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Abstract. The goal of the attribution of individual events is to estimate whether and to what extent the risk of an extreme climate

event evolves when external conditions (e.g. due to anthropogenic forcings) change. Many types of climate extremes are linked

to the variability of the large-scale atmospheric circulation. It is hence essential to decipher the roles of atmospheric variability

and increasing mean temperature in the change of probabilities of extremes. It is also crucial to define a background state (or

counterfactual) to which recent observations are compared. In this paper we present a statistical framework to determine the5

dynamical (linked to the atmospheric circulation) and thermodynamical (linked to slow forcings) contributions to the risk of

extreme climate event. We discuss the creation of two states (or “worlds”) in which risk change is determined. We illustrate

this methodology on a record precipitation event that hit southern UK in January 2014. The paper argues that it is possible to

obtain qualitative results from reanalysis model simulation data for such an event.

1 Introduction10

Many extreme events that occur on a local scale are specific to large-scale atmospheric patterns (e.g., rainfall, windstorms,

heatwaves in Europe, and phases of the North Atlantic Oscillation). If such links have been identified, changes in the probability

of local extremes can be due to changes in the properties of the atmospheric circulation or changes in the link between the local

variable and the circulation (which can remain unchanged). The first cause is sometimes qualified as “dynamic” because it

refers to the motion of the atmosphere. The second cause is qualified as “thermodynamic” (or “non dynamic”), because it15

implicitly assumes that the local variable is related to the local change of atmospheric physical properties (e.g., temperature,

water content) in the absence of flow changes (Trenberth et al., 2015).

The extreme event attribution (EEA) consists in estimating if and how the probability of an extreme event depends on the

climate forcings (National Academies of Sciences Engineering and Medicine, 2016). One of the outcomes is the assessment

whether anthropogenic forcings alter such probability. This type of study has been used for estimates of liability for extreme20

events that caused damages (Allen, 2003).

The first scientific challenge of EEA is to define two worlds to be compared. The EEA studies speak of a factual world when

all climate forcings (natural and anthropogenic) forcings are considered (Stott et al., 2004). This is presumably a world that “is”,

and in which an event is observed with probability p1. The counterfactual world contains only natural forcings, and is a world

1



that “might have been”. In such a world, the same extreme event would occur with probability p0. Defining a counterfactual

world is a difficult task because it is a possible but non observed state of climate. Then, some studies define the fraction of

attributable risk (FAR), which is the relative change of probability between the two worlds FAR≡ (p1− p0)/p1 = 1− p0/p1
(Stott et al., 2004). Other combinations of the p0 and p1 probabilities also provide pieces of valuable information (Hannart

et al., 2016).5

An alternative approach can be proposed, as in van Haren et al. (2013): a “new” world in which we live, like the recent

decades, and an “old” world in which our ancestors lived, like the beginning of the 20th century. We implicitly assume that

those two worlds are different (at least from the enviromnental point of view). The main feature of this approach is that it can be

based on observed data. It is difficult to decipher the natural and anthropogenic forcings between “old” and “new”. Therefore

such a data-based approach can only provide qualitative information on EEA, from implicit hypotheses in the forcing changes,10

like “greenhouse gas forcing” is larger in the “new” world than in the “old” world.

A second challenge is to determine the dynamical and thermodynamical contributions to the change of probabilities. The

goal is to estimate the contribution of atmospheric variability in climate change, and to determine how the properties of a local

climate variable change if the atmospheric circulation is fixed. This is advocated by a “storyline” approach to describe a class

of extreme events, by understanding the general synoptic conditions leading to the extremes (Trenberth et al., 2015; Shepherd,15

2016). The storyline approach is designed to decompose the role of climate change in the dynamical and thermodynamical

contributions. From a statistical point of view, this motivates the term “conditional attribution”: we investigate how the proba-

bility of a local extreme event that depends on a large-scale atmospheric circulation is affected by global climate change or the

properties of the circulation itself. If we focus on precipitation extremes, the issue is to evaluate changes in atmospheric flows

leading to high precipitation (the dynamical contribution) and changes in precipitation rates given a favourable atmospheric20

flow (the conditional thermodynamical contribution) (Trenberth et al., 2015).

Recently, Schaller et al. (2016) showed that the change in winter circulation explained about one third of the simulated

changes in the large January rain amounts, by using a simple index characterizing stormy weather in the UK. In a recent

study, Vautard et al. (2016) generalized this approach for estimating dynamical contribution of changes for a class of extremes

characterized by a threshold exceedance. That method used flow analogues combined in the factual and counterfactual worlds,25

tracking changes in probabilities of exceedance for all flows encountered in each world. Here a direct Bayesian approach is

proposed, which also highlights the role of a specific flow type in the event class change.

For illustration purposes we focus on the heavy precipitation event that occurred in Europe in January 2014, which has

been investigated by many authors (Huntingford et al., 2014; Matthews et al., 2014; Christidis and Stott, 2015; Schaller et al.,

2016). This event was a record precipitation in southern UK, Brittany and Normandy (France). It caused over 570 million euros30

insured losses in the UK (Schaller et al., 2016).

