ON THE FIRST HITTING TIMES FOR ONE-DIMENSIONAL ELLIPTIC DIFFUSIONS

Abstract : In this article, we obtain properties of the law associated to the first hitting time of a threshold by a one-dimensional uniformly elliptic diffusion process and to the associated process stopped at the threshold. Our methodology relies on the parametrix method that we apply to the associated Markov semigroup. It allows to obtain explicit expressions for the corresponding transition densities and to study its regularity properties up to the boundary under mild assumptions on the coefficients. As a by product, we also provide Gaussian upper estimates for these laws and derive a probabilistic representation that may be useful for the construction of an unbiased Monte Carlo path simulation method, among other applications.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01373940
Contributeur : Noufel Frikha <>
Soumis le : jeudi 29 septembre 2016 - 14:17:16
Dernière modification le : lundi 29 mai 2017 - 14:21:36
Document(s) archivé(s) le : vendredi 30 décembre 2016 - 13:55:48

Fichier

Frikha_Kohatsu-Higa_Li_.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01373940, version 1

Collections

Citation

Noufel Frikha, Arturo Kohatsu-Higa, Libo Li. ON THE FIRST HITTING TIMES FOR ONE-DIMENSIONAL ELLIPTIC DIFFUSIONS. 2016. <hal-01373940>

Partager

Métriques

Consultations de
la notice

148

Téléchargements du document

53