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Natural color satellite image mosaicking using quadratic programming in
decorrelated color space

Rémi Cresson and Nathalie Saint-Geours∗

Generating mosaics of orthorectified remote sensing images is a challenging task because of the
colorimetric differences between adjacent images introduced by land use, surface illumination, at-
mospheric conditions, and sensor. Most of the existing color correction methods involve pairwise
techniques, which are limited when the collection of images is large with numerous overlaps. Be-
sides, available techniques do not operate in a color space suited for true-color processing. This
paper presents a simple and robust method to perform the global colorimetric harmonization of
multiple overlaping remote sensing images in natural colors (RGB). Our parameter-free method
deals simultaneously with any number of images, with any spatial layout, and without any single
reference image. It is based on the resolution of a quadratic programming optimization problem.
It operates in the lαβ decorrelated color space, which is well suited for human vision of natural
scenes. The results obtained from the mosaicking of 132 RapidEye color orthoimages over mainland
France demonstrate good potential for performing colorimetric harmonization automatically and
effectively.

I. INTRODUCTION

There is a growing need in Earth Sciences for high
resolution (HR) to very high resolution (VHR) satel-
lite data (decametric to metric) covering extensive ar-
eas like regions, countries or even whole continents
[1]. In such applications, remote sensor footprints are
usually small compared to the extensive area to be
covered: satellite image mosaic generation is thus re-
quired to combine a large number of small-footprints
scenes into a single big mosaic [2]. In most cases, the
numerous cloud-free scenes to be combined in a mo-
saic have been acquired over a broad time window,
due to the low orbital revisit cycles and the probabil-
ity of cloud cover. Therefore, these images most often
exhibit a diversity of atmospheric and seasonal condi-
tions, making image mosaic generation a challenging
task.

Image mosaicking involves several steps : i) geo-
metric correction of images (registration), ii) seamline
detection in regions where adjacent images are over-
lapping [3–6], iii) color harmonization of images, and
iv) composition of the final mosaic, which may involve
techniques such as image blending or image stitching
[7–9], which ensures that the transition between two
neighbouring images along their seamline will be soft
enough. The issue of image registration has long been
debated by the remote sensing community—see [10]
for a review—and many tools now allow for a fully
automatic geometric correction of images. Color har-
monization is a more arduous task, and in spite of its
importance in the image mosaicking process, it is far
from being as mastered as geometric correction. The
goal of color harmonization is to reduce color differ-
ences between adjacent images in the mosaic. Indeed,
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the radiometry of a scene depends on land use, sur-
face illumination, atmospheric conditions, and sensor:
all these factors may vary from one image to another,
and may result in radiometric heterogeneousness in
the mosaic. Adjustement techniques are thus required
to compensate for these radiometric differences.

Regarding this issue, two different purposes of re-
mote sensing image mosaicking must be distinguished.
The first use of satellite image mosaics is quantita-
tive; in this case, the analyst will further process the
image mosaic to compute thematic indices, such as
vegetation or built-up indices, or other quantitative
products. It is then of great importance that the mo-
saic preserves a number of radiometric signal charac-
teristics. The main goal is thus to ensure the radio-
metric fidelity of the mosaic: this is what radiometric
adjustment or radiometric normalization techniques
are used for. The second purpose of image mosaick-
ing is to produce good-looking mosaics for illustra-
tive use only. Such image mosaics should be visually
appealing, seamless, and should hide all the techni-
cal issues related to the acquisition of satellite im-
agery. Their quality can mainly be assessed through
visual inspection— some quantitative measures (color
and structure similarity measures) have also been pro-
posed for that purpose [11]. In this case, we can sim-
ply speak of color harmonization techniques. While
most radiometric normalization techniques can also
be used as simple color harmonization techniques for
illustrative use only, the reverse is generally not true.

In this paper, we focus on a new color harmo-
nization technique to generate satellite image mosaics
for illustrative use only. Color harmonization is usu-
ally achieved using a variety of empirical techniques.
Mean-variance equalization consists in correcting one
image with respect to a reference image so that both
images have the same mean and the same variance in
their overlapping part. Histogram matching [12] goes
one step further: the corrected image will have the
same complete pixel value distribution as the refer-
ence image. Relative radiometric normalization tech-
niques [13–15] and radiometric normalization tech-
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niques based on invariant features [16] usually involve
the selection of a sample of pixels in pairs of images,
and the computation of correction models based on
some statistical regression.

Nevertheless, up to our knowledge, most of the
available methods for color harmonization have a few
drawbacks. First, existing works most often present
color harmonization techniques for pairs of images
only: one image is corrected to match a reference im-
age. To generate a mosaic with n > 2 images, one usu-
ally proceed sequentially : a first image is corrected
with respect to some reference image, and the two
images are merged into a first mosaic. Then, a third
image is corrected to match the color characteristics
of the current mosaic, and a 3-images mosaic is assem-
bled, and so on. Colorimetric correction is thus prop-
agated from the first reference image to the whole mo-
saic. However, depending on the spatial layout of the
n images and their overlapping areas, several paths
may be taken to build the whole mosaic. [17] shows
how different results may be obtained when changing
this sequential path, and discuss the accumulation of
errors associated with intermediary scene corrections.
Pairwise techniques are thus limited when the collec-
tion of satellite images is large, with large amount of
image overlaps.

