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Abstract

Multiobjective Dynamic Programming (MODP) is
a general problem solving method used to deter-
mine the set of Pareto-optimal solutions in opti-
mization problems involving discrete decision vari-
ables and multiple objectives. It applies to combi-
natorial problems in which Pareto-optimality of a
solution extends to all its sub-solutions (Bellman
principle). In this paper we focus on the determi-
nation of the preferred tradeoffs in the Pareto set
where preference is measured by a Choquet inte-
gral. This model provides high descriptive possi-
bilities but the associated preferences generally do
not meet the Bellman principle, thus preventing any
straightforward adaptation of MODP. To overcome
this difficulty, we introduce here a general family of
dominance rules enabling an early pruning of some
Pareto-optimal sub-solutions that cannot lead to a
Choquet optimum. Within this family, we identify
the most efficient dominance rules and show how
they can be incorporated into a MODP algorithm.
Then we report numerical tests showing the actual
efficiency of this approach to find Choquet-optimal
tradeoffs in multiobjective knapsack problems.

1 Introduction
Decision making in multiobjective combinatorial problems is
one of the main issues investigated in algorithmic decision
theory. It concerns decision problems in which the value of a
solution is assessed with respect to several viewpoints, possi-
bly conflicting each others (e.g. costs and benefits in a multi-
criteria decision making problem, individual utility functions
in collective decision making, scenarios in optimization under
uncertainty). In these different contexts, decision theory pro-
poses various preference models enabling to compare feasible
tradeoffs and to determine the best alternatives [Keeney and
Raiffa, 1993; Bouyssou et al., 2009; Grabisch et al., 2009;
Gilboa, 2009; Moulin, 1988; Domshlak et al., 2011].

∗This research was supported by the project ANR-09-BLAN-
0361 “GUaranteed Efficiency for PAReto optimal solutions Deter-
mination (GUEPARD)”.

Such models can be used either for supporting human
decision making (e.g. scientific management in organiza-
tions, recommender systems and e-commerce, preference-
based configuration) or to produce intelligent systems with
autonomous decision capabilities (e.g. route planning sys-
tems, robot motion planning, resource allocation, network
optimization). These various applications are a permanent in-
centive to revisit standard discrete optimization problems in
terms of optimizing multiple objectives.

Despite the diversity of models proposed in decision the-
ory to describe or simulate different decision behaviors, the
great majority of algorithmic contributions in discrete multi-
criteria optimization focuses on the Pareto-dominance model
and the computational effort is directed towards the deter-
mination of the whole set of Pareto-optimal tradeoffs (i.e.
feasible tradeoffs that cannot be improved on one compo-
nent without being weakened on another one) [Stewart and
White III, 1991; Mandow and Pérez de la Cruz, 2005; Ehrgott
and Gandibleux, 2000]. All these solutions can be seen as
possible optima with respect to some Pareto-monotonic pref-
erence model. Unfortunately, in combinatorial domains the
size of the Pareto set may grow exponentially with the size
of the problem, even with only two criteria. Hence, its ex-
act computation may require prohibitive computation times.
Moreover there is generally no need to consider explicitly all
possible tradeoffs, some of them being more or less equiva-
lent, and some other being too far from the target or the aspi-
rations of the Decision Maker.

One way out these problems is to determine an approxima-
tion of the Pareto set with performance guarantees [Papadim-
itriou and Yannakakis, 2000; Perny and Spanjaard, 2008;
Marinescu, 2011]. Alternatively, when preference informa-
tion is available, one can use a decision model to guide the
search and determine the preferred tradeoff without a prior
generation of the Pareto set. A typical example is given in
[Carraway et al., 1990; Dasgupta et al., 1995] where the state
space search is directed by a multiattribute utility function.
Other examples can be found in [Ehrgott, 2000]. This is the
path we follow in this paper dedicated to the use of the Cho-
quet integral in multiobjective Dynamic Programming.

