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Abstract

The precise control of geometric models plays an important role in many domains such as Computer Aided geometric Design al
numerical simulation. For shape optimisation in Computational Fluid Dynamics, the choice of control parameters and the way t
deform a shape are critical. In this paper, we describe a skeleton-based representation of shapes adapted for CFD simulation
automatic shape optimisation. Instead of using the control points of a classical B-spline representation, we control the geometry
terms of architectural parameters. We assure valid shapes with a strong shape consistency control. Deformations of the geom
are performed by solving optimisation problems on the skeleton. Finally, a surface reconstruction method is proposed to evaluz
the shape's performances with CFD solvers. We illustrate the approach on two problems: the foil of an AC45 racing sail boat an
the bulbous bow of a shing trawler. For each case, we obtained a set of shape deformations and then we evaluated and analy:
the performances of the dérent shapes with CFD computations.

Keywords: computers in design, hydrodynamics (hull form), design (vessels)

1. Introduction run the meshing tool, the CFD solver and the post-processing
) o ) of the relevant results of the computation. Then optimisation
Automatic shape optimisation is a growing eld of study, gigorithms such as EGO (Ecient Global optimisation) [4, 5,
with applications in various industrial sectors. As the perfor-g] gemonstrate their eciency to solve problems with a large

mance of a ow-exposed object can be obtained accurately withymber of degrees of freedom and where the objective function
CFD (Computational Fluid Dynamics), small changes in dejyes are di cult and costly to evaluate.

sign can be captured and analysed. Based on these performance

analysis capabilities, optimisation strategies can then be applied powever, less eorts have been dedicated to the develop-

to deform the geometric model in order to improve the physicalnent of e cient parametric modellers. These components de-

behaviour and the performances of the model. form the object according to the optimisation algorithm output.
Fig.1 shows the core of an optimisation loop, which will Their role is critical in the way the space of possible shapes is

repeatedly run numerical simulations and deform the geometr¥ypiored. To be compatible with the current capabilities of the

for an automatic search of an optimal shape. optimisation tools, the parametric modeller has to modify the

shape of the object using a reduced number of parameters. It
[ CAD model ]—»[ ol } New shape should provide a precise control of the shape, while allowing to
5 generate a wide range of admissible shapes.

Flow Solver

Gpe}oa, ‘((\'_5 o
-I 2 In this paper, we propose a new approach to shape defor-
shepe mation for parametric modellers with the purpose of being in-
tegrated into an automatic shape optimisation loop with a CFD
Figure 1: Automatic shape optimisation loop solver.

The methodology presented here has the ability to gener-

Di erent types of tools need to be linked together to perate valid shapes from an architectural point of view thanks to a
form such automatic shape optimisation with aerodynamic onovel shape consistency control based on architectural parame-
hydrodynamic criteria: a parametric modeller, a meshing toolters. We focus on reducing the number of degrees of freedom

a ow solver and an optimisation algorithm [1, 2, 3], see Fig.1.of the deformation problem. We also focus on being indepen-

Recent technological progresses allow to quasi-automaticallgent from the CAD (Computer Aided-Design) software used by
representing objects with a skeleton generated from the CAD

model. Finally, we propose a methodology to link shape repre-
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The motivation of working with architectural parameters isenough for CFD computations.
lead by the intuitiveness for an architect to control a shape by
such expert parameters instead of control points. Shape deformation of ships forms for automatic shape op-
Controlling shapes by architectural parameters allows retimisation is a relatively recent approach. However, deforma-
ducing the number of degrees of freedom of the problem. Thetion techniques have been highly developed in other application
also introduce a physical and a design meaning into the optimields, such as 3D animation and movies.
sation process, allowing also to generate a majority of shapes
that are valid. In comparison to Xxing limits of variation for Free Form Deformation FFD and morphing are classical
coordinates of control points, xing the bounds to the archi-methods created for 3D animation purposes, and they have been
tectural parameter variation is intuitive. Finally, architecturalapplied to shape optimisation for ships. Closely related to the
parameters are independent of each other, making the searchkfD method, deformation techniques that enclose a shape in a
an optimal solution easier. mesh cage linked with barycentric coordinates have been pro-
posed [8]. Naval applications with morphing can be found in
We propose a way to control shapesaently in terms of  [9, 10] and applications with FFD can be found in [11, 12, 13].
these architectural parameters, by controlling and deforming FFD and morphing are usually applied to meshes and not
the skeleton curves in terms of these parameters. to a continuous geometry, thus limiting deformation because
the meshes can be subject to degeneration. FFD methods can
The skeleton deformation is completed by a surface recorbe very e cient with a small number of degrees of freedom to
struction step, to produce a smooth geometric model that can lmntrol the whole shape of the object. However, in order to per-
used by the meshing and simulation tools. The approach allowlerm local deformation, the only way is to increase the number
us to be independent of the initial CAD representation and i®f control points by re ning the areas of interest. Moreover,
not limited to a speci ¢ CAD software. FFD does not take into account any architectural parameters
when deforming an object, leading to non-realistic results.
The generalizable concept of skeleton-based representation Morphing is limited to known bounds of shape variations.
is well adapted to extend our tool to a large set a shapes e.@he exploration of the space of possible optimal shapes is ex-
hulls, appendages, propellers, wind turbine blades, airships. tremely reduced.

In this paper, we illustrate application of the modeller on  For 3D animation, another common technique for control-
two applications: the AC45 foil used by racing yachts, and thding shape are skeleton-based mesh deformation techniques [14].
bulbous bow of a trawler ship. For each case, we present thé/e can also nd deformation techniques with subdivision sur-
chosen hydrodynamic criteria to measure the performances, tlieces [15], for example by using energy minimization tech-
shape parameter that we will modify and then we propose aniques to nd the best position of mesh elements to match the
analysis of the results. user's manipulations.

For applications with a direct interaction with the physi-
cal characteristics of the object, physically driven deformation

In CAD software, the standard description used to describ@€thods exist. In this type of methods, the shape represents the
shapes are B-Spline curves and surfaces [7]. A B-Spline curvdomain where Partial Dierential Equations (PDE) are solved.