Besides, the available color harmonization tech-
niques operate in the RGB color space, or directly on
the original Digital Numbers from spectral bands of
satellite data. However, it is well known in the com-
puter vision community that other color spaces are
more suitable for color processing, but these develop-
ments have not reached the remote sensing community
yet. Regarding this subject, [18] recently provided a
extensive review of numerous color transfer or colour
mapping techniques, which aim to recolor a given im-
age by deriving a mapping between that image and
another image serving as a reference.

The goal of this paper is thus to present a simple
and robust method for color harmonization of remote
sensing images in natural colors, to produce large im-
age mosaics for illustrative purposes. The method
works (i) simultaneously (rather than sequentially) for
any number of images, (ii) for any spatial layout of
the images and their overlapping parts, (iii) without
any single reference image, (iv) in a decorrelated color
space (lαβ) which is well suited for human vision of
natural scenes. It is limited to natural color images.
Besides, it is parameter-free and fully automated. We
first give in Section II a detailed description of the
mosaicking process. Our approach is then successfuly
tested on a collection of 132 RapidEye satellite images
over mainland France supplied by GEOSUD project
(Section III and IV). We finally discuss the main ad-
vantages and limits of our approach in Section V.

II. METHOD

A. Overview

We consider a collection of n partly overlapping
satellite images, geometrically corrected, in natural
colors (RGB). Our goal is to build a single mosaic
from these images for illustration purposes— i.e., ra-
diometric fidelity is not sought after. We propose to
build on the color transfer technique developed by [19]
to define linear color correction models for each image,
in a decorrelated color space. Besides, while [19] per-
formed mean-variance equalization on pairs of images,
we formulate the color correction problem for mosaic
generation simultaneously from n images as a multi-
variate optimization problem, namely a quadratic pro-
gramming (QP) problem for which standard solvers
can be used.

Our method can be decomposed into four steps
(Fig. 1):

1. In the first step, we convert the RGB values of
the original images to a decorrelated color space
named lαβ;

2. Then, we apply a linear color correction model
to each image; decorrelation lets us treat the
three color channels l,α and β separately, sim-
plifying the method. We search for the opti-
mal parameters of linear color correction models
to minimize a cost function. Two different cost
functions are tested: one is based on the com-
parison of both the mean and standard deviation
of neighboring pair of images in their overlap-
ping areas, the other is based on the root mean
squared error (RMSE) between pair of images
in their overlapping areas;

3. We then proceed to mosaic composition. This
step is not the focus of our work, thus we chose
to use a simple and fast compositing technique
which copies the last image over earlier ones in
areas of overlap. Other more advanced meth-
ods could have been used to compose a seamless
mosaic, such as the multi-band blending strat-
egy [7] or a variational approach [9];

4. Finally, we transform the output mosaic image
back to the RGB color space.

In the following subsections, we give more details on
each step of the process. We first display the conver-
sion equations from RGB to lαβ color space in II B.
We then describe the color correction models in II C,
and define the cost functions to be minimized in II D.
Finally, the formulation of the QP problem and its
solution are detailed in II E.

B. Conversion of RGB values to lαβ color space

The first step of color harmonization is to convert
RGB values into a new color space called lαβ. This
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FIG. 1: Flowchart.

color space was first introduced by [20], based on data-
driven human perception research that assumes the
human visual system is ideally suited for processing
natural scenes. In the lαβ color space, the l axis
represents an achromatic channel, while the α and β
channels are chromatic yellow-blue and red-green op-
ponent channels. The main feature of the lαβ color
space is that, for natural scenes, the correlations be-
tween the three channels’ values are low. [19] used this
color space to transfer colors from a reference image
to a target image, performing a simple mean-variance
equalization in the lαβ space — this approach was fur-
ther developed by [21] and [22]. This straightforward
technique offers great results when the composition
of reference and target images is similar—e.g. same
proportion of different land covers in both images.

As explained in the introduction, we focus here on
satellite images with natural colors. As the composi-
tion of two overlapping images is usually very similar,
the color transfer technique developped by [19] seems
to be suited to our needs. We thus perform RGB-to-
lαβ conversion on each image, resulting in the com-
putation of three new channels l, α, and β, in which
inter-channel correlations are expected to be low. The
conversion of RGB values to lαβ values follows three
steps—see [19] for more details:

• first, RGB values are transformed to LMS cone
space values (Long, Middle, Short wavelength
cone), that describe human eye spectral sen-
sitivities [Eqn. (1)] (Matrix values in Eqn. (1)
slightly differ from those given by [19, Eqn (2)],
which were found to be erroneous by an anony-
mous reviewer. Correct values were directly
computed from [19, Eqn (1)].);
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• values in the LMS space are most often highly
skewed; we partly eliminate this skew by con-
verting values to logarithmic scale [Eqn. (2)];
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• finally, a linear transformation introduced by
[20] is applied to convert the signal from LMS
values to the decorrelated lαβ color space
[Eqn. (3)].
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Equations for the inverse transformation from lαβ
space to RGB space can be derived from Eqn. (1) to
(3). They are needed in the last step of satellite image
mosaicking, to move back from the lαβ color space to
the original RGB color space.

