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Abstract

Range expansion and range shifts are crucial population responses to climate change. Genetic

consequences are not well understood but are clearly coupled to ecological dynamics that, in turn,

are driven by shifting climate conditions. We model a population with a deterministic reaction–

diffusion model coupled to a heterogeneous environment that develops in time due to climate change.

We decompose the resulting travelling wave solution into neutral genetic components to analyse

the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions

and range shifts under slow climate change preserve genetic diversity. This is because slow climate

change creates range boundaries that promote spatial mixing of genetic components. Mathemat-

ically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is

not seen in spatially homogeneous environments, where range expansion reduces genetic diversity

through gene surfing arising from pulled travelling wave solutions. However, the preservation of

diversity is diminished when climate change occurs too quickly. Using diversity indices, we show

that fast expansions and range shifts erode genetic diversity more than slow range expansions and

range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions

in heterogeneous environments.
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1 Introduction

Climate change is known to greatly modify the spatial–distribution of species at large spatial scale (see

e.g. Parmesan, 2006). After the last glaciers retreated, for instance, many species started to expand

their range into newly emerging suitable habitats (Hewitt, 2000; Pluess, 2011). More recently, some

species have started moving their range in response to their climatic niches shifting as a result of global

warming (Parmesan, 2006; Battisti et al, 2005; Breed et al, 2013). These processes of range shifts and

range expansion in response to climate change and, in particular, mechanisms underpinning the dynam-

ics have been analysed from both empirical to theoretical perspectives (Travis, 2003; McInerny et al,

2007). However, less is known about the spatial genetic consequences of range shifts induced by

climate change (Arenas et al, 2012; Dai et al, 2014; Nullmeier and Hallatschek, 2013; McInerny et al,

2009).

Range shifts are frequent during climate change (Pluess, 2011; Breed et al, 2013; Samarasekera et al,

2012; Rousselet et al, 2010). They arise from colonisation of newly emerging suitable habitat that co-

incides with extirpation from areas that have become unsuitable (Parmesan, 2006, 1996; Root et al,

2003; Walther et al, 2002). Colonisation at the leading edge of the range is well known to modify the

patterns of neutral genetic diversity through the mechanism of gene surfing, in which neutral variants

can rise to high frequency at the wavefront and propagate at the leading edge (Edmonds et al, 2004;

Klopfstein et al, 2006). Surfing results from strong genetic drift taking place on the edge of the pop-

ulation wave (Excoffier and Ray, 2008; Excoffier et al, 2009) because the growth rate at low density

regions at the edge of the expanding population is typically higher than the growth rate for the bulk

of the population (Klopfstein et al, 2006). The existence of surfing events can thus lead to a reduction

in the genetic diversity of the newly colonised areas (Klopfstein et al, 2006; Excoffier and Ray, 2008;

Nei et al, 1975; Neve et al, 2009). In the context of biological invasion or colonisation without cli-

mate change, theoretical (Edmonds et al, 2004; Klopfstein et al, 2006; Hallatschek and Nelson, 2008;

Goodsman et al, 2014; Roques et al, 2012) as well as empirical (Hallatschek et al, 2007; Estoup et al,

2004; White et al, 2013) studies have shown that these expansion processes generally erode the neutral

genetic diversity at the leading edge of the colonisation or invasion wave.

Range shifts or range expansions under climate change are different from colonisation or in-

vasions into favourable environments. Spatial variations in climate constrains the range of many

species (Peterson et al, 2002; Pearson and Dawson, 2003; Schwartz et al, 2006), producing range bound-

aries and defining climate envelopes within which species can survive. Thus, during range shifts or
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range expansions under climate change, the presence of moving climate envelopes can constrain the

leading edge of the population in its expansion relative to the core of the population and may thus

reduce its spreading speed. Under climate change, the population’s spreading speed will depend on

the climate velocity as well as phenotypic characteristics of the population, such as dispersal ability

and intrinsic growth rate, which define its potential spreading speed—its spreading speed of colonisa-

tion if there were no climate constraint. The presence of climatic envelope is also known to modify

the genetic drift on the edge of the species range (Hill et al, 2006). Using a stochastic simulation

model, Nullmeier and Hallatschek (2013) and Dai et al (2014) have numerically analysed the surf-

ing phenomenon in presence of climate constraints. More precisely, using a coalescent model with

a backward-time approach, they analysed the distribution of the time to common ancestry for indi-

viduals sampled along the expansion wave to derive the position of successful surfers in the wave.

Significant differences in the diversity patterns were found between populations that experience range

expansion under climate change and populations that expand their range freely. Combining their

stochastic approach with the framework of reaction-diffusion equations, they were able to connect

their numerical findings to analytical formulae. Among other things, they concluded that surfing is

possible in deterministic reaction-diffusion equations with shifting heterogeneous media. Our goal is

to investigate how the climate constraint determines genetic diversity in expanding or shifting range

and to do so in a context that is broader than the surfing phenomenon.

During a range shift, there is also range retraction at the rear edge to consider. This process

can threaten both the survival of the species (Berestycki et al, 2009) and its neutral genetic diver-

sity (Arenas et al, 2012). For instance, rapid climate change can cause extinction if the species cannot

track the moving climate envelope because of limited dispersal (Schippers et al, 2011).