Section 2 explains the notation and methodology that is developed in the paper. Section 3 details the datasets that are used

to define two worlds. Section 4 gives the results of the analyses from the two datasets. We compare the Bayesian analyses with

the two sets of worlds (factual and counterfactual vs. new and old). The results are discussed in Section 5 and conclusions

appear in Section 6.
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2 Methodology

2.1 Notations and rationale

We assume that a climate variable R (e.g. temperature, precipitation) and atmospheric circulation C (e.g. SLP, geopotential

height at 500hPa) are observed in a universe that contains two distinct worlds,W0 andW1. Here, R is a real variable and C5

is a two dimensional field. For the first universe, we use Detection and Attribution notations (e.g. Stott et al., 2016; National

Academies of Sciences Engineering and Medicine, 2016) to qualify W1 as “factual” and W0 as “counterfactual”. In the

second universe W1 is “new” and W0 is “old”. The W1 worlds are close to the one in which we live, either in terms of

anthropogenic/natural climate forcings or in terms of temporal proximity (e.g. the last decades). TheW0 worlds contain only

natural climate forcings, or temporal remoteness (e.g. beginning of 20th century (1900–1950) vs. recent decades (1950–2016)).10

We define an extreme event (in either worlds and universes) when a reference threshold Rref for R has been reached or

exceeded. A “class of events” includes the ensemble of weather types for which the threshold can be reached. In the paper, we

assume that such an extreme event is reached during a spell of atmospheric circulation Cref in the worldW1.

The goal of extreme event attribution is to determine how the probability of an extreme event differs betweenW1 andW0.

Achieving this goal is trivial if a rare event occurs in one of the worlds and is impossible in the other. In practice, this does15

not happen for most extreme events that have occurred in the past decades, because there are often historical examples of such

events (e.g. most European winter storms, European heatwaves). Thus, we assume that a given extreme or rare climate event

has a probability of occurrence p1 inW1, and p0 inW0.

The probabilities p1 and p0 are defined by:

pi = Pr(R(i) >Rref), (1)20

where R(i) is the climate variable R in theWi world, and i ∈ {0,1}.
For obvious pragmatic reasons, we can assume that p1 > 0, because we want to study an event that was observed in the real

world. In addition, p1 can be fixed to a quantile of the probability distribution of R inW1 (e.g. p1 = 0.01 for a one in a century

event in the factual world). This defines a class of events (here: high values of R). Therefore there is no uncertainty in the

determination of p1. The uncertainty lies on an estimate of Rref fromW1 data (if 1/p1 is larger than the size ofW1), and in p0.25

We want to estimate the ratio p0/p1, determine its uncertainty and investigate how it is controlled by physical factors. Those

physical factors include changes in the probability distribution of the circulation C between W1 and W0 and the changes in

the probability distribution of R if C is similar inW1 andW0. We introduce the notion of vicinity of circulation trajectories,

or the neighborhood V of an observed circulation Cref . The trajectory neighborhood will be defined in two ways: from the

distance to a known weather regime (section 2.3.1), which is computed independently of the event itself, or from the distance30

to the observed trajectory of circulation (section 2.3.2).
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2.2 Bayesian formulation

The probabilities pi that the climate variable R(i) exceeds a threshold Rref and that the atmospheric circulation C(i) lives in

the neighborhood of Cref (i.e., C(i) ∈ V(Cref)) in the worldWi (i ∈ {0,1}) are related by the Bayes formula:

pi ≡ Pr(R(i) >Rref) = Pr(R(i) >Rref |C(i) ∈ V(Cref))5

×Pr(C(i) ∈ V(Cref))

/Pr(C(i) ∈ V(Cref)|R(i) >Rref). (2)

The three terms of the right hand side of Eq. (2) can be computed from data in the two worldsWi.

The ratio ρ= p0/p1 is then decomposed into three terms that can yield physical interpretations. The first one is the “ther-

modynamical" change between the two worlds for a given circulation:10

ρthe ≡
Pr(R(0) >Rref |C(0) ∈ V(Cref))

Pr(R(1) >Rref |C(1) ∈ V(Cref))
. (3)

In this term, the circulation is fixed to one that is close to Cref , and changes of the probability of R are due to causes like

an increased temperature (increasing the water availability in the atmosphere (Peixoto and Oort, 1992)). If the Cref pattern is

prone to high precipitation, this conditional term allows a closer focus on the tail of the distribution of R.

The second term accounts for changes in the patterns of the atmospheric circulation and is hence called “circulation”:15

ρcirc ≡
Pr(C(0) ∈ V(Cref))

Pr(C(1) ∈ V(Cref))
. (4)

It is important to note that Cref is the same in the numerator and denominator. The circulation term measures the change of

likelihood of observing circulation sequences that look like Cref .

The third term is a reciprocity condition for the circulation trajectory C:

ρrec ≡
Pr(C(1) ∈ V(Cref)|R(1) >Rref)

Pr(C(0) ∈ V(Cref)|R(0) >Rref)
. (5)20

This term determines the extent to which the circulation Cref is necessary when R>Rref . For a fixed Rref precipitation rate,

it evaluates how likely a circulation like Cref is. This reciprocity term allows one to connect the risk based approach of EEA,

based on the study of ρ alone (Shepherd, 2016) to the “storyline approach” (Trenberth et al., 2015; National Academies of

Sciences Engineering and Medicine, 2016) that involves the processes that drive the extreme precipitation.