2. Related work

of degree p is de ned as : The domain can be either a mesh or a level set function. The re-
sults of the PDE are used in a cost function to determine parts of

x _ _ the domain needing to be deformed to optimise its value. Ap-

C@® = Bip(t)ci; t2[0;1] ) plications can be found for meshes [16], subdivision surfaces

=0 [17] and on level set function [18]. Generally in such applica-
wherec; = (x;;Yi;z) are the 3D control points, arii;,(t) are  tions, solving the PDE is not excessively costly. In shipbuild-
the B-Spline basis functions. ing, methods based on shape gradients focuses on minimizing
For CFD computation, the object geometry is represente@n energy function obtained by solving the Navier-Stokes equa-
by a mesh. We present in the following paragraph existingions [19, 20].
methods based on both surface or mesh representations of shapes.
Engineering dedicated CAD software can also provide para-
Deforming the control points of the NURBS representationsmetric design features, allowing the user to build parametrized
used in CAD software to automatically generate new shapesodels such a€atia™ or Grasshoppefor Rhinoceros 3V
is not appropriate. The number of control points to represengr CAESESrom Friendship Systeff. These method allows
adequately the shape may be too large (3 degrees of freedai® generate shapes easily, but all of the parameters de ned on
per control point) to be used in shape optimisation. Anothethe design are lost when saving the model in a standard le
obstacle is the complexity of the geometric models that carxchange format such as IGES or STEP. This represents a limi-
be trimmed, or subdivided into numerous patches that cannétion for automatic linking with solvers (CFD, structural anal-
be deformed in a structured way or that are simply not cleaysis, etc.) or optimisation algorithms.

2



These type of parametrized models have been combine8ll.1. Generating curve and section curves
with isogeometric ow solvers for ship hull optimisation, for In our skeleton concept, the generating curve describes the
instance in [21, 22]. general shape of the object, whereas sections describe more pre-
cisely the outlines of the object around the generating curve,
Speci ¢ software have been developed during the last decadésilarly to the architect's line plan.
for ship applications. One of the most widespreacCAE- The generating curve needs to describe the prominent fea-
SES allowing the user to modify imported geometries usingtures of the object. It is de ned to be lying on the geometry and
advanced geometrical parameters that can be modi ed by hangbnnects all the section curves. It is not necessarily planar, but
or automatically with a CFD optimisation loop [23]. The shapesymmetry considerations of the object allow to describe it as a
can be controlled with curves or surfaces around the objegslanar curve in most cases.
calledLackenby shift transformation$oints of the object are Section curves are computed as the intersection curves be-
linked to the curves or surfaces, and follow its deformations. tween the studied object and a family of planes. To each section
Similarly, a ship dedicated to@ataos[24] allows to mod-  curve, we associate a point on the generating curve, a local co-
ify the shape of sections of the hull by multiplying or adding ordinate system, an origin and a rotation which allows to know
prede ned functions to the control points of the B-Spline curvethe position and the orientation of the section curve. The cut-
describing the section. ting planes are de ned to be normal to the tangent vector of the
These tools are based on geometrical control of shapes. Agenerating curve at the corresponding point adjusted with the
chitectural parameters are computed on the deformed geometrytation associated to the section.
and can be included as constraints, but they do not directly con-
trol the shape modi cation. For practical purposes, we represent the generating curve
and the section curves as B-splines curves with a given num-
ber of control points. We further simplify the representation by
choosing a nite subset of the section curves, associated with a
Our goal is to develop a generic methodology to deform nite sampling of the generating curve. Fig.2 illustrates skele-
shapes with architectural constraints. To achieve this objectivdpns obtained with Rhinoceros 3b.
we use a twofold parametrization of the shape that allows us to =
describe a large class of objects in the same way. We base our ‘
method on a generic skeleton concept to describe the geometry,
completed by speci c architectural parameters according to the
studied shape.

3. Shape parametrization

3.1. Geometrical parametrization

Our motivation for using a skeleton based representation of
the geometry comes from two considerations:

1. Lines plan are used by naval architects to de ne the ex- (a) Skeleton of a sail boat's foil
ternal shape of the hull, for which consistent shapes must
be obtained once deformed. _,_E-iuerr:/eerating \

2. Classical and ecient techniques in 3D animation are ]
based on the deformation of medial axis curves associ- —cctoe”
ated to a shape [14].

By combining these two types of representations, we aim at
applying generic deformation algorithms while controlling the

architectural consistency. (b) Skeleton of a bulbous bow
We consider the skeleton as a set of curves composed of a
generating curve and section curves. Each section curve needs Figure 2: Examples of skeletons

to be identi ed on the generating curve: a local coordinate sys-

tem, with an origin and a rotation, allows us to know its posi-  This leads to a representation of the geometry in terms of a
tion and orientation. We are going to describe more preciselyhite set of control points. We denote by the control points
this skeleton based representation in the next section and hayf the generating curve and try the control points of the'

the following sections.
We illustrate in the next paragraphs the method to obtain the
skeleton on two dierent models.
To construct a skeleton-based representation from an initial
geometric model, we rst choose a relevant generating curve



according to the model. For airfoil based shapes, the trailingnd e ects on the object performance. Our goal is to control the
edges is an ideal choice, as is the keeline for a hull. shape of the studied object through the architectural parameters
To obtain the section curves, we compute the intersectionalue.
between the object and the set of planes de ned according to We associate dierent parameters to the generating curve
the tangent of the generating curve. If a non-null rotation isand the section curves in order to control the whole shape.
associated to the section, the cutting plane is rst transformed For example, the main characteristics of an L-shaped sail
according to this rotation. The planes are sampled along thioat foil are the length of the two parts, the angle between
generating curve, following a chord length or a curvature basethem and the angle of the entire foil called Cant. Then each air-
distribution. At this stage, we obtained a rst skeleton from thefoil pro le section has particular features, such as chord length,
model. The number of control points or the quality (continuity, thickness, angle of attack, etc. [26].
smoothness, etc.) of the curves depends on the original design. For a bulbous bow, the main features are the length, the
Then, we reconstruct new B-Spline curves with a tting angle, the height and thickness [27]. We illustrate those param-
process [25] from a point cloud sampled on the current sectionsters in Fig.3 and Fig.4. The generating curve begins where the
and the generating curve. We use a small number of contrddulbous bow start to in uence the hull shape. The length pa-
points (e.g. 10) to represent these curves, that are smoothethmeter is the total length of the generating curve. The angle
and cleaned. In the applications that we have considered this arameter measures the angle between the x-axis and the ex-
usually enough to ensure a good level of approximation. Théremity of the bulb. Variations of these parameters are shown in
average normalized distance between the intersection curvésg.18. New types of parameters can be implemented easily to
and the B-spline section curves is kept under@. enrich the model, such as the sectional areas curve, the volume
of the bulb, etc.