This paper investigates how the interplay between a population, the climate velocity, and the

climate envelope size determines neutral genetic diversity patterns during a climate change. It hinges

on the question as to how genetic fractions evolve inside a one–dimensional wave travelling in response

to climate change. Clearly, the fraction at the leading edge of the wave should have a higher probability

of surviving and surfing on the wave (McInerny et al, 2009). On the other hand, this fraction may not

survive if it travels too far forward into inhospitable habitat. This would enhance the predominance of

remaining genetic fractions from the bulk of the wave as they emerge at the leading edge of the wave.

We show that this loss into inhospitable habitat promotes genetic diversity at the leading edge of the

wave. The climate velocity also plays an important role in the balance between population spread and

loss. In the range shift scenario, extirpation at the rear edge of the wave can also play a role causing
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Figure 1: A schematic representation of a wave u(t, x) described by (1) and composed of seven
fractions, travelling to the right to track the climate envelope Ω(t), shifting with a constant speed c
in a one-dimensional environment. Each neutral fraction is depicted with a different colour and with
a thickness corresponding, at each position x, to the density υi of the fraction.

loss of genetic fractions (Arenas et al, 2012), thus eroding genetic diversity.

Following the framework provided in (Berestycki et al, 2009; Berestycki and Rossi, 2008; Potapov and Lewis,

2004), we focus on the deterministic one-dimensional heterogeneous reaction–diffusion equations with

forced speed of the form

∂tu(t, x) = D∂xxu(t, x) + f(x− ct, u(t, x)), t > 0, x ∈ (−∞,∞), (1)

where u = u(t, x) represents the population density (of genes or haploid individuals) at time t and

location x. This density changes in time under the joint effects of local dispersal, accounted for by

the diffusion term with diffusivity D > 0, and local reproduction, described by the growth function f .

Since the climate conditions are not uniform in space, some regions are more favourable than others

for the species. The growth function is therefore heterogeneous in space, and the term f(x−ct, u(t, x))

expresses the suitability profile of this environment. In the absence of climate change, we assume that

this environment is composed of a bounded climate envelope of a suitable habitat, surrounded by

unfavourable regions where the population tends to go extinct. Moreover, we only assume negative

density dependence in the climate envelope, i.e., we do not take any Allee effect into account. The

growth function is essentially logistic and the precise assumption on the growth term f is described

in the next section. We reflect climate change in our model by assuming that the climate envelope

moves rightward in space at a constant speed c > 0 (see Fig. 1).

Since Skellam’s work (Skellam, 1951), these models have commonly been used to explore population

range expansions. On the other hand, Nagylaki (1975, 1980b,a) have also used these models to describe

the change of allele frequencies in population with varying density and dispersal. The mathematical
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modelling novelty of this current paper, comes from combining these two approaches to describe the

evolution of the inside structure of wave-like solutions associated with a shifting climate envelope.

From a mathematical view point, our analysis extend the early work of Roques et al (2012) to more

realistic landscape which evolves in space and time.

The solutions u to the initial value problem for (1) converge to a travelling wave solution under

reasonable assumptions (to be given later) on the function f , the speed c, the diffusivity D, and the

initial population density u0 (Berestycki and Rossi, 2008). In the context of climate change, these

solutions describe a population that shifts its range at the same speed c as the climate envelope and

with a constant density profile Uc. Thus, the population density is of the form u(t, x) = Uc(x− ct).

Following the pioneering works of Nagylaki (1980b,a), we assume that the population wave is

initially composed of several spatially distinct neutral fractions. We provide a mathematical analysis

of the spatio-temporal dynamics of these fractions, i.e., we analyse how the density of each fraction

develops over time at each position in the travelling wave. This analysis contrasts with classical

approaches on reaction–diffuion with heterogeneous environment which mainly focus on the dynamics

of the total waves rather than the dynamics of the neutral fractions (see Xin, 2000, for a review). In

this paper, we provide mathematical insights into the following theoretical issues:

(Q1) How do the densities of the various fractions evolve in a travelling wave generated by a reaction–

diffusion model with an environment that changes with time and space? Are these travelling

waves solutions of heterogeneous reaction–diffusion pulled or pushed?;

(Q2) How does the presence of climate change modify the fraction densities inside a travelling wave?

Does it enhance or reduce the genetic diversity in a colonisation front?

(Q3) How do the species’ spreading potential, the climate velocity, and the climate envelope size

modify the genetic patterns inside a range shifting in response to climate change?

2 The model, main assumptions, and classical results

We assume that the population u is composed of several spatially distinct neutral fractions υi (see

Fig. 1). To analyse the dynamics of these fractions, we extend the mathematical notion of inside

dynamics of a solution, introduced in (Roques et al, 2012; Garnier et al, 2012) and described in what

follow. At time t = 0

u0(x) := u(0, x) =

I
∑

i=1

υi0(x) with υi0 ≥ 0, (2)
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where I is the number of fractions. We assume that the genes (or individuals) in each fraction differ

only by their positions and their alleles (or their labels), while their dispersal and growth capabilities

are the same as those for the entire population u. More precisely, the fraction density υi(t, x) grows

according to f(x − ct, u(t, x)) rescaled by the fraction frequency or allele frequency υi(t, x)/u(t, x).

Each density υi therefore satisfies the following equations:











∂tυ
i = D∂xxυ

i +
f(x− ct, u)

u
υi, t > 0, x ∈ (−∞,∞),

υi(0, x) = υi0(x), x ∈ R.