The Choquet integral, initially introduced in the context of
Decision under Uncertainty [Schmeidler, 1986] is also one of
the most general and flexible aggregators used in multicriteria
analysis [Grabisch and Labreuche, 2010]. It includes many
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other aggregators as special cases, e.g. weighted means, min,
max, median, OWA [Yager, 1998] and WOWA [Torra, 1997].
Roughly speaking, the Choquet integral is a weighted combi-
nation of scores derived from subsets of criterion values. It
involves one weighting coefficient per subset of criteria, thus
enabling a fine control of preferences. It makes it possible
to take into account positive or negative interactions among
criteria and to model complex synergies in the aggregation.
This aggregator has been used in several discrete optimiza-
tion problems addressed in AI like constraint programming
[Le Huédé et al., 2006], state space search [Galand and Perny,
2007]. Following this line, our aim in this paper is to intro-
duce a general preference-based search technique based on
Multiobjective Dynamic Programming (MODP) to determine
Choquet optimal solutions in discrete multicriteria optimiza-
tion problems. As will be seen later, the main deadlock to
overcome is that preferences induced by a Choquet integral
do not satisfy the Bellman principle. Hence the application of
usual dynamic programming concepts [Bellman, 1957] dur-
ing the search is no longer possible; in particular, preferences
induced by the Choquet model cannot be directly used for
local pruning of sub-solutions during the search.

The first objective of this paper is to propose a general fam-
ily of dominance rules, stronger than standard filters based on
Pareto-dominance, enabling a local pruning during the search
of the Choquet optimal solutions while preserving admissi-
bility. The second objective is to integrate these rules in a
MODP scheme and to assess the value of the resulting proce-
dure. The paper is organized as follows: Section 2 presents
preliminary definitions and the Choquet integral model. Sec-
tion 3 presents MODP concepts and the violation of Bellman
principle by Choquet integrals. In Section 4 we introduce a
general family of dominance rules and establish some tech-
nical results providing guidelines to find the most efficient
dominance rules in the family. Section 5 proposes an algo-
rithm implementing dominance rules within a MODP scheme
and presents numerical tests performed on random instances
of multiobjective binary Knapsack problem.

2 The Choquet Integral Model
We first recall some standard definitions linked to set-
functions and capacities, a classical tool to model the impor-
tance of coalitions within a set N = {1, . . . , n} of criteria.

Definition 1 A set-function is any mapping v : 2N → R. A
capacity is a set-function v such that v(∅) = 0, v(N) = 1 ,
and v(A) ≤ v(B) whenever A ⊆ B (monotonicity).

Definition 2 A set-function v is said to be convex or super-
modular when v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) for
all A,B ⊆ N , additive when v(A ∪ B) + v(A ∩ B) =
v(A) + v(B) for all A,B ⊆ N , and concave or submod-
ular when v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B) for all
A,B ⊆ N .

Definition 3 The dual v̄ of a set-function v is a set-function
defined by v̄(A) = v(N)− v(N\A) for all A ⊆ N .

Now we can introduce formally the Choquet integral
[Schmeidler, 1986]. The Choquet integral of a utility vector

x ∈ Rn with respect to capacity v is defined by:

Cv(x) = x(1)v(X(1)) +
n∑
i=2

[
x(i) − x(i−1)

]
v(X(i))

where (.) denotes a permutation of (1, . . . , n) such that
x(i) ≤ x(i+1) for all i = 1, . . . , n − 1 and X(i) = {j ∈
N, xj ≥ x(i)} is the subset of indices corresponding to the
n + 1 − i largest components of x. Assume x and y are two
performance vectors of Rn, x is preferred or indifferent to y
according to the Choquet model when Cv(x) ≥ Cv(y).

Example 1 Assume we have 3 criteria. Let v be a capacity
and v̄ its dual, defined on 2N , for N = {1, 2, 3}, as follows:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v 0 0.3 0.2 0.5 0.4 0.9 0.5 1
v̄ 0 0.5 0.1 0.6 0.5 0.8 0.7 1

Assume we want to compare two performance vectors x =
(10, 6, 14) and y = (10, 12, 8) using capacity v, we have:

Cv(x) = 6 + (10− 6)v({1, 3}) + (14− 10)v({3}) = 11.6
Cv(y) = 8 + (10− 8)v({1, 2}) + (12− 10)v({2}) = 9.2

With Cv we observe that y is preferred to x.

In the definition of Cv , the use of a capacity v instead of
an arbitrary set-function enforces compatibility with Pareto-
dominance due to the monotonicity of v with respect to
set inclusion. Hence Cv(x) ≥ Cv(y) whenever x Pareto-
dominates y, i.e. xi ≥ yi for all i ∈ N and xj > yj for
some j ∈ N . More generally Cv can be defined for any set-
function v. Function Cv is known to be convex whenever v is
concave (submodular). Conversely, Cv is concave whenever
v is convex (supermodular) [Lovász, 1983]. The concavity
of Cv and therefore the use of a convex capacity in a Cho-
quet integral has an interpretation in terms of preferences (see
[Chateauneuf and Tallon, 1999]). Indeed, it is shown that if v
is convex, then ∀x1, x2, . . . xp ∈ Rn, ∀k ∈ {1, 2, . . . , p} and
∀i ∈ {1, 2, . . . , p}, λi ≥ 0 such that