3.1.2. Local coordinate systems for the section curves
Section curves are identi ed on the generating curve thanks
to a local coordinate system. Each local coordinate system has
its origin de ned from a point on the generating curve, allowing v

to locate the section in 3D space.
Shaft Cant
The rst axisU is de ned into the section plane, its direc- length Anel
tion is imposed by a main feature of the section, as the leading ngle
edge for an airfoil section, or the maximum height for a bulbous Aﬂ' length

bow section.

The second axi¥ is represented by the tangent of the generat-
ing curveT (, at the origin point of the local coordinate system.
In most cases, the rst and second axes are orthogonal by cor
struction, but some sections representing special features of tr
geometry, as the extremities of the foil, are not de ned in the
planePr orthogonal tol' ). ThusU andV are not orthogonal

to each other.

(a) Generating curve parameters

Let Ry be the rotation that transforbh such agJ 2 Pr. We " Ron angte of ttack )
apply the inverse of the rotatid® to T  inorderto obtainthe 5, Ng iSO ot suchon see e

Wne % value of tne helgnt of sucton side

second axi¥/ orthogonal tdJ. Ry is associated to the section. m=de

Then the third axisV is computed as the cross product of =
the  rsttwo axes. (b) Section parameters (airfoil parameters)

e ©

The implicit de nition of the second axi¥ allows the lo- Figure 3: Foil parameters
cal coordinate system to move when the generating curve is
modi ed, computing the new orientation of the section auto-
matically. The translation and rotation matrices that turns the
original tangent to the new one is applied to the other &kis
andW and to the section control points. Therefore modifying
the generating curve induces ae transformations on the sec-
tion curves, given by the modi cation of the local coordinate

system. (a) Generating curve parameters (b) Section pa-
rameters
3.2. Architectural parameters

Architectural parameters describe the main characteristics Figure 4: Bulbous bow parameters
of the object. They are chosen according to the design practice

4



3.3. Observer function 4.1. Problem setting

We call , the observer function that computes the set of  Our goal is to nd the shape d& that matches a given set
architectural parametePson a given geometrgg: :G! P. of architectural parameters i
These parameters can be real values such as the length of a foil The observer function : G ! P is de ning the param-
or functions of the generating curve parameter, such as the twisters associated to a shape. To control the shape of the object
angle of a pro le de ned at each point of the generating curve.through the parameters value, we need to nd a shape corre-
For a given geometry 2 G, the architectural parameter§ ) sponding to given parameters. In other words, we need to com-
can thus belong to an in nite dimensional space since it carpute: *:P! G.
contain functions which represents values along the generating As the shape irG is described by a skeleton made of B-
curve. Spline curves, we propose a method that computes new values

In practice, these functions will be represented with a B-of the coordinates of B-Spline curves control points until the
Spline curves passing through the section parameter values atew skeleton parameters reaches the target ones. The new coor-
cording to their position on the generating curve. The B-Splinadinates of the B-Spline control points are the solution of a min-
curves belong to a nite dimensional space with a small hum4imisation system that we construct with four terms. The discre-
ber of control points. These are the parameters that we will ustised geometry, represented by a nite number of section curves
to control the shape. and a generating curve is calledThe generating curve param-

eterized byt 2 [0; 1] is denoted . Its controlled coe cients are
An illustration is shown in Fig.5, where the observer func-cg. The " sampled section curve corresponding to the param-

tribution of 28 section curves. by s 2 [0;1] and its control points arg = (Ci.o;:::;Ci:m). In
From this consideration, managing the B-Spline instead ofhe following paragraphs.® denotes the initial geometry, that

each section parameters represents two main advantages. Fiistthe initial generating curve and section curves.

we reduce drastically the number of parameters that control the

shape of the object and that are used in an optimisation loof?arameters value

Secondly, the modi cation of a B-Spline curve can ensure aThe rst term measures the distance of the current parameters

smooth distribution of the parameters, preserving the fairness afalues ( ) to the target one¥:

the object. The observer function can be split into a part for the

generating curve and a part for the section curves, asreit Eparam=K () VK (2)

set of parameters can be de ned on each type of curves. As we assume that the observer function can be split into a

part for the generating curve and a part for the section curves,
h ' ' ' this error term is the sum of an error term for the generating
e b e e Chresening the aosenver uncllon grEph curve and error terms for the sections. We denot&fyam =

=]

-&- B-Spline control points

%  Chord length values for a finite number of sections k i( i) Vi k2 and Eparamg =k g( g) ng2 the error term cor-
o responding to thefi section curve and the generating curve re-
spectively.

Value of chord length (m)
o o
= o

Shape consistency control

The second term is introduced to ensure consistency control
by measuring the distance of the current generating or section
curve to the original one. The consistency with the initial geom-

o
@

o
o

© o1 0z o3 os 05 05 07 oa o3 1 etry is measured after applying a linear transformation which

Parameter along the generating curve

allows to match some parameters of the target curv€hese
Figure 5: Distribution of the chord length parameter along the generating cundfansformations include a scaling of the initial curve to match
of a foil, approximated with a B-spline curve calletserver function a given length or a rotation to match a given angle. In addition
to these basics transformations, we also consider other explicit
deformations which depend on the parametgrsuch as a non-
linear scaling of the height of a pro le. These transformations
of the initial curve, denote®y, are explicitly computed from
This section explains our strategy for computing a smoottihe geometry; (or ¢). Transforming the initial curve by
shape corresponding to given architectural parameters. We dBelps matching the target parameters. The transformed geome-
scribed the problem as a non-linear constrained optimisatioffy Dv( ?) (or Dy( J)) is used as the starting point of the opti-
problem that can be applied on the generating curve or the seBlisation algorithm.
tion curves independently. We de ne:
We start by presenting the problem, then we propose an optimi-
sation algorithm to solve it numerically. Eshaps = Ki  Dy( {)K 3)

4. Shape deformation



Similarly, for the generating curve we ha¥gnapey = K g 4.2. Numerical solution

Dv( QI The de nition of the problem is well adapted to Sequential
_ . Quadratic Programming (SQP) [28]. SQP algorithm solves the
Architectural constraints minimisation problem by generating successive quadratic prob-