(3)

As expected, it follows from the uniqueness of the solution to the initial value problem associated

with (1) that the sum of the fraction densities υi is equal to the population density u.

2.1 Diversity measure

Our decomposition approach gives a conceptual framework for describing and analysing the diversity

dynamics of a population that is shifting its range due to climate change. More precisely, for each

i ∈ {1, . . . , I} we denote the frequency of fraction i in the population u by pi := υi/u. We can define

at each location x ∈ R and time t > 0 a family of diversity measures Divq(t, x) in terms of pi, where

q ∈ [0,∞]; see (Leinster and Cobbold, 2012). These indices quantify the local diversity according to

the fraction frequency pi and the sensitivity parameter q. The diversity of order q is defined for any

location x ∈ R and time t > 0 by

Divq =

(

I
∑

i=1

(pi)q

)

1

1−q

for q 6= 1,∞,

Div1 =

I
∏

i=1

1

(pi)pi
, and Div∞ =

1

max
i∈{1,...,I}

pi
.

(4)

The sensitivity parameter q controls the relative emphasis placed on common and rare fractions and

indicates how much significance is attached to fraction frequency. For example, at one extreme (q = 0),

the index Div0 corresponds to species richness, attaching as much significance to rare fractions as to

common ones. At the other extreme (q = ∞), the index of Berger and Parker (1970) depends only on

the most frequent fraction, rarer fractions being ignored altogether. The exponential of the Shannon

index (Shannon, 1948), corresponding to q = 1, quantifies the entropy (or uncertainty) in predicting

the fraction identity of a gene chosen at random from a location x at time t. The inverse of the Simpson

index (Simpson, 1949), corresponding to q = 2, describes the probability that two individuals sampled
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randomly at location x and time t belong to the same fraction. For any q, a high index of diversity of

order q indicates high diversity or a true evenness in the population: Divq is maximal when all the

fraction frequencies are equal, i.e., when p1 = · · · = pI = 1/I.

2.2 Growth function and climate envelope

We consider a one-dimensional environment (−∞,∞) composed of one climate envelope, surrounded

by unfavourable habitat. Due to climate change, the advantageous patch moves with fixed speed

c ≥ 0 to the right. In the favourable habitat, the population can reproduce, while in the unfavourable

regions there is no reproduction and the population dies at a rate d > 0. We focus on two scenarios.

Scenario 1: range expansion under climate change. First, we consider a habitat expansion

due to climate change, for instance expansion due to glacier retreat (Pluess, 2011). In this case we are

only interested in the colonisation part and we neglect the possible retraction at the rear edge of the

range. Thus the climate envelope size is infinite (L = ∞) and the growth function is defined by

f(x, u) =











r u
(

1− u

K

)

if x ∈ (−∞, 0),

−du if x ∈ [0,∞),
(5)

where r > 0 is the intrinsic growth rate of the population. In the favourable region, we only take into

account negative density dependence where K describes the carrying capacity of the climate envelope.

Thus the per capita growth rate g(x, u) = f(x, u)/u is a decreasing function of u at location x inside

the climate envelope. Note that no Allee effect is involved in the growth process. Without loss of

generality, we may rescale time so as to fix d = 1 and the solution u so as to fix K = 1.

Scenario 2: range shift. Secondly, we investigate the range shift scenario in which the climate

envelope is assumed to be of finite size L > 0. The specific growth function f takes the form

f(x, u) =











r u
(

1− u

K

)

if x ∈ (−L, 0),

−du if x ∈ (−∞,−L] ∪ [0,∞),
(6)

2.3 Travelling wave solutions and persistence

In each scenario, if the climate envelope shifts at speed c ≥ 0, the travelling wave solution satisfies

u(t, x) = Uc(x− ct). Substituting this expression into (1), we see that the profile Uc of the travelling
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wave solves the elliptic equation

DU ′′
c + cU ′

c + f(x,Uc) = 0 with −∞ < x < ∞ and Uc in (0, 1). (7)

These travelling waves propagate in the direction of the climate change (from left to right). In the

range expansion scenario, they take the form of a decreasing wave describing the invasion into an

environment where the species is not yet present with a constant speed c and a constant density

profile Uc. In the range shift scenario they move with a shifting climate envelope and so the profile Uc

is bell–shaped because there is expansion at the leading edge of the climate envelope and contraction

at the rear edge (see Fig. 1). One can note that increasing contraction constraint tends to flatten the

trailing edge slope of the profile (see Fig. 5).

The existence of these solutions depends critically on the dispersal ability D of the species and on

the environmental parameters (c, L, and r). In the range expansion scenario, Berestycki et al (2009)

and Potapov and Lewis (2004) showed that a unique travelling wave solution exists if and only if

c < c∗(r,D), where c∗(r,D) is the potential spreading speed, defined by

c∗(r,D) := 2
√
rD. (8)

In the range shift scenario, they proved that the existence holds if and only if both c < c∗(r,D), and

L > L∗(c∗, c), a critical envelope size, defined by

L∗(c∗, c) :=
c∗

r
√

1−
(

c
c∗

)2
arctan





√

d
r +

(

c
c∗

)2

√

1−
(

c
c∗

)2



. (9)

The potential spreading speed c∗ defined by (8) is the speed at which the species would spread in

absence of climate constraint. Note that it only depends on the phenotype characteristics r and D.