The product ρdyn ≡ ρcirc× ρrec defines the dynamical contribution of the atmospheric change to the precipitation extreme25

conditional to a fixed thermodynamics. The reciprocity term explores the extent to which the circulation is close to the observed

one when the cumulated precipitation is high. This multiplicative decomposition of probabilities can be compared with the

“additive” decomposition of Shepherd (2016, Eq. (1)), who also introduces a non-dynamical term.

Sampling uncertainties on those three ratios can be determined by bootstraping over the elements ofWi.

The estimation procedure is the following:
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1. Determine p1 (for example a century return period) and an empirical Rref (for example fromW1).

2. Determine the neighborhood of Cref (for example from the monthly frequency of a weather regime).

3. Determine ρthe, ρcirc, ρrec and their probability distribution for the two worlds (for example by bootstrapping overWi).

We then assess whether ρthe, ρcirc and ρrec are significantly different from 1 by comparing their probability distributions.5

We will illustrate this approach on the high precipitation event of the winter 2013/2014 in southern UK.

2.3 Circulation neighborhood

In this section, we propose two ways of defining the neighborhood of the circulation Cref . This has an impact on the computa-

tion of the thermodynamical and dynamical terms of the decomposition of ρ.

2.3.1 Proximity based on weather regimes10

High winter precipitation in Europe is generally associated with zonal atmospheric circulation. The circulation around the

North Atlantic can be described by four weather regimes, which are quasi-stationary states of the atmosphere (Vautard et al.,

1988; Kimoto and Ghil, 1993; Michelangeli et al., 1995). Those weather regimes are obtained by a k-means classification of

anomalies of the winter sea-level pressure (SLP) daily field from the NCEP reanalysis (Michelangeli et al., 1995; Yiou et al.,

2008). The weather regime centroids are shown in Figure 1.15

The frequencies of the weather regimes are computed for each winter (December, January, February). Very wet winters

in the UK or North Western France occur when the frequencies of Zonal or NAO− weather regimes are high (> 75%). The

average frequency of the zonal weather regime is close to 25% and the frequency reached 81% in January 2014. The two other

weather regimes (Scandinavian blocking and Atlantic Ridge) do not lead to very high precipitation rates in southern UK. The

zonal weather regime favors warm temperatures in Europe, while NAO− favors cold temperatures (Yiou and Nogaj, 2004;20

Cattiaux et al., 2010).

The atmospheric trajectories can then be tracked by daily sequences of weather regimes. We summarize the information

of a trajectory over a whole winter season (or a single winter month) by the frequencies of the four weather regimes. Hence,

if Cref was mainly zonal (as was the winter of 2013/2014), we will say that the circulation C is in the neighborhood of Cref

(C ∈ V(Cref)) if the frequency of the zonal weather regime exceeds 75%. This definition obviously oversimplifies the notion of25

circulation neighborhood, but it gives an intuitive and qualitative understanding of the atmospheric circulation. This approach

is also taken for consistency with the study of Schaller et al. (2016).

2.3.2 Proximity based on analogues of circulation

The computation of weather regimes provides an intuitive and physical interpretation of the atmospheric circulation patterns.

But the atmospheric flow trajectories that are considered are, by construction, just closer to one of the weather regime centroids30

than the others, and not necessarily close to the circulation that prevailed during the event, which could be atypical in terms
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Figure 1. Four winter (DJF) weather regimes of the North Atlantic, computed from the SLP anomalies (in hPa) of NCEP reanalysis. (a):

Atlantic Ridge; (b): NAO−; (c): Scandinavian Blocking; (d): Zonal. The red circle indicate the region where high precipitation was observed.
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of weather regimes. Hence we also explore the atmospheric circulation with so-called analogues, which exploit explicitly a

distance to a reference observed circulation pattern sequence.

IfC(d) is the SLP during some day d, the analogues ofC are the days dk in a different year, for which the Euclidean distance

d(C(d),C(dk)) is minimized. This defines analogues of circulation, based on SLP. Here we consider the North Atlantic sector5

(80W–50E; 25N–70N) to compute the distance between two SLP patterns, as in (Yiou et al., 2013). We take the K = 20 best

analogues of circulation for each day.

A justification to use analogues of circulation to describe the January 2014 atmospheric circulation comes from the fact that

the SLP had a rather unusual pattern, which did not have all the characteristics of the zonal weather regime shown in Fig. 1.

We illustrate this in Fig. 2 with the mean of analogues fromW0 andW1. The mean SLP yields a rather steep gradient over UK10

and France. This steep SLP gradient is better reproduced in the analogue mean than in the ZO weather regime.

A heuristic way to define the neighborhood of the trajectory Cref (e.g., a sequence of C(d) with days in January 2014) is to

compute the mean (over the days) of a quantile of the distances ofK best analogues. This value can be modulated by a “safety”

factor to ensure that there are enough trajectories around Cref to construct statistics. This defines a neighboring “tube” around

Cref in the SLP phase space. This threshold is computed from the analogues of Cref in January 2014 for the NCEP reanalyses15

(1950–2016, excluding January 2014) and gives a value of ≈ 12 hPa for a median quantile of the K = 20 best daily analogues

and a “safety” factor of 1.5.

In addition to a definition of proximity, we use the dates of the best SLP analogues simulate reconstructions of climate

variables. Here we focus on precipitation R. From a statistical perspective, the analogue precipitations are random “replicates”

of the precipitation at the day conditioned by the atmospheric circulation. This allows a determination of the probability20

distributions of precipitation (R) variability conditioned to the atmospheric circulation C.