The third term allows taking into account speci ¢ constraits  |ems that approximate the cost function by a quadratic function
for the studied object, usually position or tangency constraintspptained from a Taylor expansion of order 2. We use nite dif-
These constraints are de ned for each sectioh= 1;:::;N  ference to compute the gradients of the system. We start with
and are not necessarily the same for all sections. For examp initial value of' and the original curve as the starting point
ple, an airfoil has a smooth connection between the suction argk the algorithm, then we decreasat each iteration and start
pressure faces thanks to a tangency constraint: the tangentigb SQP again with the last computed curve. The algorithm
the leading edge has to be orthogonal to the chord vector:  stops when the value of the objective function reaches a xed
@ ! threshold.
F,: — chord=0:
@ ) Fig.6 illustrates the deformation process. This inner prob-
For a bulbous bow, as we parametrized a half bulbous bow, WRm, solved by SQP, has a relatively large number of degrees
have to ensure that the sections end at 0 and that the tangent  of freedom as it modi es the coordinates of control points. But
at the extremity are preserved: with our methodology based on architectural parameters, the
shape optimisation outer loop (see Fig.1) controls only a few

@ @o number of degrees of freedom.
Fo:Y(i(1)=0 F;i: @(v) @(v) =0 v2f0;1g

Regularization New architectural
AU
The last term controls the overall smoothness of the shape k Pmm_‘mde‘:“‘“‘““ s

introducing sti ness between successive control potfs We o\ 1y
: - 2 \ ™ Skeleton
add correction terms to control respectiv€ly andC? proper- _model YT

ties of control points.

Control points of the skeleton
(section curves + generating curve)
\\

X
HO(C) = ) k Cjkz Cj = Cj Cj 1 New control points of the skeleton \‘\\
i \ : \
X New Deformed \ g
Hi(c) = k 2Cjk2 2Cj =Cj+1 ZCj +Cj1 \_ shape _Skeleton
j
Finally, the proposed minimisation system is described as Figure 6: Deformation process
follows.
Example
Fig.2(a) illustrate the skeleton we obtained for the AC45
MINEgarami + " Eshang + X F2() + x HIG) (@) foil. The original model is made of 22164 control points. Our
g ralm eRs R skeleton representation is made of only 578 points, 56D

28 10 points for the sections and 18 points for the generating
As we decoupled it into a minimization system for each sectiorcurve.
curve ; and for the generating curvg, an optimisation prob- The associated deformation process can be decoupled into
lem similar to Eq.4 is solved for the generating curye 29 independent sub-problems. 28 sub-problems representing
the suction and pressure faces of each sections are controlled
In these formulations), is a weight allowing to balance the by 6 architectural parameters. Each sub-problem has 16 de-
in uence of the shape control term. In fact, if this term is too grees of freedom, as the extremal points of the sections are pre-
high, the system will converge to a solution too close to thedetermined by chord and angle of attack. The last sub-problem,
initial curv, and will have di culty to respect the target param- representing the generating curve, is controlled by 4 architec-
eters.” can be seen as a penalty cagent, but we chose to tural parameters and has 36 degrees of freedom.
decrease it at each iteration because in our particular case the
initial guess, the original curve, needs to be degraded to match For the bulbous bow, whose skeleton is illustrated in Fig.2(b),
new architectural parameters. The cagents ; weighing the  the total number of control points for the half-hull is 2574, and
shape constraints and weighing the correction matrices are 57 are directly controlling the bulbous bow shape. Our skeleton
both very small, usually around 10 representation is made of 180 points, 2606 10 points for
the sections and 20 points for the generating curve. We choose
to de ne more control points on the shape of the bulb than in
the original model, as we look for a precise control of the shape
of the bulbous bow. The number degrees of freedom used by



the shape optimisation problem is smaller as they are de ned
by the architectural parameters.

The associated deformation process can be decoupled into
11 independent sub-problems. 10 sub-problems representing
the sections are controlled by 2 architectural parameters. Each
sub-problem has 16 degrees of freedom, as the extremal points

of the sections are pre-determined by the height. The last sub- cight
problem, representing the generating curve, is controlled by 2
architectural parameters and has 40 degrees of freedom.
Moreover, the total number of variables controlling the sec- I
tions can be reduced withbserver functionslescribed in Sec- — — YT
tion 3.3. !
(a) Ship section parameters
An illustration of the deformation of a sail boat section is 25 [ ‘ ' ' ' i
shown in Fig.7(b). The three parameters of the section are de- /
scribed by Fig.7(a). An observer function describes the reparti- 2| —— Original ship section f
tion of the parameters along the sections, but only one section . griginﬁl control points f
. . . . 5k ew ship section /
of the skeleton is considered in this example, made of 8 control ' - New control points /

points. The aim of the deformation is to reduce the value of
the Radiusparameters, whilgVidthandLengthare xed. Con- _
sidering this objective, the extremal points of the sections are ool /]

xed. The problem solved has 12 degrees of freedom and con- .
verges in 15 iterations, with 20 iterations of SQP each. ,

With a four-cores HP Probook-450 with a InkelCore™ 05l . )
i7-4702MQ CPU 2.20GHZ, RAM 8.00 GB, the total time to Ity
perform this section deformation is2lseconds. o os 1 sz 25 3 a5 4

(b) Deformation of the curvature radius of a sail boat section

5. Surface reconstruction ) ) ) )
Figure 7: Ship section parameters and deformation

The optimisation method outputs deformed sections and gen-
erating curves, corresponding to the skel'eton of a new shape. | jke for the skeleton deformation, we compute the surface
To evaluate the shape's performances with a CFD solver, Wgy solving an optimisation problem, where the control points
rst need to reconstruct the 3D surface wrapping the deformeq e surface;; are the unknowns. To de ne this optimisation
skeleton. _ roblem, we discretize the problem by sampling the curves. We
Building a new surface allows to obtain a cleaned-up mode}tain a point set on which we will wrap the surface. The sur-
for the meshmg tool. Thg quality of'the obtained su.rfaces IS €Ntace is computed by tting techniques [30], taking into account
sured by the high precision of the implemented tting processsmoothing and tangency constraints on the boundary of the sur-
and the control of continuity between patches. face to ensure the continuity between adjacent surfaces in the
_ ] _ _ geometric model. As explained in [29], the constraints we use
Classical techniques suchlatiing [7] are arelevant choice  5re quadratic in the control point coordinatgs We describe
for objects that can be represented with only one surface suGghem in the following paragraphs.
as foils.
For more complex objects, multi-patch surfaces are required. Ejrst, we de ne for each point of the point set a coordinate
In such cases, a particular attention has to be given to the CORsapping:
tinuity between them: for our application, patches have to be
at leastC!. We developed a technique basedform nding R®! [0;1] [0;1]
[29] to reconstruct suitable surfaces. We expose this technique Pt (usw); | =0;::Np

in the following paragraphs. ) ) .
The mapping de nes for each poif of the point set, the

parametersy; v, of the surface where (u;;v) = P, will be

5.1. Problem setting ) . |
Given the section and generating curves of the new deformeq ed approximately.

skeleton, we construct a surface which contains these curvessuncace tting
and satis es tangency conditions on the boundaries of the su|:|—_his constraint ensure that the surfacepasses thought the
face. .

pointsP;:



whereH; is a symmetric matrixy; is a vector ana; a constant.

