B. Nohra, L. Candy, J. Blanco, C. Guerin, Y. Raoul et al., From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes, Macromolecules, vol.46, pp.3771-3792, 2013.

M. S. Kathalewar, P. B. Joshi, A. S. Sabnis, and V. C. Malshe, Non-isocyanate polyurethanes: from chemistry to applications, RSC Adv, vol.3, p.4110, 2013.

L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s, Chem. Rev, vol.115, pp.12407-12439, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365096

P. T. Anastas and J. C. Warner, Green Chemistry : Theory and Practice, Oxford Uni, 1998.

R. T. Mathers, How well can renewable resources mimic commodity monomers and polymers?, J. Polym. Sci. Part A Polym. Chem, vol.50, pp.1-15, 2012.

R. Mülhaupt, Green polymer chemistry and bio-based plastics: Dreams and reality, Macromol. Chem. Phys, vol.214, pp.159-174, 2013.

L. Maisonneuve, A. S. More, S. Foltran, C. Alfos, F. Robert et al.,

H. Grau and . Cramail, Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s, RSC Adv, vol.4, p.25795, 2014.

A. Boyer, E. Cloutet, T. Tassaing, B. Gadenne, C. Alfos et al., Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis, Green Chem, vol.12, p.2205, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00679371

O. Lamarzelle, P. Durand, A. Wirotius, G. Chollet, E. Grau et al., Activated lipidic cyclic carbonates for non-isocyanate polyurethane synthesis, Polym. Chem, vol.7, pp.1439-1451, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01364916

E. Darroman, L. Bonnot, R. Auvergne, B. Boutevin, and S. Caillol, New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol, Eur. J. Lipid Sci. Technol, vol.117, pp.178-189, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01113805

F. Stempfle, D. Quinzler, I. Heckler, S. Mecking, F. Stemp et al., Long-Chain Linear C 19 and C 23 Monomers and Polycondensates from Unsaturated Fatty Acid Esters, Macromolecules, vol.44, pp.4159-4166, 2011.

X. Miao, C. Fischmeister, P. H. Dixneuf, C. Bruneau, J. Dubois et al., Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis, Green Chem, vol.14, p.2179, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00864808

S. Samanta, J. He, S. Selvakumar, J. Lattimer, C. Ulven et al., Polyamides based on the renewable monomer, 1,13-tridecane diamine II: Synthesis and characterization of nylon 13,6, Polym. (United Kingdom), vol.54, pp.1141-1149, 2013.

M. Winkler and M. A. Meier, Highly efficient oxyfunctionalization of unsaturated fatty acid esters: an attractive route for the synthesis of polyamides from renewable resources

A. J. Fatiadi, Preparation and synthetic applications of cyano compounds, Triple-Bonded Funct. Groups, vol.2, 1983.

J. S. Miller and J. L. Manson, Designer magnets containing cyanides and nitriles, Acc. Chem. Res, vol.34, pp.563-570, 2001.

M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, And Structure 7th edition, 2013.

B. M. Reddy and B. Manohar, One step synthesis of acetonitrile from ethanol via ammoxidation over Sb-V-P-O/Al2O3 catalsy, J. Chem. Soc. Chem. Commun, pp.234-235, 1993.

T. Oishi, K. Yamaguchi, and N. Mizuno, Catalytic oxidative synthesis of nitriles directly from primary alcohols and ammonia, Angew. Chemie -Int. Ed, vol.48, pp.6286-6288, 2009.

T. Ishida, H. Watanabe, T. Takei, A. Hamasaki, M. Tokunaga et al., Metal oxidecatalyzed ammoxidation of alcohols to nitriles and promotion effect of gold nanoparticles for one-pot amide synthesis, Appl. Catal. A Gen, pp.85-90, 2012.

P. Gamez, I. W. Arends, J. Reedijk, and R. Sheldon, Copper(II)-catalysed aerobic oxidation of primary alcohols to aldehydes, Chem. Commun, pp.2414-2419, 2003.

S. Mannam, S. K. Alamsetti, G. Sekar, and A. , Chemoselective Oxidation of Alcohols to Carbonyl Compounds Catalyzed by a DABCO-Copper Complex under Mild Conditions, Adv. Synth. Catal, vol.349, pp.2253-2258, 2007.

P. J. Figiel, A. Sibaouih, J. U. Ahmad, M. Nieger, M. T. Räisänen et al., Aerobic Oxidation of Benzylic Alcohols in Water by 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)/Copper(II) 2-N -Arylpyrrolecarbaldimino Complexes, Adv. Synth. Catal, vol.351, pp.2625-2632, 2009.

J. M. Hoover and S. S. Stahl, Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols, J. Am. Chem. Soc, vol.133, pp.16901-16911, 2011.