∑p
i=1 λi = 1 we have:

Cv(x
1
) = Cv(x

2
) = . . . = Cv(x

p
)⇒ Cv(

p∑
i=1

λix
i
) ≥ Cv(x

k
)

For example, when using a convex capacity, if one is indif-
ferent between utility vectors (0, 100) and (100, 0), one will
prefer solution (50, 50), which corresponds to the average of
the two vectors, than any of the two initial vectors. Obviously,
we would obtain reverse preferences with a concave capacity
since the associate Choquet integral is convex. Capacity v
may both be concave and convex (i.e. it is additive) and in
this case the Choquet integral boils down to a weighted sum.
Alternatively, v could be neither convex nor concave to model
more complex preferences (for more details see [Grabisch et
al., 2009]).

Any set-function v admits an alternative representation in
terms of the Möbius inverse:

Definition 4 To any set-function v : 2N → R is associated
m : 2N → R a mapping called Möbius inverse, defined by:

∀A ∈ N,m(A) =
∑
B⊆A

(−1)
|A\B|

v(B) (1)
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v can be reconstructed from its Möbius inverse as follows:

∀A ∈ N, v(A) =
∑
B⊆A

m(B) (2)

Coefficients m(B) for B ⊆ A are called Möbius masses.
Interestingly, a set-function whose Möbius masses are non-
negative (a.k.a belief function) is necessarily convex [Shafer,
1976]. Using the Möbius inverse, we can define the notion of
k-additive capacities as follows [Grabisch et al., 2009]:

Definition 5 A capacity is said to be k-additive when its
Möbius inverse vanishes for any A ⊆ N such that |A| > k,
and there exists at least one subset A of exactly k elements
such that m(A) 6= 0. More formally:

∀A ⊆ N, |A| > k ⇒ m(A) = 0

∃A ⊆ N, |A| = k and m(A) 6= 0

If k = 1 we get an additive capacity. k−additive capacities
for small values of k greater than 1 are very useful because
in practical situations, they offer a sufficient expressivity to
model positive or negative interactions among criteria with a
reduced number of parameters. For example, when k = 2 the
capacity is completely characterized by (n2 + n)/2 coeffi-
cients.We conclude this section by mentioning two properties
that will be useful in the paper:

∀v,∀α > 0,∀x ∈ Rn, Cv(αx) = αCv(x) (3)
∀v, v′,∀x ∈ Rn, Cv+v′(x) = Cv(x) + Cv′(x) (4)

3 Preference-based Dynamic Programming
For the sake of generality, we introduce an algebraic version
of dynamic programming encompassing in the same formal-
ism several preference systems including, among others, the
standard one (maximization of an additive reward function)
used in standard dynamic programming (DP) but also the
multiobjective extension (determination of Pareto optimal re-
ward vectors) used in MODP. We will then show how the
Choquet integral model departs from this general framework.

Preference-based DP is a state space search method extend-
ing standard DP to handle complex preferences in sequential
decision problems. It applies, with some restrictions on pref-
erences that will be discussed later, to discrete optimization
problems in which feasible solutions can be seen as the result
of a sequence of p elementary decisions. For any decision
step k ∈ {1, . . . , p}, let Sk be the (finite) set of possible states
and Ak the (finite) set of possible actions. We consider also
Sp+1 the (finite) set of final states, accessible after p decision
steps. We assume here, without loss of generality, that S1

contains a single state s1 (initial state). At step k, a transition
function fk gives the state sk+1 = fk(sk, ak) obtained when
action ak is chosen in state sk. Let dk : Sk → Ak denote the
decision function that assigns to any state sk ∈ Sk an action
ak = dk(sk) ∈ Ak(sk) ⊆ Ak where Ak(sk) is the set of
admissible actions in state sk. Then we define a policy as any
sequence π = (d1, . . . , dp).

Let Rk(sk, ak) be the reward generated by action ak in
state sk. We assume that R(sk, ak) ∈ V where V is an ab-
stract valuation scale endowed with two operators ⊗ and ⊕.