Berestycki et al (2009) showed that, for any biologically reasonable initial density (mathematically

described as a nontrivial bounded initial condition u0), the population density u, satisfying (1), will

persist under precisely the same conditions as above, i.e., if and only if c < c∗(r,D) in scenario 1 and

if in addition L > L∗(c∗, c) in scenario 2 (Fig. 2). In any case, the density u converges to the travelling

wave solution of (1).
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Figure 2: Schematic representation of the behaviour of the population density u as a function of the
size of the climate envelope L and the potential spreading speed c∗ = 2

√
rD. Only a population in a

wide climate envelope or with a high potential spreading speed can survive climate change.

3 Range shifts and range expansions under climate change preserve

richness of neutral genetic fraction

Henceforth, we assume that the entire population u satisfies u(t, x) = Uc(x− ct) with Uc solving (7).

Thus, the population has already attained its asymptotic travelling wave profile. We consider the

population u to be composed of I neutral fractions, the ith fraction having density υi satisfying (3),

and study the dynamics of each neutral fraction density υi(t, x) and of the associated diversity measures

Divq(t, x).

Dynamics of the neutral fractions inside the population

For both scenarios, we consider an arbitrary fraction density υi satisfying (3) and, for simplicity, refer

to it as υ henceforth. The density of this fraction therefore satisfies

∂tυ = D∂xxυ + g(x− ct, Uc(x− ct)) υ, t > 0, x ∈ (−∞,+∞). (10)

Moreover, at time t = 0, the entire population satisfies u0 = Uc(x) and the fraction υ0(x) = υ(0, x)

corresponds to a portion of the quantity Uc(x). Thus, 0 ≤ υ(0, x) ≤ Uc(x) for all x ∈ R. From a

biological perspective, this means that we consider the spatio-temporal dynamics of the neutral genetic

diversity in an ongoing range shift or range expansion due to climate change.

Using properties of the population dispersal ability D, the speed c of the climate envelope, and

the characteristics of the profile Uc, we are able to describe the dynamics of the fraction density υ in

the whole wave of propagation.
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Result 1. For any initial condition υ0, the density υ of the fraction converges uniformly in space

(as t → ∞) to a proportion p(υ0) of the total population u(t, x), that is, υ(t, x + ct) → p(υ0)Uc(x)

uniformly on compact sets as t → ∞. The proportion p(υ0) can be computed explicitly as follows:

p(υ0) =

∫ ∞

−∞
υ0(x)Uc(x) e

c
D
x dx

∫ ∞

−∞
U2
c (x) e

c
D
x dx

. (11)

Result 1, proved in section 7, describes the large time dynamics of the fractions inside the travelling

wave generated by a reaction–diffusion model with an environment that changes with time and space.

More precisely, it shows that in each scenario, any fraction initially represented in the population u

(i.e., having initial density υ0 > 0) can follow the population and the climate envelope.

The formula (11) has practical significance because it provides a precise information regarding the

contribution of the ancestral population and the origin of the individuals that compose the wave at

large time. Indeed, we have shown that, in the moving frame having speed c, the profile υ(t, x+ ct) of

any fraction tends to resemble the profile Uc of the entire population with a scaling factor p(υ0) that

depends only on the initial density υ0. This factor p(υ0) represents the contribution of the fraction

υ at large time which is by definition the reproductive value of this fraction (Barton and Etheridge,

2011).

Our result 1 also shows that any fraction is represented at the leading edge and contribute to push

the wave forward. Roques et al (2012) and Garnier et al (2012) have shown that this inside dynamics

characterised the pushed wave, a notion introduced by Stokes (1976). The travelling wave solution of

the heterogeneous reaction–diffusion model (1) is thus pushed in this sense. From a mathematical

perspective, this result generalises the notion of pulled/pushed waves to a broader class of equations.

In addition, it shows how the presence of spatial heterogeneity not only modifies the spreading speed of

travelling wave solution of reaction–diffusion model but changes the dynamics within the wave itself.

The pushed nature of this travelling wave sharply contrasts with the pulled behaviour exhibited

by inside dynamics of travelling wave in a favourable homogeneous environment. For example, if

we extend the good habitat to the entire environment, the growth function f is then defined by

f(x, u) := r u(1 − u) for all x ∈ (−∞,∞). In this case, travelling wave solutions of the homogeneous

equation

∂tu = D∂xxu+ r u(1− u), t > 0 and x ∈ (−∞,∞) (12)

are pulled in the sense that only the fraction initially well represented at the leading edge of the
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travelling wave are present in the wave of expansion as t → +∞ (Hallatschek and Nelson, 2008;

Garnier et al, 2012; Stokes, 1976). From an ecological and genetic perspective, this points out a major

difference between expansion under climate change and expansion without climate constraint. Thus,

we can expect that the genetic diversity patterns induced by an expansion caused by climate change

will be very different than patterns induced by biological invasion without any climate constraint.

Moreover, we see that genetic diversity can be preserved in a range expansion in response to climate

change (see also Pluess, 2011; Dai et al, 2014; Nullmeier and Hallatschek, 2013).