X Some of the constraints that we use are not quadratic e.g. the
Etiing : K (u;w) PiK¢=0; 1=0;:5Np () continuity between patches. In such cases we use a geometri-
: cally meaningful linearization, e.g. expressing the constraint in
X Xn a quadratic form using the normal of the surface.
with  (u;v) = Ci; Bi(u)Bj(v)
i=0 j=0 Given the de nition of the quadratic constraints in Eq. (10)
Tangency constraint with x parts of the object and a valu = x, at iterationn, we can linearizé ;(X) using:

Let n; be the normal aP, of the x surface adjacent to a sur-

face we want to reconstruct. In thedirection, the continuity X=Xn+ X
constraint is expressed by: SO i) i) T(X X)) = 0= 1N
Efixt : < o(usv) n>2=0;1=0;::Np (6)  wherer ' i(xn) = HiXn+ bl. We can rewrite this linearization in
0 X0 ) the following matrix form:
where (u;v) = GiB(u)B;(v , , ,

u( ) -0 j=0 1] |( ) J( ) l(Xn)T r 1(Xn)T Xn 1(X)

We have similar constraints in tivedirection. : x= :
' N(Xn)T ' N(Xn)T Xn ' N(X)

Tangency constraint with mobile parts

At the N, pointsP, on the frontier with other reconstructed sur-
faces, the values of the normaig of both surfaces are new
unknowns satisfying an equality constraints. In tigirection,
the continuity constraint is expressed by:

(

thatis, a linear system of the forhly, x = r,, whose solution is
the next poinix,.1. We solve this system iteratively until a x
point is reached.

This technique is able to reconstruct @ently and accu-
rately surfaces, which contain the skeleton curves and satisfy
Emobitett : < 1u(Uni;vey) Ng>2=0 . tangency constraints on the boundary.

Emobitet2 : < 2u(U215Vay) M >%= 0 )

| = 0;::;Np; k= 0;:::5N, (and similarly for the constraints in
thev direction).

We illustrate it with the reconstruction of the surface of a
sail boat hull, in Fig.8 , and on the bulbous bow of a shing
trawler, in Fig.9.

For the sail boat hull example, we choose to reconstruct the
middle part of the hull with two surfaces. Each surface has to be

Emobile normats: < Mk Mk >2= 12 k = 0; 22N, (8) smoothly connected to a x part of the hull (the tr_ansom or the
stem) and to the other middle surface. The algorithm converges
Notice that these constraints require an initial value of » in 3 iterations, and the resulting surfaces satisfy the tangency
andny. constraints at the three junction curves.

Moreover, the normal vectay must satisfy:

Regularization
A regularization energy term can also be introduced for the sur ¥
faces, to improve the “fairness” of the surface. It is a quadratic
function of the unknowns control coientsc;;j, similar to the
regularization term for curves used in Section 4.1. We do not Figure 8: Patch of surfaces reconstructed of a sail boat hull
detail it here (see for instance [29]).

For the bulbous bow example, the bulb is reconstructed with
two surfaces. The rst one is connected to the xed hull and the
5.2. Numerical solution other is connected to the rst surface. The algorithm converges
Let us considex as the vector containing the unknown of in 4 iterations, and the resulting surfaces satisfy the tangency
the system, in other words the surfaces control paiptand  constraints at the four junction curves.
the normals, at the frontier with two reconstructed surfaces.
The surface is constructed so that the total energy is m|n|m|ze%. Applications

Etotal = Efitting+ EfixT + EmobileTs * EmobileT2+ Emobile normals (9) In this section we present two dirent applications of the

A dedicated algorithm is used to compute a valuexpfor parametric modeller, one on the foil of an AC45 and one on

which Eqra is less than a threshold. Let us describe it brie y. the bulbous bow of a shing trawler. In both cases, we aim
The general form of quadratic constraints that we treat is: t0 increase a performance criterion with shape variations. The
parametric modeller is automatized and linked to a ow solver.

i) = }XTHiX+ bix+ G =0;i= 13N (10) A specic ow solver is used for each application: potential



Figure 9: Patch of surfaces reconstructed of bulbous bow

ow solver for the foil and RANSE for the bulbous bow.

Timings in the experimentations refer to the same hardware
con guration as described in section 4.2. Figure 10: lllustration of the AC45 on the Groupama Team France sail boat,
Credit: R Eloi Stichelbaut Groupama Team France

6.1. Application on a sail boat's foil: AC45

_In the recent years, new high-speed boats were developed  Tpe foil is represented with a_nite number of elements, i.e.
using foils. The purpose of a foil is to lift the hull of the boat rfojl sections given by the skeleton. For each element a local
above water surface. The hull resistance (friction and wavge|ocity, a local Reynolds number and a local angle of attack
making drag) is decreasing, allowing to reach very high speedgs computed. Each element has an associated XFOIL database

N ) . _containing the lift and drag of the section for a given range of
For sailing yachts, the foils are built as an "L” shape with angles of attack (usually betwees and 20).
a vertical part countering the sails forces, and a horizontal part “ArAVANTI use this database to nd the lift of each element
supporting the yacht weight. . of the foil according to its current local angle of attack. Then the
~ While sailing, the foil allows the yacht to 'y as shown in i is converted to a local vorticity. The wake is imposed with
Fig.10. However, to maintain this ying state, the stability of the computed gradient of vorticity then solved. These steps are

the foil is a critical aspect for both security and performance. rgpeated until convergence thanks to a direct iterative method,
Designers have to manage numerous parameters in order jghich is able to nd a stationary solution.

produce a foil with a low drag, but high stability.