Operator ⊗ is an associative operation used to cumulate re-
wards over the time (typically ⊗ = +). It admits a neutral
element denoted 1 and an absorbing element denoted 0 thus
making (V,⊗,1) a monoid. Operation ⊕ is assumed to be
commutative, associative and indempotent (x ⊕ x = x), ad-
mitting 0 as neutral element, thus making (V,⊕,0) a com-
mutative monoid. It is used as a preference-based selection
operation (typically ⊗ = max or ⊗ = min). The correspon-
dence between ⊕ and a preference relation % defined on V is
established as follows

∀x, y ∈ V, x % y ⇔ x⊕ y = x (5)

In this algebraic setting, we want to determine a policy π =
(d1, . . . , dp) such that V (π) =

⊗p
k=1R(sk, dk(sk)) is opti-

mal. Optimality of π means here that V (π) % V (π′) for any
other feasible policy π′ where % is defined by (5).

Last but not least, we assume that ⊗ is distributive over ⊕:
(x⊕y)⊗z = (x⊗z)⊕(y⊗z) and z⊗(x⊕y) = (z⊗x)⊕(z⊗y). These
algebraic properties make (V,⊕,⊗,0,1) a semiring, a stan-
dard valuation structure for DP in algebraic path problems
[Gondran and Minoux, 1984]. Distributivity indeed enforces
the Bellman principle (subpaths of optimal paths are them-
selves optimal) and justifies local pruning based on prefer-
ences during the search. Consider indeed two reward vectors
x and y associated to two partial solutions σx and σy available
in a given state sk (corresponding to two possible sequences
of actions from the initial state). Then the first part of the
distributivity condition tells that we can soundly discard σy
and keep σx whenever x ⊕ y = x because any extension of
σy with cost z is beaten by the same extension of σx, since
(x ⊗ z) ⊕ (y ⊗ z) = (x ⊕ y) ⊗ z = x ⊗ z. The other part
of distributivity ensures a similar property when policies are
generated backward from terminal states to the initial states.
Note also that, by Equation (5), we observe that distributivity
entails the monotonicity of preferences w.r.t. ⊗:

x % y ⇒ [(x⊗ z % y ⊗ z) and (z ⊗ x % z ⊗ y)] (6)

Interestingly enough, this property is the key axiom used in
utility-based MODP introduced in [Carraway et al., 1990].
We remark that the semiring structure also appears naturally
in the standard context of DP and in MODP as well:

Example 2 (Valuation system in standard DP) The valua-
tion system used in standard DP for scalar reward maximiza-
tion is (V,⊕,⊗,0,1) = (R∪{−∞},max,+,−∞, 0) which
is a semiring [Gondran and Minoux, 1984]. The preference
associated to max through (5) is the natural order ≥ on R.

Example 3 (Valuation system in MODP) In a multiobjec-
tive setting there might be several Pareto-optimal policies to
reach a given state sk from the initial state. Hence a set of re-
ward vectors must be assigned to any state sk, corresponding
to all distinct reward vectors of Pareto-optimal sub-policies
leading to sk. The valuation system used in MODP is based
on the following algebraic structure (V,⊕,⊗,0,1):
• V = {X ⊂ Rn : ND(X) = X} \ ∅ where ND(X) is the
set of Pareto-optimal elements in X ,
• ∀X,Y ∈ V,X ⊕ Y = ND(X ∪ Y )
• ∀X,Y ∈ V,X ⊗ Y = ND({x+ y : x ∈ X, y ∈ Y })
• 0 = {(−∞, . . . ,−∞)} and 1 = {(0, . . . , 0)} This is a
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semiring [Gondran and Minoux, 1984; Perny et al., 2005].
Here, the preference associated to ⊕ through (5) is the
Pareto-dominance over vectors, extended to sets of vectors.

The theory of algebraic path problems [Gondran and Mi-
noux, 1984; 2008] tells that the problem can be solved by
Algorithm 1 given below, provided that (V,⊕,⊗,1,0) is a
semiring. In particular it is admissible for MODP. Algo-
rithm 1 implemented with the operations defined in Example
3 computes the sets of Pareto-optimal reward vectors Vk(sk)
in every state sk. At the end, V1(s1) provides the set of
Pareto-optimal tradeoffs associated to optimal policies. In
this process, the evaluation of policies at any states is essen-
tially similar to what is done for shortest path problems in
MOA∗ algorithm [Stewart and White III, 1991]. The optimal
actions and therefore the optimal policies can be recovered at
every state by standard bookkeeping techniques.