It is instructive to consider a fraction starting with an initial position α on the wave, υα0 = Uc·δα, for

some α ∈ R and δα the Dirac mass at location α. The reproductive value of this fraction, p(α) := p(υα0 ),

which describes the relative contribution to the wave of the individuals with an initial position α on

the wave, can be computed by the formula

p(α) =
U2
c (α) e

c
D
α

∫ ∞

−∞
U2
c (x) e

c
D
x dx

. (13)

In the context of an expanding population facing an Allee effect, a similar formula, replacing Uc with

the solution of stochastic model, has provided a good fit for the probability of gene surfing in these mod-

els (Hallatschek and Nelson, 2008; Barton et al, 2013; Durrett and Wai-Tong, preprint). The presence

of an Allee effect is known to enhance genetic diversity along colonisation waves (Roques et al, 2012).

Our results reveals an influence of the climate envelope that is analogous to that of an Allee effect on

the genetic diversity inside a colonisation wave. This analogy will be discussed in section 6.

In our model, the travelling profile Uc only depends on the carrying capacity K by a scaling

factor K. Thus we can deduce from formula (13) that the carrying capacity has no influence on

the relative contribution of the fractions. This result sheds a new light on the limited influence of

carrying capacity on gene fractions. Indeed, by way of contrast Nullmeier and Hallatschek (2013) have

shown that decreased carrying capacity reduces genetic diversity along the colonisation front because

it decreases the population density clines at the leading edge of the travelling waves. The formula (13)

enhances the idea that the relative contributions of the fractions and thus the genetic diversity of the

travelling wave depend only on the population density clines at climate envelope frontier, that is the

steepness of the travelling wave profile Uc.

From an ecological perspective, our result shows that genetic richness, corresponding to the number

of genetic fractions with positive density at location x and time t, can be preserved during climate

change. For instance, if the population u is composed of I fractions whose densities υi satisfy (10)
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and u(0, x) =
∑I

i=1 υ
i
0 for all x ∈ R, Result 1 and the maximum principle imply that the densities υi

remain positive everywhere for all time t > 0. Therefore, the genetic richness remains uniformly equal

to I, the number of fractions initially present inside the population. However, the evenness of the gene

population is modified by climate change, since over time the densities υi approach an asymptotic

value of p(υi0)Uc, where p(υi0) is defined by (11). Moreover, the proportions p(υi0) depend crucially

on the speed c of the climate shift and the profile Uc of the travelling wave. Therefore, both climate

change and the response of the entire population affect evenness of the genetic diversity.

4 Rapid expansion always erodes diversity

We initially focus on the expansion phenomena which corresponds to scenario 1 and we compare

the effects of range expansion on genetic diversity with and without climatic change. We consider a

biological invasion spreading into a homogeneous environment without climate change as a baseline

case. Here, the population density is represented by the model (12) and it spreads at its potential

spreading speed, c∗ := 2
√
rD. Secondly, we focus on range expansion under climate change (scenario 1)

where the rate of habitat expansion is c > c∗. So as to be able to compare outcomes, we assume the

population’s diffusivity D and growth rate r in the climate envelope to be fixed the same as the

invasion case. Our investigation employs numerical computations, as described in the next section.

This allow us to explore whether the analytical Result 1 continues to hold even when the initial

condition u0(x) = Uc(x) does not correspond to an already established travelling wave.

Numerical computations

We explore numerically whether the Result 1 regarding the asymptotic proportions for each fraction

remains qualitatively true even when u0 is compactly supported step function (see Fig. 3(a)), before

the solution u has attained a travelling profile. We consider a population consisting of I = 7 fractions

with densities υi (i ∈ {1, . . . , 7}). At time t = 0, the whole population satisfies u0(x) := 1(−∞,2),

where 1(−∞,2) is the characteristic function of the interval (−∞, 2), and the fraction densities satisfy

υ10 = 1(−∞,−10], υ
i
0 = 1(xi−1,xi] for i = 2, . . . , I − 1, and υI0 = 1(0,2), where the xi are evenly spaced

points with −10 = x1 < x2 < · · · < xI−1 = 0. We numerically solve (1) with the climate velocities

c = 2 and c = 5, and we compute the solution to (12). Each fraction density υi corresponds to a

different colour. For each fraction, the diffusivity is equal to D = 2 and the per capita growth rate is

equal to r = 10, so the potential spreading speed is c∗ = 2
√
rD ≈ 6.32. In any case, we observed that
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the solution u(t, x) rapidly converges to a travelling wave profile ( dashed curves in Fig. 3).

Invasion without climate change.

Fig. 3(b) shows the evolution of the spatial structure of the solution u(t, x) to (12) without climate

change. As described in (Roques et al, 2012), only the fraction at the leading edge of the front follows

the population expansion to the right. This indicates that range expansion leads to a strong erosion

of diversity, caused by the demographic advantage of isolated individuals ahead of the colonisation

front. In addition, we observe that genetic diversity has a vertical spatial pattern that indicates that

the population is highly structured.

Range expansion under climate change.

In the presence of range expansion under climate change (scenario 1), the situation is very different. We

observe from Fig. 3(c),(d) that range boundary induced by climate change promotes diversity within

at the leading edge of the travelling wave of colonisation. Even if the rightmost fraction remains

well represented, any fraction initially presented inside the bulk of the population is conserved at the

leading edge of the colonisation wave.