) ) ) . For this type of application, ARAVANTI does not need to be

We consider here the AC45 foil. This type of foil is "one- |inied to any CAD software. As inputs, it requires a 2D point
design” meaning that its shape is the same for all AC45 boats¢joyq description of the sections, similar to the XFOIL input,
For this application, we aim to optimise the shape of theang 4 text le indicating the 3D position of each section with

AC4S5 foil in order to decrease its total drag while keeping stay,gints and quaternions. These les are generated automatically
bility and the ease of use as high as possible. The foil PeTby the parametric modeller.

formances are computed with the potential ow solver ARA-

VANTI. In our speci c case for AC45 foil study, only the underwa-
o ter part of the foil is simulated. The in uence of the free sur-
The ACA45 foil is currently used by the Groupama Teamgyce js taken into account with an anti-symmetry plane model.
France sailing team for the 8%America’s Cup. An illustration This model is a satisfying approximation for high speed. As
of the sail boat ying thanks to the foil is shown in Fig.10, one [33] suggests, with a Froude number greater than 1, an in nite
foil in the water (right) and the other one visible in the retractedrq,,de number free-surface condition can be used. In our case,

position (left). the Froude number is around5s.

6.1.1. Simulation with ARAVANTI ' _ We illustrate in Fig.11 the wake computed with ARAVANTI
ARAVANTI, the ow code used in the present study is de- and the vortex lines. The vortex line is located at 25% of the aft

veloped and commercialized by the company K-Epsilon. ARA-of the leading edge along the foil. From the vorticity repartition

VANTI is a coupled uid-structure solver, with a nite element colormap, we see that the parts of the AC45 which generate

method for solving the structure and multiple drent methods  most of the force allowing to lift up the boat are the knee and

for the uids (e.g. vortex line method, particle method, panelthe tip.

method, etc.) [31, 32]. The reference frame is de ned as follows:s in the oppo-

The method used here is a vortex line method with solvedite direction of the ow,Z is in the vertical direction (oriented
wake. ARAVANTI is coupled to XFOIL in order to incorporate ypwards) and is horizontal, perpendicular to X.

the ow behaviour such as laminar transition, and stall.



Figure 11: lllustration of the wake and vortex line on the AC45

6.1.2. Proposed performances criteria

the rake has to increase as little as possible when the speed in-
creases. Thus the rat%ke has to be positive and as small as
possible.

For both cases, we ensure that the nite elience is a satis-
fying approximation by choosing appropriate stegsand V.

The aim of our study is to reduce the total drag of the AC45
as much as possible while keeping stability criteria as large as
possible.

6.1.3. Proposed deformations
We identi ed the most relevant parameters that in uence a
foil performances as the tip length, the angle between the shaft

We choose to de ne the foil performances with three criteriaand the tip and the cant angle, illustrated in Fig.12. Here, we

computed with ARAVANTI.
1. The total drag-4 of the foil in the reference frame. A

low drag increases the total performance and speed of the

boat.

2. A stability criterion, represented l% whereF; is the
total force in thez direction of the foil. The aim of this
criterion is to ensure that the boat will stay at a xed
height thanks to a self adjustirkg balancing the vertical
movements of the foil.

3. Astability and usage criterion, represente , Where
therakeis the angle of incidence of the foil in the Y ro-
tation, andV is the boat speed. The rake is a paramete
that the crew have to adjust while sailing to modify the
vertical forcesF,. Thus a foil shape where this param-

consider the cant angle as a shape parameter and not as control
parameter of sailing.

To generate a new CAD from the original CAD model, our
tools takes on average 12 seconds to build the skeletbsges-

ond for the generating curve deformation and 5 seconds for the
section curve deformation. In our case, we perform only de-
formation of the generating curve. Moreover there is no need
to build a new surface around the skeleton, as ARAVANTI does
not require a continuous surface as an input. A set of points dis-
tributed on the section curves of the skeleton is sient. The
rskeleton we used on the AC45 is illustrate in Fig.2(a).

eter does not change a lot when the speed is varying is

valuable.
Computations are performed with a xeél, given as the

opposite force to balance the force applied by the sails on the

hull. F,is also xed to counter the weight of the hull and be
able to lift it up. The speed of the yacht is rst set to 22 knots.
ARAVANTI solves for the leeway and rake angles of the foil,
until computed forces converge to the imposed forces.

F« is computed during the simulation, and we aim to de-
crease it as much as possible. In the reference frame we used

F is oriented along the negativedirection. Thus, the sign of

Figure 12: Foil shape parameters

" The variations of the parameters are distributed in a param-

Fx will be negative, but we can consider the absolute value t(gzter space de ned in Tab.1, and illustrated in Fig.13.

compare the foil performance.

Tip length Angle Cant
To compute the second criterion, we estim%é with - Initial value 1.37m 7724 2:42
nite di erences. We vary the foil displacement by a small Min variation 30% 30% 3137%
and compare the comput€&d. To be stable, the foil has to gen- (=096m) | (=541) | (= 52)
erate aF, opposed to the direction of the displacement. Thus . +40% +20% +7272%
the ratio % has to be negative and as large as possible. Max variation (= 1:92m) | (= 9265) (=20)

For example, if the boat is riding too high above the water sur-

face, the foil forceéF, has to decrease in order to make the whole Table 1: Limits of parameters domain

system lower.

We use the same process for the third criteriggie, by
solving the rake angle for a small speed variatioh. Here,

10

To sample the parameter space, we use a Latin Hypercube
distribution [34]. Our choice is based on the future use of op-
timisation algorithms such as EGO, that are often initialized



Figure 13: Shape variation of the foil in the paramter space

with such parameter space values distributions as they are well
adapted for response surface methods [35].

6.1.4. Results
We used a Latin Hypercube distribution with 20 points to
sample the parameter space described in Tab.1. For each set of

parameters, we build a new corresponding foil with our para- Figure 14: Latin hypercube distribution of foils shape
metric modeller and we evaluate automatically the value of the .

L. . @ . @ake |y % Tip length | % Angle | % Cant |Totaldrag| @, | @ake
3 criteria, Fy; @'’ @ with ARAVANTI. # variation |variation | variation | (jFxj) in N @ @

As our aim is to reduce the total drag as much as possibléAC45 ) i ) 1077 423 | 1.045

while kee'ping stability criterion as large as possible, the opti; 8620 | +1858%|+65053% 983 1495 | 0:825
mal solution is located on a Pareto front. We represented th
Pareto fronts of the drag with each stability criterion in Fig.14.| B +3402% | +9:74% |+41679%| 983 2863| 0:710
The Pareto front is de ned with few points at this stage of the
study. More points will be added while performing the auto-| € | *3156% | 596% +59187% 1122 | 6392) 0:872
matic shape optimisation process. In a future work, the perfor-
mance of the foils located on the current Pareto front will be
improved by including an adapted optimisation algorithm.