C. Parametric model for color correction

The second step of color harmonization for im-
age mosaicking is to define color correction models
for each of the n images to be included in the mo-
saic. Because the correlation of channels’ values in
the lαβ color space is low, we can use independent
correction models for each of the three axes l, α and
β. In this study we considered two different linear
color correction models: a general linear transforma-
tion [Eqn. (4a)] and a linear transformation with zero
y-intercept [Eqn. (4b)]:

v′ = a ⋅ v + b (4a)

v′ = a ⋅ v (4b)

where a and b are real-valued parameters, v (input
value) is the l, α or β-value of a pixel in the origi-
nal image, and v′ is the l, α or β–value of the same
pixel after transformation. A different value of both
parameters a and b must be set for each channel and
for each satellite image to be included in the mosaic.
If n denotes the number of images, the total number
of parameters is 6n for the general case of Eqn. (4a),
and only 3n for Eqn. (4b).

D. Cost functions

In order to select the optimal parameters of color
correction models defined in Eqn. (4), we first need to
define some criteria to assess the quality of a mosaic
with respect to color harmonization. A usual quality
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FIG. 2: Overlapping area between two images i and
j.

metric for image mosaics is based on the comparison of
the histograms of neighboring images in their overlap-
ping parts: the closer the histograms are, the better
the mosaic is. In this study, we consider two alterna-
tive cost functions to assess the quality of a mosaic. A
first cost function is based on two summary statistics
derived from these histograms: mean and standard
deviation of neighboring images in their overlapping
parts. A second cost function is based on the root
mean squared error (RMSE) between two images in
their overlapping part.

Independent cost functions are computed for each
channel (l, α, β). From now on, without loss of gener-
ality, we will focus on a single channel (l, α, or β). Let
us consider a pair (i, j) of overlapping images (Fig. 2).
The area of their overlapping part is Sij . We denote
with µij and σij (resp. and µji and σji) the mean
and standard deviation of image i (resp. j) in the
overlapping part [Eqn. (5)]. We will also denote rij
the RMSE of images i and j in their overlapping part.

µij = E (vi) and σij =
√

E [(vi − µij)2] and rij =
√

E [(vi − vj)2]
(5)

with vi (resp. vj) denoting pixel values in image i
(resp. j), and E denoting the mean value over all pix-
els of the overlapping part between images i and j.
After linear color correction model is applied to each
image, the mean and standard deviation are trans-
formed to µ′ij and σ′ij (resp. µ′ji and σ′ji), and the
RMSE is transformed to r′ij .

1. Mean-and-variance-based cost function

An elementary cost cij is defined as the half
squared-difference between means of the two neigh-
boring images (i, j) after transformation, weighted by
the overlapping area :

cij =
1

2
⋅ Sij ⋅ (µ′ij − µ′ji)

2
(6)

For a set of n images, the total cost related to mean-
equalization is equal to the sum of pairwise costs:

Cµ = 1

2

n

∑
i=1

n

∑
j=i

Sij ⋅ (µ′ij − µ′ji)
2

(7)

In an analogous way, the total cost related to
variance-equalization is equal to the sum of pairwise

half squared-differences between standard deviation of
two neighboring images i and j after transformation,
weighted by the overlapping area :

Cσ = 1

2

n

∑
i=1

n

∑
j=i

Sij ⋅ (σ′ij − σ′ji)
2

(8)

The first cost function Cµσ is obtained by summing
mean-equalization cost and variance-equalization
cost:

Cµσ = Cµ +Cσ (9)

2. RMSE-based cost function

The second cost function we consider is related to
the minimization of RMSE criterion. It is equal to the
sum of squared pairwise RMSE of neighboring images
i and j after transformation, weighted by their over-
lapping area :

Cr = 1

2

n

∑
i=1

n

∑
j=i

Sij ⋅ (r′ij)
2

(10)

E. Minimization of cost functions

The image mosaic generation can now be formu-
lated as a multivariate optimization problem: our goal
is to find an optimal set of parameters for color cor-
rection models that minimizes the selected cost func-
tion, i.e. either the total mean-and-variance-based
cost function Cµσ, or the RMSE-based cost function
Cr. We first rewrite cost functions Cµσ and Cr as
quadratic functions of the parameters a and b of the
color correction models, then we set a number of lin-
ear constraints on these parameters, and we finally
detail how to find the optimal set of parameters that
minimize the cost functions under the specified con-
straints.

1. Canonic formulation of cost functions

Let x denote the vector of parameters of the n color
correction models: x = (a1, . . . , an, b1, . . . , bn) with ai
and bi the slope and intercept coefficients related to
image i. Cost functions Cµσ and Cr can be written as
quadratic functions of parameter vector x (Appendix
VII for detailed calculations):

Cµσ(x) = 1

2
x⊺Qµσx and Cr(x) = 1

2
x⊺Qrx

(11)

with Qµσ = ( H
µ +Hσ K
K⊺ L

) and Qr = ( H
r K

K⊺ L
)

two 2n × 2n symmetric matrices, with Hµ,Hσ,Hr,K
and L five n × n matrices defined by:
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Hµ
ij = −Sijµijµji if i ≠ j, and Hµ

ii = ∑
n
j=1
j≠i

Sijµ
2
ij

Hσ
ij = −Sijσijσji if i ≠ j, and Hσ

ii = ∑nj=1
j≠i

Sijσ
2
ij

Hr
ij = −SijE[vivj] if i ≠ j, and Hr

ii = ∑nj=1
j≠i

Sij(µ2
ij + σ2

ij)