Analogues of C and R provide a natural way of computing the probabilities in Eq. (2). We compute this estimate from

the reanalysis datasets (W0 = 20CR andW1 = NCEP). By contrast, we test the null hypothesis H0 that circulation does not

play a role in the high precipitation rate by computing the probability distribution of cumulated precipitation in January when

random days are drawn inW0 = 20CR andW1 = NCEP. Figure 3 emphasizes the rejection of this null hypothesis because25

the distribution of analogue cumulated precipitation probabilities are significantly higher than for random days.

The ρ term is estimated by random resampling of daily R values in January and computing a monthly average. The proba-

bility distribution simulations of R in January 2014 for circulation analogues inW0 = 20CR andW1 = NCEP are shown in

Figure 3. For comparison purposes, mean precipitation taken from random days in the two worlds are also shown, to emphasize

the role of the circulation in the high precipitation event in January. This figure shows a slight increase of the probability of30

having high precipitation in the “new” world with respect to the “old” world. The uncertainty on ρ can be estimated from those

boxplots.

The thermodynamical term is estimated from probabilities of R for analogues of Cref in W1 and W0. The first step is to

compute analogues of Cref (the circulation in January 2014) in the two reanalysis datasets. For each day d of January 2014,

we draw random circulation analogues inW1 andW0, and keep the sequence of their dates. Then we compute the sum of the35

analogueR for January 2014. By repeating this procedure, we obtain a Monte-Carlo estimate of the probability distributions of
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Figure 2. Mean SLP of January 2014 (in hPa) for (a): NCEP reanalysis (b): ZO weather regime computed from NCEP (Figure 1d); (c): Mean

of analogues in 20CR; (d): Mean of analogues in NCEP. The red circle indicate the region where high precipitation was observed.
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Figure 3. Boxplots of cumulated precipitation simulations (in mm/month) from circulation analogues of January 2014 from 20CR (1900–

1950) and NCEP (1950–2015). The NCEP H0 and 20CR H0 boxplots of precipitation are taken from random days in January in 20CR and

NCEP (rather than analogues). The horizontal thick dashed line is the the observed value for January 2014. The horizontal thin dashed line is

the 99th quantile of DJF monthly precipitation. The boxplot lines indicate the 25th (q25), median (q50) and 75th (q75) quantile (boxes). The

upper whiskers classically indicate min(1.5× (q75− q25)+ q50,max(R)). The lower whiskers have a conjugate formula for low values.
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R>Rref conditional to Cref for the “old” and “new” worlds. This procedure is similar to the static weather generator based on

analogues described by Yiou (2014). This procedure allows one to estimate the probability distribution of ρthe. In this study,

we produce N = 1000 random samples of C and corresponding R.

The dynamical term ρdyn is obtained by dividing ρ by ρthe (and using the Bayes formula). This procedure does not give an5

easy access to the circulation and reciprocity terms, because it samples the vicinity of Cref , not all the possible trajectories of

SLP, including those which are not close to Cref .

3 Data

3.1 Weather@Home

The Weather@Home data comes from the “weather@home” citizen-science project (Massey et al., 2015). This project uses10

spare CPU time on volunteers’ personal computers to run the regional climate model (RCM) HadRM3P nested in the HadAM3P

atmospheric general circulation climate model (AGCM) (Massey et al., 2015) driven with prescribed sea surface temperatures

(SSTs) and sea ice concentration (SIC). The RCM covers Europe and the Eastern North Atlantic Ocean, at a spatial resolution

of about 50 km. Those simulations were used by Huntingford et al. (2014) and Schaller et al. (2016) to investigate the impact

of climate change on the extreme precipitation of January 2014 in southern UK.15

The worldW1 is made of ≈ 17,000 winters (December, January and February: DJF) simulated under observed 2013/2014

GHG concentrations, SSTs and SIC. Initial conditions are perturbed slightly for each ensemble member on December 1 to give

a different realisation of the winter weather.W1 is the “factual” world.

The worldW0 is made of ≈ 117,000 simulations with different estimates of conditions that might have occurred in a world

without past emissions of GHGs and other pollutants including sulphate aerosol precursors. It is the “counterfactual” world.20

The atmospheric composition is set to pre-industrial, the maximum well-observed SIC is used (DJF 1986/1987) and estimated

anthropogenic SST change patterns are removed from observed DJF 2013/2014 SSTs (Schaller et al., 2016). To account for

the uncertainty in the estimates of a world without anthropogenic influence, 11 different patterns are calculated from GCM

simulations of the Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012).

The circulation C is taken from the SLP data of the RCM simulations. The climate variable R is the Southern UK Precip-25

itation averaged over land grid points in 50◦ – 52◦N, 6.5◦W – 2◦E. Simulated R forW1 ensemble members with the wettest

1% are comparable to observations of January 2014 (Fig. 4). The mean climate of the RCM has a wet bias of ≈ 0.4 mm/day

in January over Southern England (Schaller et al., 2016) but most RCM simulations for January 2014 show smaller anomalies

than observed, and show a weaker SLP pattern for the same precipitation anomaly. On average, the W1 simulations repro-

duce a stronger jet stream, compared to the 1986–2011 climatology of January 2014 in the North Atlantic, suggesting some30

potential predictability for the enhanced jet stream of January 2014 (Schaller et al., 2016). The differences in SSTs, SICs and

atmospheric composition betweenW1 andW0 simulations lead to an increase of up to 0.5 mm/day in the wettest 1% ensemble

members for January SEP.
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The daily SLP anomalies of the model simulations were classified onto the NCEP reanalysis weather regimes of Figure 1.

