
DOI : 10.1109/TSP.2012.2190066
Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004. ,
DOI : 10.1109/TIP.2003.819861
Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.57, issue.11, pp.2381-2390, 2010. ,
DOI : 10.1109/TUFFC.2010.1706
Applying Thomson's multitaper approach to reduce speckle in medical ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.59, issue.10, pp.2178-2185, 2012. ,
DOI : 10.1109/TUFFC.2012.2444
Inference from Iterative Simulation Using Multiple Sequences, Statistical Science, vol.7, issue.4, pp.457-511, 1992. ,
DOI : 10.1214/ss/1177011136
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009. ,
DOI : 10.1137/080716542
A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration, IEEE Transactions on Image Processing, vol.16, issue.12, pp.2992-3004, 2007. ,
DOI : 10.1109/TIP.2007.909319
Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors, IEEE Transactions on Image Processing, vol.15, issue.4, pp.937-951, 2006. ,
DOI : 10.1109/TIP.2005.863972
Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems, IEEE Journal of Selected Topics in Signal Processing, vol.1, issue.4, pp.586-597, 2007. ,
DOI : 10.1109/JSTSP.2007.910281
FIELD: A program for simulating ultrasound systems, Proc. IEEE 10th Nordic-Baltic Conf. Biomed. Imag, pp.351-353, 1996. ,
Empirical Mode Decomposition as a Filter Bank, IEEE Signal Processing Letters, vol.11, issue.2, pp.112-114, 2004. ,
DOI : 10.1109/LSP.2003.821662
URL : https://hal.archives-ouvertes.fr/inria-00570615
Proximal Markov chain Monte Carlo algorithms, Statistics and Computing, vol.1, issue.4, 2015. ,
DOI : 10.1007/s11222-015-9567-4
A shrinkagethresholding Metropolis adjusted Langevin algorithm for Bayesian variable selection, 2014. ,
URL : https://hal.archives-ouvertes.fr/hal-00921130
A Survey of Stochastic Simulation and Optimization Methods in Signal Processing, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.2, pp.224-241, 2016. ,
DOI : 10.1109/JSTSP.2015.2496908
URL : https://hal.archives-ouvertes.fr/hal-01312917
Parallel Gibbs sampling: From colored fields to thin junction trees, Proc. Artif. Intell. Statist. (AISTATS), pp.324-332, 2011. ,
Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.13, issue.10, pp.123-214, 2011. ,
DOI : 10.1111/j.1467-9868.2010.00765.x