Kij = −Sijµij if i ≠ j, and Kii = ∑nj=1
j≠i

Sijµij

Lij = −Sij if i ≠ j, and Lii = ∑nj=1
j≠i

Sij

(12)
In the restricted case where the color correc-

tion models are linear transformations with zero y-
intercept [Eqn. (4b)], the vector of parameters is lim-
ited to a = (a1, . . . , an) with ai the slope coefficient
related to the transformation of image i. Cost func-
tions Cµσ and Cr are then equal to (Appendix VII):

Cµσ(a) = 1

2
a⊺ (Hµ +Hσ)a and Cr(a) = 1

2
a⊺Hra

(13)

2. Equality constraints

To ensure that we find consistent and non-
degenerated solutions to the optimisation problem,
we must add constraints on the parameters of color
correction models. First, the color correction models
should preserve the intensity of the mosaic, i.e. the
mean value of the n images:

1

n

n

∑
i=1

Siiµii =
1

n

n

∑
i=1

Siiµ
′

ii (14)

Besides, it is also desirable that the mean spread of
pixel values is preserved:

1

n

n

∑
i=1

Siiσii =
1

n

n

∑
i=1

Siiσ
′

ii (15)

These two constraints can be written in matrix no-
tations (Appendix VIII for detailed calculations):

Ex = d (16)

with E a 2n×2 matrix and d a 2-vector defined by:

E = ( S11µ11 . . . Snnµnn S11 . . . Snn
S11σ11 . . . Snnσnn 0 . . . 0

)

and d =
⎛
⎜⎜
⎝

n

∑
i=1
Siiµii

n

∑
i=1
Siiσii

⎞
⎟⎟
⎠

In the restricted case of linear color correction mod-
els with zero y-intercept [Eqn. (4b)], only the first n
components of x are involved, and the equality con-
straint is given by:

E0a = d (17)

with E0 a n × 2 matrix defined by:

E0 = ( S11µ11 . . . Snnµnn
S11σ11 . . . Snnσnn

)

3. Problem solving

The problem of finding an optimal set of color cor-
rection models that minimizes the total cost function
Cµσ(x) or Cr(x) can be formulated as a quadratic
programming (QP) problem, that is, a problem of op-
timizing a quadratic function of several variables sub-
ject to linear constraints. The optimal set of parame-
ters is given by:

x⋆ = argmin
x∈R2n

{1

2
x⊺Qx} subject to Ex = d (18)

with Q = Qµσ or Q = Qr depending on which cost
function is to be minimized. In the restricted case
where the color correction models are linear transfor-
mations with zero y-intercept, the vector of parame-
ters is limited to a = (a1, . . . , an), and the QP problem
is formulated as:

a⋆ = argmin
a∈Rn

{1

2
a⊺Ha} subject to E0a = d (19)

with H = Hµ +Hσ or H = Hr depending on which
cost function is to be minimized.

As the total cost Cµσ(x) or Cr(x) is strictly posi-
tive for any set of non-harmonized set of images, we
have x⊺Qx > 0. This makes Q a symmetric positive
definite matrix. Therefore the quadratic function is
strictly convex, and has a unique finite global mini-
mum: this particular case of quadratic programming
is called strictly convex quadratic program. To solve
it, we use the primal-dual interior point algorithm im-
plemented in the OOQP library [24].

III. DATA

Our method for color harmonization in satellite im-
age mosaicking was applied to a collection of high re-
solution Rapid Eye images, which was acquired over
mainland France (6.7 × 105 km2) between 2009 and
2010 within the EQUIPEX GEOSUD project[23]. All
available images from the annual collection were used
without any pre-selection. In a pre-processing phase,
cloud-free images were obtained using a dedicated cut-
line network. Table I displays the main characteristics
of the image collection, while Fig. 3 shows the spa-
tial layout of the images. The number of overlaps per
image ranges from 2 to 13, with a mean value of 5
overlaps per image. The minimum overlap ratio for
an input image is 8.6% of its total area. As a whole,
overlapping parts cover 22% of the total mosaic area.
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TABLE I: Characteristics of the image collection

Characteristic Value

Satellite RapidEye

Acquisition dates May to October 2009

+ May to October 2010

Azimuth angle 100○

Image swath Approximately 77 km

Spatial reference system EPSG 2154

Spectral bands used Red, Green, Blue

Number of images 132

Total spatial extent 2.3 × 106 km2

Pixel size (orthorectified) 5 m

Pixel values encoding 16 bits

Total input images pixel count 91 × 109 pix.

Mean pixel count per image 6.9 × 108 pix.

Size of images files 550 Gb

FIG. 3: Layout of the 132 cloud-free RapidEye
ortho-images, with selected pair of images A and B

(bold) and overlapped area (in red)

IV. RESULTS

The color harmonization method presented in sec-
tion II was implemented in C++ using OTB [26], ITK
[27] and OOQP [24] libraries. For sake of clarity, we
first analyse detailed results obtained on a single pair
of partly overlapping images A and B (section IV A),
then we display results related to the complete mo-
saic over mainland France (section IV B), and finally
discuss some computational issues (section IV C).