However, the faster the climate change is, the less fractions situated deep in the core of the

population contribute to the wave. This indicates that fast range expansion due to fast climate

change or biological invasion leads to a more uneven distribution of the fractions than slow range

expansion in response to slow climate change.

5 Loss of diversity due to fast climate change can be offset by a high

potential spreading speed

Our previous results have shown that an increase in the climate velocity tends to reduce genetic

diversity. We now investigate the range shift scenario 2, which combines colonisation of newly available

habitat and extirpation at newly unsuitable habitat. We show that the intensity of erosion induced

by fast climate change depends crucially on the ratio between the size of the climate envelope and the

potential spreading speed of the species. Since these factors play an important role in the survival of
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(a) Initial condition (b) Invasion without climate
change (c∗ ≈ 8.94)

(c) Range expansion under slow cli-
mate change (c = 2)

(d) Range expansion under fast cli-
mate change (c = 5)

Figure 3: The progress of the spatial structure of the solutions u(t, x) to (12) and (1) with (5).
(a) Initial structure of the population, (b) inside dynamics of the solution u to (12) spreading at
speed c∗ = 2

√
r D ≈ 8.94 in a favourable homogeneous environment, (c)–(d) inside dynamics of

the solution u to (1) in a moving environment under range expansion (scenario 1). In each case,
the dashed black curve corresponds to the profile Uc of the stable travelling wave solution of (7)
with (5). Climate constraints maintain diversity richness during expansion but increasing climate
velocity modifies diversity evenness.
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the population (see Fig. 2) as well as the shape of the travelling wave Uc, they should also modify the

genetic fraction and the diversity profiles Divq.

Numerical computations

By way of example, we again consider I = 7 fractions having densities υi (i ∈ {1, . . . , 7} inside a

population u that follows the climate envelope shifting at speed c. Thus the moving population u is

represented by the travelling wave Uc. For Figs. 4 and 5, at time t = 0, u0(x) = Uc(x) and the fractions

satisfy υ10 = Uc 1(−∞,−L], υ
i
0 = Uc 1(xi−1,xi] for i = 2, . . . , I − 1, and υI0 = Uc 1(0,∞), where the xi are

evenly spaced points with −L = x1 < x2 < · · · < xI−1 = 0 (see Fig.5(d)). We numerically solved (3)

with the climate velocities c = 0, c = 2 and c = 5, the potential spreading speed c∗ = 2
√
rD, and the

size L of the climate envelope ranging in the corresponding survival area (see Fig. 2). The growth rate

in the climate envelope was set to r = 0.1. Then, using the asymptotic abundances pi := p(υi0) defined

in (11) Result 1, we computed the asymptotic diversity measures, Div2∞ associated to the travelling

wave Uc and its particular initial fraction decomposition υi0. It is defined by

Div2∞ =

(

I
∑

i=1

(p(υi0))
2

)−1

. (14)

We first notice from Fig. 4 that, for any climate velocity c, the diversity index is lower in the

regions where the potential spreading speed c∗ is either too low or too high compared with the size of

the climate envelope.

When the potential spreading speed is low and the size of the climate envelope is large, only

the fractions from the leading edge invade the travelling wave (note that orange and green fractions

mainly invade in Fig. 5(a)). As already observed in the range expansion scenario 2, fast climate change

increases the weight of the leading edge and gene surfing may occur. However, diversity loss due to fast

colonisation at the leading edge can be offset by a small climate envelope which increases extinction

lag and allows the fractions at the bulk of the population to contribute to the travelling wave.

When the potential spreading speed is high compared with the climate velocity c, the climate

change imposes strong constraints on the expansion of the population. Thus, as expected from our

previous numerical result (see Fig. 3), genetic diversity is better conserved at the leading edge of the

colonisation wave and all the fractions in the bulk of the population significantly contribute to the

wave (see Fig. 4 and Fig. 5(b)). However, a population with a very high potential spreading speed

c∗ can face strong erosion in a small climate envelope (see Fig. 4 and Fig. 5(c)). In this case, the

15



(a) Fixed climate envelope (c = 0) (b) Slow climate change (c = 2) (c) Fast climate change (c = 5)

Figure 4: The asymptotic diversity profiles Div2∞ as functions of the spreading speed c∗ := 2
√
rD ∈

[c, 40] and the size of the climate envelope L ∈ [L∗(c∗, c), 60]. The profiles are shown with a fixed
climate envelope: (a) c = 0; and for two values of the climate velocity c: (a) c = 2, (b) c = 5. The
white region corresponds to the parameter range where the population faces extinction, and the dashed
curve represents the critical size L∗ of the climate envelope as a function of the potential spreading
speed c∗ (see Eq. (9) and Fig. 2). Diversity reduces as climate velocity increases.

population range is much wider than the climate envelope. Thus the fractions outside the climate

envelope have more weight than the fraction in the bulk of the population. Since climate change

promotes gene mixing as mentioned above, the fractions at the leading edge and the trailing edge

will thus mainly contribute to the wave, which tends to give an uneven distribution of fractions and

decreases the genetic diversity measure (note that green and brown fractions invade in Fig. 5(c)).