Algorithm 1: Algebraic Dynamic Programming
Input: transition functions fk, reward functions Rk1
Output: optimal policy
for all sp+1 ∈ Sp+1 do Vp+1(sp+1)← 1 for k = p downto 1 do2

for all sk ∈ Sk do3

Vk(sk)←
⊕

ak∈Ak(sk)

{Rk(sk, ak)⊗ Vk+1(fk(sk, ak))}
4

end5
end6

Unfortunately, despite its generality, this algorithm does
not fit to any preference system. In particular, it does not work
for preferences induced by a Choquet integral in a multiob-
jective problem. Indeed, starting with Example 3 we have to
redefine⊕ asX⊕Y = argmax{Cv(z), z ∈ X∪Y } to model
choices induced by the Choquet model. Unfortunately this
new ⊕ is not distributive over ⊗. As a consequence the pref-
erence % defined by Equation (5) is not monotonic. For ex-
ample consider x = (7, 7, 12), y = (14, 10, 6) and the capac-
ity v of Example 1. We have Cv(x) = 9.5 > 8.8 = Cv(y).
Yet if z = (0, 4, 8), we obtain Cv(x + z) = 13.5 < 14 =
Cv(y+ z). The convenient semiring structure is lost here and
Algorithm 1 is no longer admissible for preferences induced
by the Choquet integral. To overcome the problem, we need
a generalized DP algorithm as suggested in [Carraway et al.,
1990] so as to discard partial solutions if they cannot lead to
an optimal solution. This can be achieved by determining a
dominance relation �d so as to restore the following weak
monotonicity condition: x �d y ⇒ x ⊗ z �c y ⊗ z for all
z, where �c is the strict preference induced by the Choquet
integral. The challenge is to find some relations�d providing
stronger pruning possibilities than Pareto-dominance. This is
the aim of the next section.

4 Dominance Rules for Choquet-optimization

We present now a family of dominance rules which enables
to detect some sub-solutions that can not lead to Choquet-
optimal solutions, without any restriction on the capacity.

4.1 A Family of Dominance Rules
The dominance rules we consider for Choquet-optimization
are based on decompositions of the capacity into a differ-
ence of set-functions. We establish a preliminary lemma and
a proposition concerning such decompositions before formu-
lating a general dominance rule:
Lemma 1 For any convex set-function v, Cv(x) − Cv(y) ≥
Cv(x− y) holds for any x, y ∈ Rn.
Proof. If v is convex then Cv is concave. Thus for any
z, y ∈ Rn, Cv(z/2 + y/2) ≥ Cv(z)/2 + Cv(y)/2, i.e.
2Cv(z/2 + y/2) ≥ Cv(z) +Cv(y). By Equation (3) we have
2Cv(z/2 + y/2) = Cv(z + y) ≥ Cv(z) +Cv(y). By setting
x = z + y, we obtain Cv(x) ≥ Cv(x− y) + Cv(y). �

Proposition 1 For any decomposition of a capacity v into a
difference of convex set-functions v1 and v2 (v = v1 − v2),
and for any x, y ∈ Rn, we have:

Cv1(y − x) + Cv2(x− y) > 0⇒ Cv(x) < Cv(y)

Proof. Since v = v1 − v2, we have Cv(y) − Cv(x) =
(Cv1(y) − Cv1(x)) + (Cv2(x) − Cv2(y)) by Equation (4).
From Lemma 1, we know that (Cv1(y)−Cv1(x))+(Cv2(x)−
Cv2(y)) ≥ Cv1(y − x) + Cv2(x − y) (since v1 and v2 are
convex). Therefore if Cv1(y− x) +Cv2(x− y) > 0 we have
Cv(y)− Cv(x) > 0. �
This result leads to a dominance rule for Choquet-
optimization which enables local pruning during the search.

Proposition 2 (General Dominance Rule GDR) Let x, y ∈
Rn be two reward vectors attached to the same state sk and
associated with two partial solutions σx, σy respectively. Let
v1 and v2 be two convex set-functions such that v = v1 − v2.
If Cv1(y−x) +Cv2(x− y) > 0 then any further extension of
σx will be beaten by the same extension of σy and x can be
discarded in the search for a Choquet-optimal solution.

Proof. Consider σx and σy two sub-solutions, and x, y ∈ Rn
their reward vectors, such that Cv1(y−x) +Cv2(x− y) > 0.
For any reward vector z ∈ Rn, we still have
Cv1((y + z) − (x + z)) + Cv2((x + z) − (y + z)) > 0.
Since v1 and v2 are convex, Proposition 1 holds and we get
Cv(x+ z) < Cv(y + z). �

Let �d be the preference relation defined by: y �d x iff
Cv1(y − x) + Cv2(x − y) > 0 for a given decomposition
of type v = v1 − v2 with v1, v2 convex. If a vector x ∈
V (sk) is �d-dominated (i.e. there exists y ∈ V (sk) such
that y �d x) then x cannot lead to a Cv-optimal solution.
Therefore, we may use GDR in Algorithm 1 (implemented
with the valuation system introduced in Example 3) after Line
4 to discard any vector �d-dominated in V (sk). Remark that
GDR assumes that v is decomposable as a difference of two
convex set-functions. The following proposition shows that
such a decomposition is always possible:
Proposition 3 Any capacity v can be decomposed as the dif-
ference of two convex set-functions.
Proof. Let m be the Möbius masses of v. We define
m+(B) = max{m(B), 0} andm−(B) = max{−m(B), 0},
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such that m(B) = m+(B) − m−(B), for any
B ⊆ N . Let v+ and v− be two set-functions such that
v+(A) =

∑
B⊆Am

+(B) and v−(A) =
∑
B⊆Am

−(B).
By construction, the Möbius masses of these two set func-
tions v+ and v− are positive, which means that these two
set functions are convex. Furthermore, for any A ⊆ N ,
v(A) =

∑
B⊆A (m+(B)−m−(B)) = v+(A) − v−(A)

which concludes the proof. �

Hence there exists at least one decomposition of v to imple-
ment GDR. The instance of GDR based on the decomposition
v = v+ − v− introduced in Proposition 3 is denoted DR1
hereafter. It is logically equivalent to the rule introduced in
[Fouchal et al., 2011] involving Möbius masses. The test us-
ing our formulation is computationally more efficient because
it is performed in O(nlogn) whereas the test using Möbius
masses requires O(2n) operations where n is the number of
criteria. Obviously, many other decompositions are possible.
For example, we know due to Proposition 3 that the dual of
v can be decomposed as v̄ = v̄+ − v̄− where v̄+ and v̄−

are convex. We set w+ = −v̄− and w− = −v̄+. Since v̄+

and v̄− are convex, their dual are concave, and w+ and w−
are convex. The following proposition shows that those two
set-functions form a convenient decomposition of v:
Proposition 4 Set-functions w+ and w− defined above are
such that v = w+ − w−

Proof. Let m̄+ and m̄− be the Möbius inverse of v̄+ and
v̄− respectively. By definition, for any A ⊆ N , we have
w+(A) = v̄−(Ā)− v̄−(N) = −

∑
B⊆N :B∩A6=∅ m̄

−(B) and
w−(A) = v̄+(Ā) − v̄+(N) = −

∑
B⊆N :B∩A6=∅ m̄

+(B).
Furthermore, we also have v(A) = 1 − v̄(Ā) =
1 −

∑
B⊆Ā m̄(B) =

∑
B⊆N :B∩A6=∅ m̄(B) =∑

B⊆N :B∩A6=∅ [m̄+(B)− m̄−(B)] = w+(A) − w−(A)
which concludes the proof. �

This second decomposition of v leads to a second instance
of GDR denoted DR2 which can be used to prune extra
sub-paths. Let us illustrate the complementarity of DR1
and DR2 on capacity v of Example 1 with the following
decompositions:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v+ 0 0.3 0.2 0.5 0.5 0.9 0.7 1.3

v− 0 0 0 0 0.1 0 0.2 0.3

w+ 0 −0.7 −0.3 −0.8 −0.8 −1.3 −0.9 −1.4

w− 0 −0.4 −0.1 −0.3 −0.4 −0.4 −0.4 −0.4

Consider two vectors x = (1, 5, 7) and y = (6, 6, 6). We
have Cv+(y − x) + Cv−(x − y) = 0.2 > 0 and x can be
discarded, while Cw+(y − x) + Cw−(x − y) = −0.2 ≤ 0.
Hence DR1 is active but not DR2. One could check that this
is exactly the reverse for decompositions of v̄.

4.2 Optimality of a Decomposition
Proposition 3 shows that there always exists a decomposi-
tion v+ − v−. Besides, for any convex set-function v3, set-
functions v+ + v3 and v− + v3 are convex and form another
valid decomposition for v. Hence the number of possible de-
compositions is infinite. In this subsection, we address the
question of the existence of an optimal decomposition, in the

sense that the resulting dominance rule based on Proposition
2 has stronger discarding possibilities. More precisely, a de-
composition v = v1− v2 with vi convex is said to be optimal
if, for any other decomposition v = v′1 − v′2 with v′i convex,
and for any x, y ∈ Rn, we have Cv1(y − x) + Cv2(x− y) ≥
Cv′1(y − x) + Cv′2(x − y). We discuss now optimal decom-
positions for various categories of capacities.