A. Simple case analysis: two images

We insist on the fact that our approach is designed
to deal with any number of overlapping images in
the same area. However, for sake of clarity, a pair
of neighbouring images denoted A and B was se-
lected to give detailed results on a simplified test case

(Fig. 3). We first applied the color harmonization
method with general linear transformation and mean-
and-deviation-based cost function Cµσ to the pair of
images A and B, which are overlapping in a small area
(Fig. 4). Without color harmonization, image A dis-
plays a near-orange tone, whereas image B has a more
near-green tone (Fig 4b). After correction (Fig. 4c),
images have the same tone, and the boundary zone is
almost indistinguishable. Fig. 4 also clearly suggests
that the final tone of the mosaic is more influenced by
the original tone of image A than by the original tone
of image B. This results from the equality constraint
on global intensity preservation [Eqn. (14)]: because
image A is much larger than image B (SAA ≫ SBB),
corrected pixels from image A are closer to their orig-
inal values than corrected pixels from image B.

Fig. 5 shows how pixel values of images A and B
were transformed in the RGB color space. It appears
that the transformation is not linear: the explanation
is that linear color correction models are applied in
the lαβ color space, rather than directly in the origi-
nal RGB channels. Again, we notice that pixel values
in image B undergo a tougher transformation than
in image A, resulting in a correction function with
stronger curvature. The same figure plotted in the lαβ
color space, rather than in the RGB color space, would
show a perfectly linear relationship between original
pixel values v and transformed pixel values v′, result-
ing from linearity in Eqn. (4).

Finally, Fig. 6 displays pixels distribution in lαβ
color space for both images A and B in their over-
lapping area, before and after correction. It shows
how mean-variance equalization leads to corrected his-
tograms for A and B that are close to one another,
yet not exactly matching. In particular, the distri-
bution modes for images A and B—unimodal distri-
bution for l channel, bimodal distribution for α and
β channels—are closer after correction than before.
Table II presents an analysis of the range of images
A and B pixels values in lαβ color space. It shows
how correction brings closer means and standard de-
viations of images: without correction, the absolute
difference between mean values of A and B in lαβ
color space is reduced by [-92%, -97%, -100%] (l, α,
β channels respectively). Same convergence appears
with standard deviations: the absolute difference be-
tween standard deviations is reduced by [-73%, -55%,
-40%] after correction.

B. The France mosaic

Our approach for color harmonization was then ap-
plied to the whole collection of 132 RapidEye images
over mainland France described in Section III. The
output mosaic (Fig. 7) is 221320 × 244320 pixels in 8
bits encoding, 5m resolution, in GeoTIFF format, for
a total size of 162.2 Gb. In comparison, we also tried
to generate the entire output mosaic using a popular
commercial software but it failed to process the entire
dataset, most probably because of its excessive size.
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(a) Images layout (b) Without color harmonization (c) With color harmonization (general
linear transformation model and cost

function Cµσ)

FIG. 4: Color harmonization for pair of overlapping images A and B.

(a) Image A (b) Image B

FIG. 5: Corrected pixel values vs. original pixel values for both images A and B in RGB color space.

TABLE II: Analysis of the range of values in lαβ space after color transformation

Image A

(original)

Image B

(original)

Image A

(corrected)

Image B

(corrected)
Abs. Difference

(original)
Abs. Difference

(corrected)
Relative
reduction %

mean (l) 2.19E+00 2.31E+00 2.21E+00 2.22E+00 1.18E-01 9.30E-03 -92%

mean (α) -6.01E-02 -5.85E-02 -6.03E-02 -6.02E-02 1.53E-03 4.10E-05 -97%

mean (β) -1.59E-02 -2.24E-02 -1.75E-02 -1.75E-02 6.48E-03 1.50E-05 -100%

std (l) 2.17E-01 1.72E-01 2.10E-01 1.98E-01 4.53E-02 1.24E-02 -73%

std (α) 4.70E-02 3.74E-02 4.43E-02 4.85E-02 9.58E-03 4.28E-03 -55%

std (β) 1.25E-02 1.07E-02 1.19E-02 1.30E-02 1.77E-03 1.07E-03 -40%

Five different output mosaics were produced (Fig.
7), using either a linear transformation with zero y-
intercept [Eqn. (4b)] or a general linear transforma-
tion [Eqn. (4a)], and minimizing either the mean-
based cost Cµ, the mean-and-deviation-based cost
Cµσ, or the RMSE-based cost Cr. They are compared
to a mosaic generated without any color correction.
Mosaic characteristics are summarized in Tab. III. All
mosaics offer satisfying visual results at the scale of
France. However, a zoom over a 200 × 165 km square
proves that there are significant differences between
them. As explained in the introduction, our main

goal is to produce visually appealling mosaics in a
fully automated way: the assessment of the five out-
put mosaics is thus mainly qualitative. However, we
also tried to compare the quality of the mosaics using
a quantitative metric: we computed the max Peak
Signal-to-Noise Ratio (PSNR) over all overlapping
parts of images. The PSNR is a popular performance
evaluation metric used to compare two similar images.
It is computed as PSNR = 10 ⋅ log10(peak2/MSE)
with peak = 28 ⋅

√
3 for 8 bits RGB images, and

MSE the mean squared error between pairs of over-
lapping images over the whole mosaic. Table III shows
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(a) l channel (b) α channel

(c) β channel

FIG. 6: Pixel distribution for l, α, β channels for images A (black lines) and B (red lines) in their overlapping
area, before (solid lines) and after (dashed lines) correction.