For each month, the weather regime frequency was computed.

For simplification we pooled allW0 simulations, unlike Schaller et al. (2016) who investigated each ensemble of counterfac-

tual simulations separately. For each of the weather regimes (Atlantic Ridge: AR; Zonal: ZO; NAO−; Scandinavian Blocking:5

BLO), we determined the conditional probability distribution of January precipitation in Southern UK when a weather regime

frequency exceeds 75% of the month. Figure 4 shows that only ZO and NAO− weather regimes reach the record values

observed in January 2014. A dominant zonal weather regime obviously increases the risk of high precipitation in the winter, al-

though extreme precipitations can also be reached with the NAO− pattern. The horizontal dashed lines (observed precipitation

vs. 99th quantile ofW1) suggest that the Weather@Home simulations might underestimate monthly precipitation rates.10

This shows that the North Atlantic circulation patterns are discriminating for heavy precipitation in Southern UK. Hence we

focus on the zonal and NAO− atmospheric patterns to compute the probability changes.

3.2 Reanalyses and observations

The worldW1 is made of the NCEP reanalysis data for the winters (December to February) between 1951 and 2016 (Kalnay

et al., 1996). It is the “new” world. The worldW0 is made of the 20CR reanalysis data for the winters between 1900 and 195015

(Compo et al., 2011). It is the “old" world.

Those two reanalyses use different models, assimilation schemes and assimilated data. Schaller et al. (2016, Suppl. infor-

mation) showed that the weather regime classification in the overlapping period of the two reanalyses are very similar. We also

verify that the analogues of January 2014 are qualitatively similar in the two reanalyses over the 1950–2011 period. For each

day of January 2014, the 20 best analogues have between 12 and 18 days in common in the two reanalyses. The distances and20

spatial correlation yield probability distributions that cannot be distinguished by a Kolmogorov-Smirnov test (von Storch and

Zwiers, 2001).

The circulationC is taken from the SLP of both reanalyses. The precipitationR is taken from daily precipitation observations

from the UK Met Office (Matthews et al., 2014) between 1900 and 2014. The dataset consists of observations from 14 stations

in the southern UK. The variableR is a monthly average of daily values of those stations. We verify that a record of precipitation25

was reached in January 2014 (Fig. 5).

The weather regimes were computed on a reference period (1970 – 2000) in the NCEP reanalysis, with a k-means algorithm

(Yiou et al., 2008) (Fig. 1). We checked for consistency that the weather regimes of the 20CR reanalysis are the same as for

NCEP, as well as the regime frequencies ((Schaller et al., 2016, Suppl. Information)). After a removal of the mean, the SLP

of Weather@Home simulations is projected onto those reference centroids to compute the weather regime frequencies. This is30

done to ensure the consistency of the interpretation of the regime frequencies.

Since high values of precipitation R can be obtained with more than one weather regime (namely, the zonal and NAO−
regimes) (Figs. 4 and 6), the decomposition of Eq. (2) is repeated for those two weather regimes.

Again, the North Atlantic circulation patterns are discriminating for heavy precipitation in Southern UK. Hence we focus on

the zonal and NAO− atmospheric patterns to compute the probability changes.

11



●

●

●

●

●

●
●
●

AR ZO NAO− BLO

0
50

10
0

15
0

20
0

Ja
n.

 P
re

ci
p 

[m
m

]

a

●

●

●
●●

●
●

●●

●●

●

●
●●
●

●

●

●

●
●

●

●●

●

●●●●
●

●
●

●●

●

●●●
●
●
●
●

●
●
●

AR ZO NAO− BLO

0
50

10
0

15
0

20
0

Ja
n.

 P
re

ci
p 

[m
m

]

b

Figure 4. January precipitation probability distribution (boxplots) conditional to winter weather regimes exceeding 75% in Weather@Home

simulations (panel a:W1 factual world; panel b:W0 counterfactual world). The thin dashed horizontal line is the 99% quantile of theW1

(factual) Weather@Home simulations. The thick dashed horizontal line is the observed precipitation value for January 2014.
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Figure 5. Time series of January mean daily observed precipitation in Southern UK between 1900 and 2014 (in mm/day). The red dot

indicates the value of R for January 2014.
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Figure 6. Cumulated Southern UK January precipitation (in mm) probability distribution conditional to winter weather regimes exceeding

75% in reanalyses (panel a: NCEP; panel b: 20CR). The thin dashed horizontal line is the 99% quantile ofW1 (NCEP). The thick dashed

line is the precipitation amount in January 2014.
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4 Results

4.1 Weather @ Home

The ρ ratios were computed from the (≈17000) factual and (≈117000) counterfactual Weather@Home simulations. Since p1

is fixed to be 0.01 (for a return period of one century), the spread of ρ stems from the uncertainty on p0 that is computed5

over the pooled counterfactual simulations. The distribution of ρ is significantly different from 1, with a mean value ρ̄= 0.71.