Convex or Concave Capacities
In order to provide an optimal decomposition for the case of
a convex v, we need to prove the following lemma:

Lemma 2 For any convex set-function v, and any x, y ∈ Rn,
we have Cv(y − x) + Cv(x− y) ≤ 0.

Proof. Since v is convex, we have (Lemma 1) for any x, y ∈
Rn, Cv(y− x) ≤ Cv(y)−Cv(x) and Cv(x− y) ≤ Cv(x)−
Cv(y). By adding this two inequalities we obtainCv(y−x)+
Cv(x− y) ≤ 0. �
If v0 denotes the set-function which is everywhere 0, then we
can now prove that the decomposition v1 = v and v2 = v0 is
optimal when the capacity is convex:

Proposition 5 When v is convex, then for any decomposition
v = v1 − v2 with v1 and v2 convex, and any x, y ∈ Rn, we
have Cv1(y − x) + Cv2(x− y) ≤ Cv(y − x).

Proof. We have v1 = v + v2. Moreover, we have
Cv1(y−x)+Cv2(x−y) = Cv(y−x)+Cv2(y−x)+Cv2(x−y)
by Equation (4). Set-function v2 is convex, so by Lemma 2
we have Cv2(y − x) + Cv2(x − y) ≤ 0. Combining these
two results yields Cv1(y− x) +Cv2(x− y) ≤ Cv(y− x). �

Since the decomposition v = v − v0 leads to test if
Cv(y − x) > 0, Proposition 5 shows that any other test of
type Cv1(y − x) + Cv2(x − y) > 0 cannot succeed when
Cv(y − x) > 0 fails, thus establishing the optimality of the
test Cv(y − x) > 0 for convex capacities. Similarly, we can
show that when v is concave, decomposition v = v0 − (−v)
is optimal.

2-additive Capacities
When v is 2-additive, the decomposition of Proposition 3 is
optimal as shown in the following:

Proposition 6 If v is 2-additive, for any decomposition v =
v1−v2 of v, and for any x, y ∈ Rn,Cv1(y−x)+Cv2(x−y) ≤
Cv+(y − x) + Cv−(x− y).

Proof. Let v′ be a set-function such that v′ = v1 − v+. We
have v1 = v+ + v′, v2 = v1 − v = v+ + v′ − v = v− + v′,
and so Cv1(y − x) + Cv2(x − y) = Cv+(y − x) +
Cv−(x − y) + Cv′(y − x) + Cv′(x − y). If we
suppose that v′ is convex, we get from Lemma 2
Cv′(y−x)+Cv′(x−y) ≤ 0 for any x, y ∈ Rn. It would mean
that Cv1(y− x) +Cv2(x− y) ≤ Cv+(y− x) +Cv−(x− y).
So in order to conclude the proof, we only need to show
that v′ is convex. Let m, m+, m−, m1, m2 and m′ be
the respective Möbius masses of v, v+, v−, v1, v2 and
v′. Chateauneuf and Jaffray [1989] have shown that v′
is convex if and only if for any {i, j} ⊆ N and any
A ⊆ N\{i, j},

∑
B⊆Am

′({i, j} ∪B) ≥ 0. Capacity
v2 is convex, so we have 0 ≤

∑
B⊆Am2({i, j} ∪B) =
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∑
B⊆Am

−({i, j} ∪B) +
∑
B⊆Am

′({i, j} ∪B). By
construction if m({i, j}) ≥ 0, for any B ⊆ A,
m−({i, j} ∪ B) = 0 since v is 2-additive, so we
get 0 ≤

∑
B⊆Am

′({i, j} ∪B). Capacity v1 is also
convex, so we have 0 ≤

∑
B⊆Am1({i, j} ∪B) =∑

B⊆Am
+({i, j} ∪B) +

∑
B⊆Am

′({i, j} ∪B). By
construction if m({i, j}) < 0, for any B ⊆ A,
m+({i, j} ∪ B) = 0 since v is 2-additive, and as a
consequence we get 0 ≤

∑
B⊆Am

′({i, j} ∪B) in any
cases, which concludes the proof since v′ is convex. �

To our knowledge, finding the optimal decomposition for
3-additive capacities or more remains an open problem.