TABLE III: Characteristics of France mosaics with
quality metrics

Mosaic id Correction model Cost function PSNR

#0 none none 32.948 dB

#1 v′ = a ⋅ v Cµ 34.660 dB

#2 v′ = a ⋅ v Cµσ 34.722 dB

#3 v′ = a ⋅ v + b Cµσ 34.960 dB

#4 v′ = a ⋅ v Cr 34.969 dB

#5 v′ = a ⋅ v + b Cr 35.413 dB

PSNR for the five generated mosaics. Mosaic #5
gives the highest PSNR metric: it corresponds to a
mosaic generated with a general linear transformation
[Eqn. (4a)], minimizing the RMSE-based cost function
Cr. However, PSNR metric is only an approximation
to human perception of mosaic quality: although a
higher PSNR generally indicates that the mosaic is of
higher quality, one may prefer the visual appearance
of mosaic #3, which was corrected using mean-and-
deviation-based cost function Cµσ.

C. Computation time

Computational issues are a key limiting factor when
generating large size image mosaics. For this rea-
son, we give here some detailed elements on compu-

tation times. The complete process of generating a
mosaic following our method for color harmonization
can be decomposed into three stages: i) computing
image statistics in overlapping areas (µij , µji, σij , σji
and E[vivj]), ii) solving the QP optimization prob-
lem described in Section II, and iii) composing the
final output mosaic.

Statistics computing and mosaic composition are
CPU time consuming, because both need to access
pixel data of input images. In addition, mosaic com-
posing involves saving data to disk. If m is the to-
tal number of pixels to process, i.e. the total num-
ber of pixels in all n input images, the computational
complexity of these two steps is O(m). The so-called
streaming mechanism of ITK library is used to se-
quentially process sub-regions of the images, which
allowed us to process large datasets without restric-
tion on images sizes. Statistics computing and mosaic
composing were fully multi-threaded in order to take
advantage of the latest computing architectures.

To better analyse the computational performance
of our approach, we decomposed run time into the
three stages (statistics computing, optimization, mo-
saic composing) for several sets of adjacent input im-
ages randomly selected from the complete dataset of
132 RapidEye images, for increasing number n of im-
ages (Fig. 8). All tests ran on a personal computer
Intel(R) Xeon(R) with CPU E5-1650 @ 3.20GHz. Re-
sults clearly show that total run time increases linearly
with the total number of pixels to process. For the en-
tire RapidEye dataset over mainland France, statistics
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 7: Output mosaics over mainland France and a zoom on a 200 × 165 km square: mosaic #0 (a-b), mosaic
#1 (c-d), mosaic #2 (e-f), mosaic #3 (g-h), mosaic #4 (i-j), mosaic #5 (k-l). Tab III summarizes mosaic

characteristics.

were computed in 9h and final mosaic was composed
in 35h.

Finally, Fig. 9 displays run time for the QP solving
stage, for increasing number n of input images. This
optimization step is very fast thanks to an efficient im-
plementation in OOQP library that takes advantage
of sparse matrices. The run time is higher for a gen-
eral linear color correction model [Eqn. (4a)], due to
the fact that the corresponding QP has twice more un-
known variables (a and b are unknown) than the zero
y-intercept case where only a is unknown [Eqn. (4b)].
Total QP solving time for the complete dataset of 132
RapidEye images is only 3 ms.

V. DISCUSSION

A. An innovative color harmonization method
for large sets of remote sensing images

Our first goal was to provide a robust method for
color harmonization to produce large mosaics from re-
mote sensing images. The formulation we give of the
color harmonization problem as a Quadratic Program-
ming (QP) problem overcomes some of the limitations
of existing techniques. It allows to deal simultane-
ously, rather than sequentially, with any number n
of input images and any spatial layout of these im-
ages and their overlapping areas. The optimal pa-
rameters a and b of color correction models for all im-
ages are searched simultaneously in a 2n-dimensional
space. As discussed in the introduction, this over-
comes the limitation of color harmonization tech-
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FIG. 9: Run time to solve QP optimization problem
for increasing number of input images, for a general

(boxes) or zero y-intercept (crosses) linear color
correction model.

niques that work on pair of images only, in which sev-
eral different paths can be taken to build sequentially
a large mosaic from a set of n partly overlapping im-
ages, leading to non-unique results. Note that the use
of the QP framework is closely linked to the linear-
ity of the color correction models we used in the lαβ
color space [Eqn. (4)]. More sophisticated and non-
linear color correction models would surely give bet-
ter results on single pairs of overlapping images, but
would not be suitable for computationally efficient QP
solving.

The second innovative part of our method is the use
of the lαβ decorrelated color space, which was defined
by [19] based on the characteristics of the human eye.
Our work was an attempt to adapt this concept from
the computer vision community to the context of re-
mote sensing images. Our results clearly show that the
use of the lαβ decorrelated color space is well suited
to RGB satellite imagery, even if the quality of the
resulting mosaic can only be assessed qualitatively by
visual inspection.