This indicates an increase of the risk of heavy precipitation in W1 with respect to W0, with a fraction of attributable risk

(FAR = 1−p0/p1) of 0.29. The estimates of ρthe, ρcirc, ρrec for the zonal and NAO− are shown in Figure 7. By construction,

the products of the mean values recover the mean value of ρ.

The three mean ratios (ρ̄the, ρ̄circ, ρ̄rec) are significantly different from 1 for the zonal regime (ρ̄the ≈ 0.63, ρ̄circ ≈ 0.78 and10

ρ̄rec ≈ 1.45). The thermodynamical contribution with the zonal contribution (1− ρ̄the) is about ≈ 1.7 times ((1;2.5) with a

80% confidence interval) the dynamical contribution (1− ρ̄circ), which is coherent with the estimate of Schaller et al. (2016),

who find a thermodynamic contribution twice as large as the dynamic contribution, with a different approach. The ρthe < 1 is

interpreted by an increase of precipitation fromW0 toW1 given the same weather regime flow. ρcirc < 1 reflects an increase of

the frequency of zonal patterns inW1 with respect toW0. ρrec > 1 reflects that large precipitation amounts occur more often15

during episodes of zonal circulation.

The NAO− yields a quite different picture. The ρthe ratio is not distinguishable from 1 and has a large variability. Therefore

it cannot be concluded that this weather regime has a significant thermodynamic contribution to changes of heavy precipitation

rates. ρ̄circ > 1 means that the mean January precipitation rate decreases for NAO− fromW0 toW1. The reciprocity ratio ρ̄rec

is lower than 1, meaning that NAO− is less likely during episodes of high precipitation. This means that the NAO− regime20

becomes less frequent and less rainy, in contradistinction to the zonal regime.

An analogue-like approach was used to estimate the ρ decomposition from the Weather@Home data. The distance between

the January 2014 SLP in NCEP and each Weather@Home simulation was computed, as the average of daily SLP distances.

Then the neighborhood of Cref = CJan.2014 is defined when this average distance is lower than a threshold estimated from

analogues of NCEP data. The value of the threshold is 1.5 times the average (over January 2014) of the median of the distances25

of the 20 best daily analogues. This leads to a threshold value of 12 hPa and defines the “circulation tube” of Section 2.3.2.

In this way, the conditional probabilities (and their probability density functions (pdf)) can be estimated by bootstrapping. The

pdf of each probability ratio are shown in Figure 8.

We see that the thermodynamical contribution is very similar to the one of the zonal circulation pattern in Figure 7, but the

dynamical contribution has an opposite sign. The circulation contribution is ≈ 1, indicating that the probability of having a30

circulation like the one of January 2014 does not change significantly, while the reciprocity term is lowered. Therefore, the

frequency of a persisting zonal weather regime increases between the counterfactual and factual worlds, while probability of

having a circulation history that is similar to 2014 remains stable. This apparent contradiction is explained by the fact that the

circulation of January 2014, although zonal, was rather dissimilar to the usual zonal weather regime. Hence, by tightening the

15
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Figure 7. Changes in probability ratios from weather regimes in Weather@Home simulations. The probability ratios (vertical axes) are

shown on a logarithmic scale. The horizonal dashed lines show the reference ρ= 1 line. The dynamical contribution is the product of the

circulation and reciprocity contributions. The upper panel is the conditional probability ratios for the Zonal regime. The lower panel is for

the NAO− regime.
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Figure 8. Changes in probability ratios from the analogue approach in Weather@Home simulations. The probability ratios (vertical axes)

are shown on a logarithmic scale. The horizonal dashed lines show the reference ρ= 1 line. The dynamical contribution is the product of the

circulation and reciprocity contributions.
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class of event from “high precipitation sum due to zonal weather regime” to “high precipitation sum due to a specific persisting

circulation”, we change the quantification of a dynamical contribution.

This emphasizes the need of a precise definition of the neighborhood of a circulation trajectory for the conditional attribution

exercise. On the one hand, one looks at a persisting zonal circulation in a rather broad sense. On the other hand, one looks at a5

circulation trajectory that looks like the observation of January 2014, which yielded an atypical zonal pattern (van Oldenborgh

et al., 2015).

4.2 Reanalyses

Similar estimates of ρ, ρthe, ρcirc and ρrec were computed from the NCEP (W1 from 1951 to 2015) and 20CR (W0 from

1900 to 1950) reanalyses (Figure 9). The mean ratio ρ̄ is ≈ 0.82 ((0.51;1.12) with a 80% confidence interval), indicating a10

FAR value of ≈ 0.18. The distribution of ρ is marginally significantly different from 1, but its range is compatible with the

Weather@Home estimate.

The three ratio distributions (ρthe, ρcirc, ρrec) were computed for the zonal and NAO− weather regimes (Figure 9).