6 Discussion

Using a deterministic mathematical model, recognised as a robust descriptor of colonisation waves (Berestycki et al,

2009; Potapov and Lewis, 2004) as well as a good predictor of allele dynamics inside a popula-

tion (Roques et al, 2012; Nagylaki, 1975, 1980b), we first showed that range expansion under climate

change (scenario 1) modifies the genetic diversity of the colonisation front. Under climate change,

all the fractions of the population are preserved in the colonisation wave, even though the distribu-

tion of the proportions may change. In the absence of climate change, only the fractions initially

ahead of the population, eventually remain in the colonisation front, indicating a strong erosion of

diversity due to demographic advantage of isolated populations at the leading edge of the colonisation

front (Hallatschek and Nelson, 2008; Roques et al, 2012). We also showed that the neutral genetic

dynamics of a population shifting its range due to climate change (scenario 2) depends crucially on
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(a) Leading edge fractions invade (b) Even distribution

(c) Leading and trailing
edge fractions invade(d) Initial decomposition

Figure 5: The spatial genetic patterns inside a range shift (scenario 2). We plot the dynamics of the 7
fraction densities υi inside a population u, described by (7) with (6), which follows a climate envelope
of finite size L, shifting at a slow velocity c = 2. We compare the genetic structure of three scenarios
from Fig. 4(b): (a) low spreading speed c∗ = 6 and large envelope L = 40, (b) high spreading speed
c∗ = 20 and large envelope L = 40 and (c) high spreading speed c∗ = 6 and small envelope L = 15;
starting with the initial spatial structure (d). The dashed black curves represent the corresponding
travelling wave Uc.
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the climate velocity, the size of the climate envelope as well as on its dispersal or spreading ability.

While an increase in the climate velocity tends to reduce diversity, the intensity of erosion depends

crucially on the ratio between the size of the climate envelope and the potential spreading speed of the

species. Using diversity indices, we showed that a species whose potential spreading speed is greater

than the climate velocity, but not too much greater, can avoid both extinction and erosion of diversity

amid climate change.

Our result modifies and extends the commonly held perspective that expansion processes gen-

erally erode the neutral genetic diversity along the colonisation front. It reveals that two typical

examples of range expansion, biological invasions by alien organisms and the movement of species in

response to climate change, should induce different effects on genetic diversity of the population. In

the context of biological invasions, the alien organism spreads into a newly suitable habitat without

any environmental or climate constraints, so it expands its range in a favourable homogeneous habi-

tat. In this case, an erosion of diversity occurs at the leading edge of the colonisation front (see also

Hallatschek and Nelson, 2008; Roques et al, 2012). However, we show that a colonisation or recoloni-

sation driven by climate change could promote diversity along the travelling wave of colonisation (see

also Pluess, 2011; Dai et al, 2014; Nullmeier and Hallatschek, 2013).

This result also reveals the important role played by climate envelopes, arising from climate con-

ditions, in the preservation of genetic diversity. They represent the climate constraints imposed on

migration. Ahead of the envelope, the growth rate of individuals is negative, reducing the speed of

propagation of the species and allowing a diversity of genes from the centre or the trailing edge of the

range to reach the leading edge, as shown in Result 1. This effect of climate envelopes has already been

observed in the empirical literature. For instance, Pluess (2011) investigated the genetic diversity of a

population of European larch whose spread behind a retreating glacier showed a high level of genetic

diversity at the leading edge of the range. The reduction of the growth rate ahead of the climate

envelope, where the population density is low, is conceptually similar to the sink produced by an Allee

effect, which is also known to promote diversity in a travelling wave of colonisation (Roques et al,

2012). In that sense, our results generalise the idea that any mechanism that either provides a pop-

ulation sink ahead of a moving population or constraint the expansion should help the population to

maintain its initial genetic diversity.

Behind the envelope, the growth rate is also negative, providing a contraction constraint on the

species’ range. Counter–intuitively, increasing contraction constraint enlarges the species range region

located behind the climate envelope. Thus, the fractions from the rear edge of the travelling wave are
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pushed to survive and invade the leading edge of the wave when the contraction constraint is high

(see Fig. 5(c)). The beneficial effect of such a contraction constraint on preservation of initial level

of diversity has also been investigated by others (Arenas et al, 2012; Leblois et al, 2006). Overall,

the mixing process induced by the climate envelope is a defining characteristic of pushed travelling

waves (Bonnefon et al, 2014). In that sense, our results extend the idea that any process that create

pushed travelling waves should allow the population to spatially promote its initial genetic diversity.

Genetic drift is not explicitly modelled in our forward approach, and this is an important differ-

ence between this study and (Dai et al, 2014; Nullmeier and Hallatschek, 2013). In their study, the

critical role of random genetic drift eventually leads to the fixation of a single allele in the travelling

wave, causing a total loss of genetic diversity. However, consistent results are obtained from their

backward stochastic approach. Moreover, recent study (Durrett and Wai-Tong, preprint) has shown

that the coalescent stochastic model used in (Dai et al, 2014; Nullmeier and Hallatschek, 2013) is well

represented by our deterministic model in which random genetic drift disappears because it has been

averaged when the local population size is large enough.

Dispersal ability is fundamental in determining genetic diversity responses to climate change.