5 Application to Multiobjective Knapsack
The Knapsack problem is a standard NP-hard problem ap-
pearing each time a Decision Maker has to perform a se-
lection of items within a set {1, . . . , p}, under a resource
constraint. Its multiobjective version consists in maximiz-
ing quantities xi =

∑p
k=1 u

i
kak under a budget constraint∑p

k=1 wkak ≤ W , where wk are positive weights, uik rep-
resents the utility of item k w.r.t. criterion i and ak is a
boolean corresponding to possible actions (selection of ob-
ject k or not). We present here an application of our work to
maximize Cv(x1, . . . , xn) where xi’s are defined as above.
In order to recast the problem in the MODP framework in-
troduced in Section 3 we define Ak = {0, 1}, S1 = {0} and
Sk = {0, . . . ,W}, the possible actions and states for k = 2
to p + 1. Then the transition function at step k is given by
fk(sk, ak) = sk + wkak (it gives the total weight of the se-
lection after the k first decisions). The reward function is
characterized by Rk(sk, ak) = (u1

kak, . . . , u
n
kak).

To solve this problem, we have implemented Algorithm 1
(with the valuation system introduced in Example 3 as ex-
plained in Section 3) modified by insertion of dominance
rules DR1 and/or DR2 after Line 4. This enables to discard
any �d-dominated vector in Vk(sk). Such dominance rules
enable to decrease the number of vectors yielding to sub-
optimal paths (w.r.t. the Choquet integral) during the search,
but the computation of these rules could be time consuming
since each Choquet evaluation requires to sort the compo-
nents of the vectors. We use the knapsack problem to study
the impact of using DR1 (or DR2) compared to using only
Pareto-dominance (DR0).

The experiments were performed in C++ on an Intel Xeon
2.27Ghz with 10Gb RAM. Utilities and weights of items
are randomly drawn between 1 and 100. The capacity of
the knapsack W is set to 50% of

∑
k wk. Our experiments

use different randomly drawn Choquet capacities v. We first
present the results obtained for a concave capacity defined
for any A ⊆ N by v(A) =

√∑
i∈A pi where pi’s are co-

efficients randomly drawn in [0, 1], adding up to 1. Table 1
summarizes the average execution time (in seconds) over 20
random instances of knapsack (first row), and the number of
thousands of sub-solutions generated (second row) for differ-
ent number of items and objectives. We have tested the same
variants DR0, DR1 or DR2. For this concave capacity, DR2

is always better than DR1. To save space, we thus only report
the results of DR2 compared to DR0.

n 3 obj. 5 obj. 8 obj.
p 30 50 70 30 40 50 20 30

DR0 0.3 13.7 252.4 3.2 114 > 900 0.3 65.8
140 1,837 12,100 411 3,384 – 55 1,369

DR2 0.1 1.2 8.2 0.3 1.98 39 0.1 1.6
33 2,682 1,052 54 197 912 14 91

Table 1: v concave: exec. time (s), #thousands of subsol.

These results show that applying DR2 in a MODP pro-
cedure enables to significantly reduce the number of sub-
solutions generated. Consider for example the case of 30
items and 8 objectives where 91,000 sub-solutions are gen-
erated with DR2 instead of more than 1,3 million with DR0.
Moreover DR2 is clearly faster than DR0 with this capacity.

In order to assess the impact of the convexity or concavity
of v, we performed numerical experiments with a family of
capacities generated from Möbius masses as follows: given
a number α ∈ [−1, 1], m({i}) = (α + 1)/n, m({i, j}) =
−2α/n(n − 1), and m(A) = 0 for all A such that |A| >
2. Hence, if α < 0 then v is convex, if α > 0 then v is
concave, and if α = 0 then v is additive. In Figure 1, we
report the results obtained by varying α from −1 to 1 for a
knapsack with 50 items and 3 objectives. The figure indicates
the average execution time (top chart) and the average number
of sub-solutions generated (bottom chart) with DR0, DR1,
DR2 over 20 random instances. One can observe that DR1
and DR2 are similar and really faster than DR0 (horizontal
top line), except for extreme values of α. Moreover DR1 and
DR2 enable to significantly reduce the number of generated
sub-solutions, even for extreme values of α. The efficiency
of DR1 and DR2 increases as we get closer to linearity (i.e.
when α tends to 0). Finally, we observe that when α is lower
than 0, the Choquet integral is convex. To our knowledge, this
is one of the very first methods able to determine a Choquet-
optimal knapsack when the Choquet integral is convex (in
maximization) without determining the entire Pareto set.

Figure 1: α ∈ [−1, 1], exec. time (s) (top), #subsol. (bottom)
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Labreuche, and P. Savéant. Integration and propagation of
a multi-criteria decision making model in constraint pro-
gramming. Journal of Heuristics, 12(4-5):329–346, 2006.

[Lovász, 1983] L. Lovász. Submodular functions and con-
vexity. In Mathematical Programming, the State of the
Art, pages 235–257. A. Bachem and M. Grötschel and B.
Korte, 1983.
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