The mean values are marginally different from 1 for the zonal regime (ρ̄the ≈ 0.61, ρ̄circ ≈ 0.93 and ρ̄rec ≈ 1.76). This

description is qualitatively similar to what was obtained with the Weather@Home analysis, although the magnitudes differ, due15

to the differences between the two universes (factual vs. counterfactual, and new vs. old). The uncertainty increase is partly

due to the limited lengths of the reanalysis datasets. The thermodynamical contribution with the zonal contribution (1− ρ̄the)

is about ≈ 6.4 times the dynamical contribution (1− ρ̄dyn). If a confidence interval of the ratio (1− ρ̄the)/(1− ρ̄dyn) is built

upon the bootstrap samples for which ρthe and ρcirc are lower than 1, then we obtain an 80% interval of (0.70;7.98). Such

a procedure is necessary because ρcirc exceeds 1 with a probability larger than 0.3. The mean reciprocity ratio ρ̄rec is rather20

close to what was found in the Weather@Home analysis. It indicates an increase of zonal circulation when heavy precipitation

occurs between the beginning of the 20th century and the present-day period.

The ρ ratio distributions for the NAO− regime are not very informative. The thermodynamic and reciprocity contributions

cannot be estimated because the threshold of precipitation is never reached during a winter dominated by NAO− in the NCEP

reanalysis, between 1951 and 2016, implying zero denominators in Eq. (3, 5). A first interpretation is that the NAO− regime25

is so different in both worlds that the conditional precipitation change cannot be estimated (because Pr(R(1) >Rref |C(1) ∈
V(Cref)) = 0 and Pr(C(1) ∈ V(Cref)|R(1) >Rref) = 0). This might be due to the low number of winters in theW0 world (i.e.

50 years).

The ratio distributions with the analysis of SLP analogues is shown in Figure 10. The distribution of ρthe is sharper than

with the weather regime description due to the tighter constraint on the shape of the atmospheric trajectory. The dynamical30

term ρdyn is barely above 1 (contrary to the ZO weather regime in the same worlds), although not significantly.

This apparent contradiction is explained by the fact that the ZO weather regime becomes slightly more probable inW1 than

in W0 (circulation term in Figure 9), but the average distance of SLP analogues of January 2014 slightly increases between

W0 andW1 (Figure 11). This reflects the fact that the January 2014 pattern is not a typical zonal pattern (as seen in Figure 2)

and that the thermodynamical term outbalances the dynamical term in the interpretation of ρ < 1.
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Figure 9. Changes in probability ratios in 20CR/NCEP reanalyses for the zonal and NAO− weather regimes. The probability ratios (vertical

axes) are shown on a logarithmic scale. The horizonal dashed lines show the reference ρ= 1 line. The dynamical contribution is the product

of the circulation and reciprocity contributions. The upper panel is the conditional probability ratios for the Zonal regime. The lower panel

is for the NAO− regime. There are no thermodynamical or reciprocity terms in the decomposition because high precipitation sums do not

occur during persisting NAO− episodes in 1900–1950.
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Figure 10. Changes in probabilities in 20CR/NCEP reanalyses conditional to the January 2014 SLP pattern, with circulation analogues.

20



●

●●
●

●

●

●
●
●

●●
●
●
●
●
●●●●●●

●

●

●
●
●
●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●
●
●
●
●
●
●
●
●

●

●
●
●

●

●
●
●
●

●

●

●●
●
●

●

●

●●
●

●

●

●

●●●

D
JF

 d
is

t(
j,2

01
3/

20
14

) 
[h

P
a]

●

●●

●●●●
●
●●●●●

●

●●

5
6

7
8

9
10

11

20CR NCEP
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The analogue method does not allow for an estimate of the circulation and reciprocity terms because we are only able to

sample trajectories around January 2014, not all trajectories like in the Weather@Home experiments.

5 Discussion

We have performed analyses on two different world definitions (“factual” vs. “counterfactual” and “new” vs. “old”). There is5

no quantitative way of claiming that factual equals new and counterfactual equals old. It is only possible to argue qualitatively

that the anthropogenic forcings were weaker in the “old” world than in the “new” world.

One of the caveats of attribution studies (including this one) is the uncertainty in the W0 world, which affects estimates

of p0. This problem exists in the “counterfactual” simulations of Weather@Home, which required the subtraction of an SST

signal from 11 available CMIP5 simulations. Each of the invidual counterfactual simulations show different behavior, although10

the ensemble yields a significant, albeit small, change with respect toW1, as shown by Schaller et al. (2016). The quality and

quantity of the data that was used in the reanalysis experiments varies with time. This implies that the “old” world is more

uncertain that the “new” world. The distributions of distances between analogues in Figure 11 do not show large systematic

biases in 20CR (1900–1950) with respect to NCEP (1950–2016). Using the whole ensemble of 20CR could allow for better

estimates of weather regime frequency distributions in the W0 world, but the only precipitation data we used come from15

observations, which means that uncertainties in the ρ ratio are always large. Another possibility is to consider subperiods of

1900–1950, but the confidence for individual subperiods is bound to be very poor.

The analysis does not consider internal temporal variability in each world. The Weather@Home simulations do not have

decadal variability, but reanalyses do. This was not taken into account here, but could be included by further dividing the two

worlds (“old” versus “new”) into subperiods (e.g. “high SST” versus “low SST”) in order to evaluate the feedback of natural20

SST variability on atmospheric circulation. This poses the problem of the length of available data onto which the statistics

are built. This difficulty could be overcome by investigating ensembles of available simulations such as CMIP5 (Taylor et al.,

2012) or CORDEX (Jacob et al., 2013).