)

D +11:88% 29:63%|+721:38% 1327 7240| 1:271

Table 2: Parameters and criteria values of points on both Pareto fronts

We named the foils closest to the Pareto fronts (A,B,C,D),

Foil A being the one with the least drag and worst stability, Foilwhereas for Foil D (Fig.16(b)), the vorticity in essentially lo-

D being the one with the most drag, but the best stability an¢ated on the shaft, thus the lifting force is principally generated
Foils B & C being in between. Even if Foil A has the worst from this part.
stability of the Pareto front, it is still better than the original

AC45. The other criteria vary around the original values. To conclude, the behaviours we observed of theetent
Note that the foils A, B, C and D refer to the same shapesoils match expected results, and some tendencies are well known
on both Pareto front% vs F and @€ vs Fy. by designers.

We detail the points on the Pareto fronts in Tab.2, with the A further study will include the sinkage as well as shape
initial AC45 results for comparison. We illustrate the results inparameters for the sections. We will also take into account the
Fig.15. moment of the boat about thedirection My. The moment

has an in uence on the predicted performance of the foil, and

The two shape variations Foil A and Foil B are rather dif- especially the value of cant angle can beeted in order to nd
ferent for the tip length and angle values. We can deduce a link con guration that countersl,.

between these two parameters that leads to mowgest foils, Also, an optimisation algorithm will be integrated in the
either a short tip with a great angle or a long tip with a smallloop, helping to determine with certitude the best tendency of
angle. Both cases suggest to increase the cant angle. parameter values.

The two extreme shapes in the Pareto fradtvs Fy, Foll
A and D, show a very dierent behaviour of the foil according
to the parameters, illustrated in Fig.16 where we see the vortias.2. Application for a bulbous bow

ity distribution along the foil. In the case of Foil A (Fig.16(a)) We present an application of our parametric modeller for
the vorticity is uniformly distributed on the shaft, knee and tip'deforming a shing trawler bulbous bow

11



(a) Foil Avs AC45 (b) Foil B vs AC45

(a) Foil A
(c) Foil C vs AC45 (d) Foil D vs AC45
Figure 15: Shape variations on Pareto fronts
(b) Foil D
The original trawler was designed without a bulbous bow.
We aim to reduce the total drag of the hull by adding a bulbous Figure 16: Wake of Foils A and D, front view

bow.

modeller generates shapes which are well-adapted to these re-
uirements and which allow to produce high-quality meshes for
Smputations.

An initial bulb was designed by a naval architect, then we
propose to vary three parameters to control the shape: the anq(:f
the length and the width at mid-bow of the bulb.

To generate a new CAD from the original CAD model, our
tools takes on average Bi&econds to build the skeleton, an av-
erage of 141 seconds to perform deformations, and 20 SeCondgptimising the grid in the simulation, by adapting the grid to the
to reconstruct the surface.

. . . ow as it develops during the simulation to increase the preci-
IatioRnAbl\éiSn(Rr?(;rr]glS(?r-r?VIz:(at\C(])e:el':ZM(a'[rhset(ljiﬁisvﬁ?hu?r;“eonzzsrzgiéion locally. This is done by locally dividing cells into smaller
. 9 P 1P, P cells, or if necessary, by merging small cells back into larger
ric modeller was not fully automatised. . . .
cells in order to undo earlier re nement. During the computa-
tion, the number of cells increases from® 10 approximatively
to 2.2 million cells, for a half hull mesh. Fig.17 shows the mesh

6.2.1. Simulation with FINEYMarine
imuiation wi ! re nement around the hull and the free surface at the end of the
To generate non-conformal, fully hexahedral, unstruc:ture%omputation

meshes for complex arbitrary geometries, we use HEXPRESS
from Numeca International. The advanced smoothing capabil-
ity provides high-quality boundary layers insertion [36]. The

.S‘Zf(tjwagf :]Exgrsfesﬁl.rfriﬁfzﬁ clﬁslcht\r/]v:rt]e;-ggzt t_”t?gglcjf;_steady Reynolds-averaged Navier-Stokes (RANS) solver [37,
1zed volme, N9 I hut, y 38]. For the turbulent ow, additional transport equations for

putatpnal grid IS b.u'lt' One of the meshes used in our SlmuIafhe modeled variables are discretized and solved. The two-
tions is shown in Fig.17.

equation kt SST linear eddy-viscosity model of Menter is

The arid generation process requires a clean and closed g§ed for turbulence modeling. The solver is based on the nite
€ grid gene P 9 9%6lume method to build the spatial discretisation of the trans-
ometries to provide robust meshes. Thanks to the shape cop- .
. ; ort equations.
sistency control and the smooth reconstruction of surfaces, the

12

During the computation, automatic mesh re nement has been
used. Automatic, adaptive mesh re nement is a technique for

We use the ow solver ISIS-CFD, available as a part of the
FINE™/Marine computing suite. It is an incompressible, un-



Parameters such as sectional area, vertical position of the
centroid, type of sections (delta, oval, nabla) are also important
parameters for the shape of the bulbous bow. These parameters
are being integrated into the parametric modeller. The current
study focuses on the three parameters (angle, length and width),
and will be extended in a future work with new parameters.

The variations are distributed in a parameter space de ned
in Tab.4, according to limits given by architectural criteria.