C. Tao, F. Liu, Y. Zhu, W. Liu, and Z. Cao, Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia, Org. Biomol. Chem, vol.11, pp.3349-54, 2013.

W. Yin, C. Wang, and Y. Huang, Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis, Org. Lett, vol.15, pp.1850-1853, 2013.

D. K. Yadav and B. M. Bhanage, Copper-Catalyzed Synthesis of Nitriles by Aerobic Oxidative Reaction of Alcohols and Ammonium Formate, European J. Org. Chem, vol.2013, pp.5106-5110, 2013.

L. M. Dornan, Q. Cao, J. C. Flanagan, J. J. Crawford, M. J. Cook et al., Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant, Chem. Commun, vol.49, pp.6030-6032, 2013.

X. Sheng, G. Ren, Y. Qin, X. Chen, X. Wang et al., Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis, Green Chem, vol.17, pp.373-379, 2015.

F. Stempfle, P. Ortmann, and S. Mecking, Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates, Chem. Rev, vol.116, pp.4597-4641, 2016.

, aqueous ammonia (0.29 mL). 1 H NMR (CDCl3, 25 °C, 400 MHz) ? (ppm): 5.38 (m, 2H), vol.2

, CuI (122 mg, 0.64 mmol, 20 mol%), bpy (100 mg, 0.64 mmol, 20 mol%), TEMPO (100 mg, 0.64 mmol, 20 mol%), acetonitrile (5 mL) and aqueous ammonia (0.5 mL). 1 H NMR (CDCl3, 25 °C, Figure S8: 1 H NMR spectrum in CDCl3 of nitrile obtained from oleyl alcohol. (*) Impurities From citronellol: citronellol (0.5 g, 3.2 mmol)

, CD3OD, 25 °C, 100 MHz) ? (ppm): 41.96 (CH2-NH2), p.2916, 2850.

, Figure S15: 1 H NMR spectra in CD3OD of UndC20-diamine. (*) Impurities

, After 3 days, the reactor was cooled down to RT and slowly depressurized to the atmospheric pressure. The mixture was reconcentrated on rotary evaporator. The 1 H NMR of the final mixture revealed a conversion of 98%. The UndCC-ether was purified by flash chromatography using a mixture of cyclohexane and ethyl acetate (100:0 to 81:19), and obtained as a viscous transparent liquid, 16H). 13 C NMR (CDCl3, 25°C, 100 MHz) ? (ppm):137.9 (CH=CH2), 113.2 (CH=CH2), 70.7 (OCH2-CH2), 70.4 (CH2O-CH2CH2), vol.49, p.1760

. Und-bcc-ether and . Synthesis, Into a round-bottom flask, the UndCC-ether (5g, 18.5 mmol) and 1 st generation Grubbs catalyst (76.2 mg, 0.093 mmol, 0.5% mol) were charged under nitrogen. The contents were vigorously stirred at 35°C for 24 hours. The equilibrium was driven thank to the removal under vacuum of the produced ethylene. The product was then purified with flash chromatography using a mixture of dichloromethane and methanol as eluent

S. Figure, Stacked 1 H NMR spectra of (1) undecen-1-ol

, Und-bCC-ether was obtained as a grey solid. Yield=53%. 1 H NMR (CDCl3, 25°C, 400 MHz) ? (ppm): 5.38 (m, 2H), 4.80 (m, 2H), 4.49 and 4.39 (t, 4H), 3.64 (m, 4H), 3.50 (t, 4H), 1.97 (m, 4H), 1.56 (m, 6H), 1.27 (m, 26H). 13 C NMR (CDCl3, 25°C, 100 MHz) ? (ppm): 154.5 (OCOO), vol.130

, CH2-CH=CH), vol.32, pp.2-2, 1141.

, C NMR (CDCl3, 25°C, 100 MHz) ? (ppm): 173.0 (CH2-OCO-CH2), 154.5 (OCOO), 130.5 (CH=CH), 73.7 (CH-CH2-OCO), 65.7 (CH2-CH-CH2-OCO), vol.62

, 1 eq of dried diglycerol (5 g, 30 mmol) was mixed with 15 eq of dimethyl carbonate (40.7 g, 452 mmol) and heated up to 90°C. 0.05 eq of La2O3 (0.49 g, 1.5 mmol) was then inserted and the contents were PHUs were synthesized from Und-bCC-ether, Und-bCC-ester, and with 1,10-decanediamine (10DA) and UndC20-diamine (20DA) as comonomers. The polymerizations were, DGDC synthesis : : Into a round-bottom flask equipped with a refrigerant

, Figure S20: 1 H NMR spectrum of PHU1 from 10 DA and Und-bCC-ester. Analysis performed in DMSO) (* : residual monomers