B. A fully-automated, computationally efficient
tool

Our research also sought to result in an operational,
fully-automated tool for color harmonization of large
image sets. We efficiently implemented our approach
using open-source libraries. No tuning parameter has
to be set by the user. Total running time increases lin-
early with the number of input pixels. The main time-
consuming task is the computation of image statistics
in their overlapping parts: this could be reduced by
computing statistics on a small sample of pixels, either
randomly selected, or selected from invariant features.
The amount of overlapping areas between input im-
ages is a key factor that drives the output quality of
the mosaic. In our case study over mainland France,
22% of total mosaic area was covered by overlapping
images; further research is neeeded to find extremal
or even optimal values for this overlap ratio.

The tool was succesfully applied to generate a mo-
saic over mainland France from RapidEye imagery at
5m resolution. In the near future, it will be used to
produce, on a yearly basis, a high resolution mosaic
of mainland France from satellite imagery acquired
through the GEOSUD platform and the THEIA Land
Data Center[25].

C. Limits and further research

It should be noted that the presented method also
has limits, which may restrict its use in some cases. To
start with, the definition of the cost function C, that
the image mosaic must minimize, could be questioned.
In this study, two cost functions were used: one based
on the mean and variance of the n input images in
their overlapping parts [Eqn. (7) and (8)], the other
one based on the RMSE criterion. A possible way for-
ward would be to move from this mean-variance or
RMSE paradigm to a broader, non-parametric frame-
work, that could for example build on the histogram
matching techniques to define a cost associated to a
pair (i, j) of images based on a complete comparison
of their histogram in their overlapping part.

Another possible improvement would be to use
more sophisticated color correction models, different
from the one we used from [19]. Many other color
transfer techniques could be investigated — see [18]
for a review of such techniques. However, only lin-
ear correction models allow to formulate the multi-
images color harmonization as a Quadratic Program-
ming problem. Moving to non-linear color correction
models would thus prevent the use of efficient QP
solvers to find optimal model parameters.

Besides, a key drawback of our approach is that it is
based on the assumption that the composition of two
neighboring images i and j in their overlapping part
is similar—e.g. same proportion of different land cov-
ers in both images. Color differences are assumed to
be mainly due to atmospheric or seasonal conditions.
Hence, the color harmonization process may be biased
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by color differences from i to j which are due to: i)
land use changes between dates of acquisition of im-
ages i and j (e.g., clearcut harvesting), or ii) presence
of clouds in i or j. To avoid this problem, cloud mask-
ing algorithms should be applied to input images be-
fore color harmonization. Our approach could also be
improved by first pre-processing all input images using
segmentation and classification algorithms to group
pixels of overlapping areas depending on their vegeta-
tion type of surface material. Different linear models
could then be fitted to each group of pixels. However,
such a pre-processing step would require large CPU
time, and may not be fully automated.

Finally, our approach is only suitable for optical
imagery of Earth in natural colors (RGB). Further
work would be needed to extend it to hyperspectral
imagery (e.g. false color mosaic).

VI. CONCLUSION

This work was carried out with a view towards pro-
ducing high-resolution mosaics from RGB satellite im-
ages for illustrative use only. We formulated the color
harmonization process as a Quadratic Programming
(QP) problem, which allows us to deal simultaneously
with any number of input images, with any spatial
layout of their overlapping parts, and to use efficient
numerical solvers to find the optimal linear color cor-
rection models. Besides, we introduced the use of the
lαβ decorrelated color space, which is ideally suited
to process Earth observation scenes. The method
was succesfully implemented using open source li-
braries and will be applied every year to produce a
high-resolution mosaic of mainland France from im-
ages acquired through the GEOSUD platform and the
THEIA Land Data Center. Further research could fo-
cus on improving the definition of the cost function in
the QP problem, or on enhancing the statistics com-
putation by searching for invariant features in over-
lapping images.

APPENDIX

VII. CANONIC FORMULATION OF COST
FUNCTIONS Cµσ AND Cr

A. Canonic formulation of cost function Cµσ

Mean-and-deviation-based cost function Cµσ is
equal to the sum of mean-based cost function Cµ and
deviation-based cost function Cσ.

1. The mean-based cost function Cµ writes

Cµ =
n

∑
i=1

n

∑
j=i

cij =
1

4

n

∑
i=1

n

∑
j=1

Sij(µ′ij − µ′ji)2

The mean value after image color correction is
linked to the mean value before correction by µ′ij =
aiµij + bi with ai and bi the slope and intercept co-
efficients related to the image i. We thus obtain the
expression of cost function Cµ as a function of vector
x = (a1, . . . , an, b1, . . . , bn) = (a,b):

Cµ(x) = 1

4

n

∑
i=1

n

∑
j=1

Sij [(aiµij + bi) − (ajµji + bj)]2

We develop the expression:

Cµ(x) = 1

4

n

∑
i=1

n

∑
j=1

Sij ⋅ [(aiµij + bi)2

−2(aiµij + bi)(ajµji + bj) + (ajµji + bj)2]

By swaping i and j in the sums, we notice
that ∑ni=1∑nj=1 Sij ⋅ [(aiµij + bi)2] = ∑ni=1∑nj=1 Sij ⋅
[(ajµji + bj)2] , and we obtain:

Cµ(x) = 1

2

n

∑
i=1

n

∑
j=1

Sij ⋅ [(aiµij + bi)2

−(aiµij + bi)(ajµji + bj)]