However, recent evidence has shown that climate change can also impact species dispersal dur-

ing range shifts, either directly or indirectly (Travis et al, 2013). Theoretical evolutionary studies

predict increased dispersal at expanding range margins, matching observations made for various

species (Cwynar and Mac Donald, 1987; Simmons and Thomas, 2004; Hill et al, 1999; Travis et al,

2009; Balanyá, 2006; Burton et al, 2010; Henry et al, 2013; Perkins et al, 2013). However, few math-

ematical studies have investigated the evolution of species dispersal and its impact on the spatial

structure of a species’ range when expansions occur across environmental gradients (Pease et al, 1989;

Kubisch et al, 2010; Phillips, 2012). Our analysis suggests that increased dispersal ability during range

shifts or range expansion due to changing climate envelopes increases potential spreading speed of the

species and may enhance genetic diversity. As already pointed out by pioneering works of Travis et al

(2009) and Phillips (2012), we will need to integrate ecology and evolution in order to understand the

complex, intertwined effects of dispersal and climate change on genetic diversity.

Our study provides tools that project genetic diversity measure from the climate velocity, the

potential spreading speed of the species, and the size of the climate envelope data. The last IPCC

report (Field et al, 2014) predicts a climate velocity of c = 2kmyr−1 on average under the worst

climate change scenario (RCP 8.5). On the other hand, the mean potential spreading speed of several

terrestrial and freshwater species range from c∗ = 0.1 kmyr−1, for some trees and herbaceous plants
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to 9 kmyr−1 for artiodactyls. Moreover, their average range size varies widely from L = 1.2 km for

fish and vascular plants to L = 60km for birds and mammals (Brown et al, 1996), although there is a

high degree of variation around these means. We can thus see from our results in Fig. 4 which species

may be in danger of extinction and loss of genetic diversity.

From a mathematical standpoint, our study contributes a new insight on the extensively studied

topic of travelling wave solutions of reaction–diffusion equations in heterogeneous environments. Fol-

lowing the recent approach developed by Garnier et al (2012) to characterise the pulled–pushed nature

of travelling wave, we focus on the dynamics of the inside structure of travelling waves, conversely

to classical approaches analysing the dynamics of the total waves. Our result generalises techniques

developed in (Garnier et al, 2012) to a large class of equations and shows that travelling wave solutions

of reaction–diffusion with a spatial heterogeneous environment developing in time are pushed in the

sense of (Garnier et al, 2012). These flexible and intuitive mathematical techniques could be used

to more complex models that do not necessarily admit travelling wave solutions. For instance, in a

two-dimensional environment, species expanding their range in response to climate change can face

absolute boundaries to dispersal because of external environmental factors. Consequently, not only

the position but also the shape and size of the climate envelope can change with time. In this case,

travelling wave solutions may not exists but the mathematical techniques can still apply.

7 Proof of Result 1

First of all, using the substitution unew(t, x) = u(t/r, x
√

D/r), we can assume that the diffusion

coefficient D is equal to 1. Now, in the moving frame having speed c, the fraction density υ can be

written υ̃(t, x) = υ(t, x + ct) and the time dependence of the reaction term vanishes. We can use

the Liouville transform υ∗(t, x) = υ̃(t, x)ecx/2 to remove the advection terms. Thus, the function υ∗

satisfies the linear equation

∂tυ
∗ = ∂xxυ

∗ + υ∗
(

f(x,Uc(x))/Uc(x)− c2/4
)

(15)

(in which advection and time dependence are absent) with the initial condition υ∗(0, x) = υ0(x)e
c x/2.

We show that υ∗ can be decomposed as the sum of a stationary function and a function that

converges to 0 exponentially as t → ∞. Note that ϕ(x) = ec x/2 Uc(x) is a positive eigenfunction of

the operator that appears in the right-hand side of (15) and that the associated eigenvalue is 0. On

the one hand, if f satisfies (6) then since Uc satisfies (7), one can check that Uc(x) ∼ exp(−γ|x|) as
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|x| → ∞, where γ :=
√

1 + c2/4. On the other hand, if f satisfies (5) we have Uc(x) ∼ exp(−γx)

as x → +∞ and Uc(x) → 1 as x → −∞. In both cases, Sturm–Liouville theory implies that 0 is the

largest eigenvalue of this operator, the remainder of the spectrum being located to the left of some

negative constant −µ. Thus, we can write

υ∗(t, x) = pϕ(x) + z(t, x), (16)

where p ∈ R and z is orthogonal to ϕ in the sense that

∫ ∞

−∞
z(t, x)ϕ(x) dx = 0 for each t ≥ 0. And

|z(t, x)| ≤ K1 e
−µ t for some constant K1 > 0. Setting t = 0 in the expression in (16), multiplying by

ϕ, and then integrating, we get the expression in (11) for p.

Finally, we have |υ∗(t, x)− pϕ(x)| ≤ K1 e
−µ t, so |υ̃(t, x)− pUc(x)| ≤ e−cx/2K1e

−µ t for all x ∈ R.

It follows that υ(t, x+ ct)− pUc(x) → 0 uniformly on compacts as t → +∞ and even uniformly in any

interval of the type [A,+∞) with A ∈ R. In addition, if f verifies (6), we get |z(t, x)| ≤ K2e
−γ|x| for

some constant K2 > 0. Thus, |υ∗(t, x) − pϕ(x)| ≤ min
(

K1 e
−µ t,K2 E

−γ|x|
)

, so |υ̃(t, x) − pUc(x)| ≤

K e−µ(1−c/(2γ))t for all x ∈ R. Since γ > c/2, this shows that the fraction density υ converges to the

proportion p of the total population u(t, x) = Uc(x− c t) uniformly in R as t → ∞.
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