The main assumption made in the Bayesian decomposition is that the climate variable R is related to the atmospheric

circulation field C, and that a storyline of C can explain an observed extreme of R. This ensures that the two conditional25

probabilities in Eq. (2) are non zero so that the ratios are well defined.

In order to provide consistent results, it is necessary to have a correct representation of the atmospheric variability. This

assumption is not trivial and required many verifications on the Hadley Center atmospheric model (Schaller et al., 2016). The

circulation patterns that were simulated were validated over the North Atlantic region and Europe for theW1 factual world. The

main difficulty is that there is no way to assess the validity of C in theW0 counterfactual world. This is where the assumption30

thatW1 andW0 are close to each other is heuristically used in the estimate of the probability changes. Of course, this is not a

strict proof of validation of the atmospheric circulation inW0.

When reanalysis data are used, the question of the atmospheric circulation validity and theR–C relation is tied to the quality

of the data that are used in the assimilation scheme, for both worlds W0 and W1. The main caveat is that the early period
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of reanalyses are constrained by only a few observations (Compo et al., 2011). This means that the circulation reconstruction

could yield wrong patterns (even for the members of the ensemble), with no possible validation test. The second caveat in this

case is the length of datasets on which the probabilities are computed. Moreover, the observed climate (or its reanalysis) is one

occurrence of many possible realizations that could have happened for a given climatic state. Therefore this analysis should5

also be understood as being conditional to a dataset (either Weather@Home or the earlier part of the 20CR reanalysis), which

is an uncertain representation of the world.

Our paper outlined an apparent discrepancy between weather regime and analogues of circulation to describe thermodynam-

ical changes (and dynamical ones). Weather regimes offer a rather rough description of the atmospheric flow and the range of

possible flows within a weather regime classification can be fairly large. The recent winter of 2015/2016 pleads for a finer de-10

scription of the atmospheric circulation. Indeed, December 2015 had a mostly zonal weather regime (like January 2014), with

very mild temperatures in Europe, but southern UK and northwestern France were very dry (like the rest of continental Europe),

while northern UK experienced record precipitation and floods. The jet stream was slightly shifted (a few hundred kilometers)

to the north, but the weather regime was still zonal, while having no resemblance to January 2014 (in terms of analogues). This

questions the focus of extreme event attribution on regional climate precipitation alone, as already discussed by Trenberth et al.15

(2015), since the large-scale atmospheric circulation that drives the moisture transport can have shifts within the same weather

regime and hit a region rather than its neighbors just by chance. This suggests an EEA analysis of the predictands of R (like

C), rather than R alone, with a focus on the dynamical terms.

Vautard et al. (2016) proposed an alternative method based on analogues to determine dynamical and thermodynamical

components from the Weather@Home simulation data. It is interesting to notice that there is a consensus on the estimate of20

a thermodynamical term (i.e. with equal atmospheric circulation). Our finding emphasizes that a definition of a dynamical

contribution is potentially still ambiguous. We also emphasize that the approach of analogues can also be applied to daily

Weather@Home data (Figure 8). Vautard et al. (2016) investigated all possible patterns of atmospheric circulation on a monthly

time scale, while this study focuses on January 2014, with a daily time scale.

The persistence of events and hence the time scale to be considered are major components to be considered. For instance,25

the probabilities of having a persistent zonal weather regime during a month and having a circulation that is similar to January

2014 have different distributions, and such distributions change in different ways between the two reanalysis datasets. Such a

consideration is crucial for regional climate studies: as mentioned above, the example we chose in this paper is about precip-

itation in southern UK (and arguably northwestern France which also had records of precipitation in January 2014). But case

studies like northern UK (in December 2015) or Wales in 2000 (Pall et al., 2011) would require separate analyses because the30

difference in atmospheric flows is different in a subtle but crucial way.

It is desirable to be systematic in the attribution of extreme events in continuous time, by examining all events. This pleads

for analyses that can be performed quickly in order to diagnostics in a relatively short time. This can help guide the choice of

heavier experiments such as Weather@Home in order to refine estimates.
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6 Conclusions

We have argued that the use of relatively short datasets (reanalyses) provide qualitatively similar information in terms of prob-

ability decomposition of the occurrence of a winter flood event. Such an analysis cannot replace Weather@Home simulations

in order to quantify precisely the contribution of all factors. Therefore the second exercise (with reanalyses) is a detection5

rather than a thorough attribution, as defined by Bindoff et al. (2013). The attribution comes if the forcing changes are clearly

identified in both periods, which is not done in this paper.

The names of terms (thermodynamical and dynamical) of the decomposition can be debated. It is important to note that

changes in the properties of the atmospheric circulation C and the coupling between the local climate variable R and C play

an important role in the definition of the extreme event.10

The conditional part of the analysis is the most important point as it helps to explore the tail of the distribution of R. We

emphasize that we analyze a high precipitation rate (R>Rref ) conditional to a given circulation pattern Cref . We had to make

the analysis of the two types of weather regimes leading to high precipitation rates. The thermodynamical and dynamical

contributions differed from one weather regime to the other.

We also emphasize that the paradigm of attribution of extreme events that we have explored can also be applied to other15

contexts, in particular extreme events of the last millennium as a response to solar and volcanic forcings (Schmidt et al., 2011,

2014; Bothe et al., 2015). This can be done by exploring analogues of circulation of a given extreme event in remote periods

(in model simulations) where natural forcings are well documented.
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