= 1

2

n

∑
i=1

n

∑
j=1

Sij ⋅ [µ2
ija

2
i + 2µijaibi + b2i

−µijµjiaiaj − µijaibj − µjiajbi − bibj]

Using the definition of the three n×n matrices Hµ,
K and L given in Eqn. (12), we obtain:

Cµ(x) = 1

2

n

∑
i=1

n

∑
j=1

(Hµ
ijaiaj +Kijaibj +Kjiajbi +Lijbibj)

Using matrix notation, we get:

Cµ(a,b) = 1

2
(a
b
)
⊺

(H
µ K

K⊺ L
)(a

b
) (20)

When the color correction model is a linear transfor-
mation with zero y-intercept, the vector of parameters
is limited to a = (a1, . . . , an). In this restricted case,
the cost function has the same expression as Cµ with
all bi = 0, and we directly obtain its final expression
by putting b = 0 in Eqn. (20):

Cµ(a) = 1

2
a⊺Hµa

2. Deviation-based cost function Cσ writes

Cσ = 1

2

n

∑
i=1

n

∑
j=i

Sij(σ′ij − σ′ji)2

No matter which type of linear color correction
model is used (Eqn. (4a) or Eqn.(4b)), the standard
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deviation σ′ij of image i in the overlap area with image
j after correction is linked to that before correction by
σ′ij = ∣ai∣σij — it does not depend on bi — with ai the
slope coefficient related to image i and with all ai > 0.
Similarly to Cµ we have:

Cσ(x) = Cσ(a) = 1

4

n

∑
i=1

n

∑
j=1

Sij(aiσij − ajσji)2

= 1

2

n

∑
i=1

n

∑
j=1

Sij(σ2
ija

2
i − σijσjiaiaj)

Moving from the second to the third line above
is obtained by noticing that ∑ni,j=1 Sijσ2

ija
2
i =

∑ni,j=1 Sijσ2
jia

2
j by swaping i and j indices in the dou-

ble sum. We obtain:

Cσ(x) = Cσ(a) = 1

2
a⊺Hσa

with Hσ a n × n matrix defined in Eqn. (12).

3. Mean-and-deviation-based cost function Cµσ

by summing the expression of mean-based cost func-
tion Cµ and deviation-based cost function Cσ, we find
the expression of mean-and-deviation-based cost func-
tion Cµσ:

Cµσ(x) = Cµ(x) +Cσ(x) = 1

2
x⊺Qµσx

with Qµσ = ( H
µ +Hσ K
K⊺ L

) a 2n × 2n symmetric

matrix.

B. Canonic formulation of cost function Cr

The RMSE-based cost function Cr writes:

Cr = 1

4

n

∑
i=1

n

∑
j=1

Sij (r′ij)
2

with r′ij the RMSE after transformation defined in
Eqn. (5):

(r′ij)
2 = E[(v′i − v′j)2]
= E[((aivi + bi) − (ajvj + bj))2]
= a2i (σ2

ij + µ2
ij) + 2aibiµij + b2i

+ a2j(σ2
ji + µ2

ji) + 2ajbjµji + b2j
− 2 ⋅ (aiajE[vivj] + aibjµij + ajbiµji + bibj)

We develop the expression of Cr:

Cr(x) = 1

2

n

∑
i=1

n

∑
j=1

Sij ⋅ [a2i (σ2
ij + µ2

ij) + 2aibiµij − 2aibjµij

−aiajE[vivj] + (bi − bj)2]

Using the definition of the three n×n matrices Hr,
K and L given in Eqn. (12), we obtain:

Cr(x) = 1

2

n

∑
i=1

n

∑
j=1

(Hr
ijaiaj +Kijaibj +Kjiajbi +Lijbibj)

Using matrix notation, we get:

Cr(a,b) = 1

2
(a
b
)
⊺

(H
r K

K⊺ L
)(a

b
)

which writes:

Cr(x) = 1

2
x⊺Qrx

with Qr = ( H
r K

K⊺ L
) a 2n × 2n symmetric matrix.

VIII. EQUALITY CONSTRAINTS

The first equality constraint is that the global mean
intensity of all the images should be preserved by the
color correction models:

1

n

n

∑
i=1

Siiµii =
1

n

n

∑
i=1

Siiµ
′

ii

Using µ′ij = aiµij + bi with ai and bi the slope and
intercept coefficients related to the image i, we obtain:

n

∑
i=1

Siiµii =
n

∑
i=1

Sii(µiiai + bi)

which writes:

(S11µ11, . . . , Snnµnn, S11, . . . , Snn) ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a1
. . .
an
b1
. . .
bn

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=
n

∑
i=1

Siiµii

The second equality constraint is that the mean
spread of pixel values over all images should be pre-
served by the color correction models:

1

n

n

∑
i=1

Siiσii =
1

n

n

∑
i=1

Siiσ
′

ii

The standard deviation value after image color cor-
rection is linked to the standard deviation value before
correction by σ′ij = aiσij and we obtain:

n

∑
i=1

Siiσii =
n

∑
i=1

Siiσiiai
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which writes:

(S11σ11, . . . , Snnσnn) ⋅
⎛
⎜
⎝

a1
. . .
an

⎞
⎟
⎠
=

n

∑
i=1

Siiσii

Therefore the two equality constraints (intensity
preservation and spread preservation) can be written
at once in matrix notations as shown in Eqn. (16).
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