The initial bulb being quite short, we assumed that shapes
with a lower length than 1.86m will not positively in uence
the drag, likewise we restricted the bulb to not be longer than

Figure 17: View of the mesh around the hull with free free surface deformatiothe extremity of the upper bow. For the angle, we noticed that
when the length of the bow is increased, keeping the original

) o ] value will cause the bulb to pierce the free surface, again this
The unstructured discretisation is face-based, which means thgg, guration is unwanted.

cells with an arbitrary number of faces are accepted. This makes

the solver ideal for adaptive grid re nement, as it can perform Length Angle Width
computations on locally re ned grids without any modi cation. [T|nitial value 1:61m 3152 0:83m
Free-surface ow is simulated with a volume of uid approach: +15% 5504 50%

the water surface is captured with a conservation equation for Min variation | ,_ o .

the volume fraction of water, discretised with speci ¢c compres- = 1.8(?m) (= 2:2'64 ) | G 0.6§m)
sive discretisation schemes, [38]. The vessel's dynamic trim Max variation +9.O/° O@ +.20/°
and sinkage are resolved during the simulation. (=307m) | (=3152) | (0:99m)

. . Table 4: Limits of parameters domain
The studied trawler has a waterline length of32metres P

and a displacement of 150 metric tons. Simulations are done  ag for the application to the foil, we use a Latin Hypercube
at a speed of 13 knots @8nts), corresponding to a a Froude yisripution to sample the parameter space in order to prepare

number of 04517. Trim and sinkage are solved. The hull for- 5 rejevant dataset for the future use of optimisation algorithms
ward motion is imposed by accelerating itto its nal speed withg -1 as EGO.

az—l1 sinusoidal ramp. Fluid characteristics are shown in Tab.3.

6.2.3. Results
(kg=) (Pas) We used a Latin Hypercube distribution with 20 values. We
Water | 102602 | 0:00122 present in Tab.5 the results of the original hull without bulb, the
Air 1:2 185 10° hull with the initial bulb and the best variation obtained from

the parameters variation. The best variation is not a fully opti-
mised bulbous bow, as no optimisation algorithm has yet been
used for this application. It is planned to use EGO [35] on the
6.2.2. Proposed deformations distribution obtained through this study as a future work.

Table 3: Fluid characteristics

The skeleton used for the bulbous bow is illustrate in Fig.2(b). o ) . .
We propose to vary three parameters to control the shape: The best drag reduction is obtained with the following pa-
the angle, the length, and the width at mid-bow of the bulbf@meter values: Lengtt:5870% € 2:56m) ; Angle: 19:81%

Fig.18 illustrates variations of bulbous bow shape according t§= 2528 ) ; Width: +9:99% & 0:66m). The total dragr is
the parameters. composed of the friction resistanégic.x component and the

pressure resistand&sesx component. The friction resistance
is obtained by integrating the tangential component of stresses
over the wetted surface of the hull, in the direction of motion,
and the pressure resistance is obtained by integrating the nor-
mal component, in the direction of motion. Tab.5 presents the
di erent components of resistance computed by ISIS-CFD and
a comparison with ITTC-57 friction resistance computed with
dynamic wetted surface. There is no correlation allowance used
as the computation is performed at full scale.

In other terms, the best variation represents an improvement
of 3:64% from the rst bulb design. The pressure resistance rep-
resents an important part of the total drag of the original hull.
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(a) Length variation (b) Angle variation (c) Width variation

Figure 18: Bulbous bow shape variations



Original hull | .. ot
(without bulb) Initial bulb | Best variatio
Static wgtted 1836 1901 1937
surface in M
Dynamic yvetted 1954 2007 2042
surface in g
TOtFJ‘i'nd’r\lagFX 79910 73740 71054
Pressure ri(;s,l\ftane'earesx 70599 63852 60970
Friction reisr:s,aancE Fric;x 9311 9887 10083
|TTC—57 fr|ct|9n resistance COmpUtad 9042 9140 9445
with dynamic wetted surface in N
3 h
% reduction 7-72% 11:08%
of dragFx

o (a) Free surface elevation for the Initial bulb
Table 5: Drag results and variations on the bulbous bow

We can observe the positive impact of the bulbous bow on this
component. It reduces the pressure resistance by modifying the
shape of the bow wave (see Fig.19). The friction resistance in-
creases with the wetted surface. Despite that the Atgtiamic
wetted surface increases due to the additional surface of the bul-
bous bow, the total resistance decreases thanks to éist @n

the ow.

Trim a ects the drag by modifying the ow around the ship
hull. The volume distribution of the bulbous bow is not pre-
served during the shape deformation, but the total displacement

and location of the center of gravity are kept identical for each (b) Free surface elevation for the Best variation
design.
Tab.6 shows the evolution of the total trim and sinkage of Figure 19: Free surface elevation

the three hulls. The total trim (respectively sinkage) is the sum

of the hydrostatic the dynamic trim (respectively sinkage). The. | ) L laorith
variation of total trim is relativity small between the dirent tion results by using an adapted optimisation algorithm based

designs. As trim of the original hull and best variation are simi-o" Kriging such as EGO to nd minima using the model built
lar, the e ect on the drag is mostly produced by the modi cation from the response surface.
of the shape of the bulbous bow.

7. Conclusion and future work

Total trim indeg | Total sinkage irm
Original hull 1-656 0:257 This paper presents a method for parametrizing and deform-
(without bulb) ' ' ing di erent type of shapes with a skeleton-based approach.
Initial bulb 1:495 0:264 The methodology we develop reduces the number of degrees of
Best variation 1:728 0:225 freedom thanks to observer functions described with B-Splines
and provides a ne control of the geometry in terms of archi-
Table 6: Trim and sinkage results tectural parameters. Our tool can handle any shape that can be

described with the skeleton-based parametrization.
Fig.19 illustrates the free surface elevation of the two de-
SignS, Initial bulb and Best Variation, and FIgZO show the wave Our parametric modeller allows to exp|ore the domain of
patterns. possible shapes in an e€ient way, and allows to determine im-
provements of the design that are architecturally relevant.
The sampling we performed with the Latin Hypercube is  As shown by the experiments, we are able to improve the

represented graphically with a response surface method, illugrydrodynamic performances of a AC45 foil and a bulbous bow,
trated in Fig.21. Figure 21(a) represents cutting planes of thgith a few number of parameters.

design space, showing two main local minima. In Figure 21(b),

we show iso-values of the total dr&g. We can identify a re- Further work will focus on handling more complex geome-
gion where the objective functionis predicted to be smaller thafries with the skeleton representation. Section curves with mul-
in the other parts of parameter domain. tiple components and branching curves will be considered.

Further investigations may lead to nding better drag reduc-
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Figure 20: Wave generation of the initial bulb (upper part) and the best variation

(lower part) designs

(a) Cutting planes of the response surface

(b) Iso values of the total drdgy in the response surface

Figure 21: View of the response surface

We will also develop the link with optimisation algorithm
solvers. A fully automatised optimisation loop will be devel-
oped. Sensitivity of the simulation results to parameters will be
taken into account in order to reduce the degrees of freedom as
much as possible.
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