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Capturing and Reproducing Hand-Object Interactions Through Vision-Based Force Sensing

Tu-Hoa Pham!-2, Abderrahmane Kheddar!-2, Ammar Qammaz?, Antonis A. Argyros>*
'CNRS-AIST Joint Robotics Laboratory. 2CNRS-UM LIRMM. 3Institute of Computer Science, FORTH. *Computer Science Department, University of Crete.

Capturing and reproducing hand-objects interactions would open consider-
able possibilities in computer vision, human-computer interfaces, robotics,
animation and rehabilitation. Recently, we witnessed impressive vision-
based hand tracking solutions that can potentially be used for such purposes.
Yet, a challenging question is: to what extent can vision also capture haptic
interactions? These induce motions and constraints that are key for learn-
ing and understanding tasks, such as dexterous grasping, manipulation and
assembly, as well as enabling their reproduction from either virtual char-
acters or physical embodiments. Contact forces are traditionally measured
by means of haptic technologies such as force transducers, whose major
drawback lies in their intrusiveness, with respect to the manipulated objects
(impacting their physical properties) and the operator’s hands (obstructing
the human haptic senses). Others include their extensive need for calibra-
tion, time-varying accuracy and cost. In this paper, we present the force
sensing from vision framework [6] to capture haptic interaction by means of
a cheap and simple set-up (e.g., a single RGB-D camera). We then illustrate
its use as an implicit force model improving the reproduction of hand-object
manipulation scenarios even in poor performance visual tracking conditions.

Towards force sensing from vision

Previous work on correlating fingernail coloration changes to the touch force
applied at fingertips [4] and estimating whole body contact forces and inter-
nal joint torques from contact dynamics and human kinematics [1] showed
that vision could help infer such information up to a certain extent. Con-
versely, manipulation forces are the basis for physics-based hand tracking
methods [3, 7]. However, these simulated forces are constructed to be com-
patible with ‘visual’ observations rather than matching the actual forces hu-
mans apply. Recent work on force sensing from vision (FSV) demonstrated
that it is possible to estimate the interaction forces occurring in hand-object
manipulation scenarios using a single RGB-D camera [6], provided that hu-
man hand geometry and object properties (shape, contact friction y, mass
m and inertia J4) are known. First, both the hand’s and the object’s motions
are monitored using model-based 3D tracking. Numerical differentiation of
the object’s positional data over time then yields its kinematics, i.e. trans-
lational/rotational velocity (v, ®) and acceleration (a, o). With Fy and 74
known non-contact force and torque (e.g., gravity), it can be inferred that
the following net contact force . and torque 7. are exerted by the hand:
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Once hand-object-(environment) contact points have been estimated from
tracking by proximity detection, manipulation forces can be computed as so-
lutions of a second-order cone program (SOCP) enforcing Eq. (1) as equality
constraints, as well as Coulomb’s friction model as inequality constraints.
Minimizing the force distribution’s L? norm as cost function yields nominal
forces that are physically valid and explain the observed kinematics. How-
ever, humans typically manipulate objects using internal forces that secure
the object with a firmer grip than what is required from the Newton-Euler
dynamics. This statical indeterminacy is addressed by decomposing each

(n) ()

finger force Fy into a nominal F;/” and an internal F;” components:
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with (t}, ti, ny) being a local frame at finger k. Nominal forces are responsi-
ble for the object’s motion through the Newton-Euler equations and internal

Using a single RGB-D camera, it is possible to infer with high

Figure 1:
accuracy the forces that occur in real hand-object manipulation tasks based
on markerless tracking, kinematics, and considerations on human grasping.

forces are neutral regarding its state of equilibrium:
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A dataset of reference nominal-internal decompositions was collected
by monitoring 160 manipulation experiments performed by different sub-
jects on various contact and mass distribution configurations, using 1D tac-
tile sensors providing ground-truth force measurements. Nominal-internal
force decompositions occurring in real manipulation tasks were extracted by
incorporating Eq. (3) into an SOCP that computes the internal normal forces

fk(l) that best bridge the gap between the nominal normal forces fk(") and

tactile sensor measurements (fk) without perturbing the object’s observed
kinematics, using a new objective function:

&

with x denoting the vector of the unknown contact force components.

The FSV framework was completed by training multilayer perceptrons
to correlate the amount and distribution of internal forces to only grasp and
kinematics features, allowing to predict and reconstruct full manipulation
forces on new experiments from vision alone. Experimental results obtained
on datasets annotated with ground-truth data from tactile sensors and an in-
ertial measurement unit showed the potential of the proposed method to infer
hand-object contact forces that are both physically realistic and in agreement
with the actual forces exerted by humans during grasping (see Fig. 2).

Cdecomp(X) = Z )

ke F

)]

Individual normal forces [N]

NN W
ouoLouo
L

E

Thumb

=)
N
IS
o
o
-
o

=
w
L

%

o
w
L

-
o u o
|

Middle finger Index finger

Ring finger
o
o wu
E

0 2 4 6 8 10
Time [s] [— Tactle — FSV nominal+internal(ANN) — FSV nommal]

Figure 2: Artificial neural networks used in conjunction with cone program-
ming successfully predict force distributions that explain the observed mo-
tion in agreement with human force patterns.
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Figure 3: The markerless tracking of a hand interacting with an object with a
single RGB-D camera (a) may result in a hand-object pose that is physically
inconsistent (b) due to occlusions or other visual tracking imperfections.

Reconstructing natural grasps from incomplete observations
Incomplete observation is a major challenge for motion tracking. The case
of object manipulation tasks in particular is inherently subject not only to
self-occlusions of each of the involved entities, but also mutual occlusions
between the object and the hand. For this reason, hand tracking approaches
that do not enforce physical consistency are often likely to produce unreal-
istic grasps, that match the observable features while being physically in-
correct, especially in the case of a single camera (see Fig. 3). While multi-
camera setups may partially alleviate occlusion issues, those are impractical,
and are not immune to severe occlusion cases. Incorporating physics has
resulted in successful approaches to improve tracking realism, both in mul-
tiple [7] and single [3] camera configurations. Such methods consider the
tracked bodies’ motions jointly with their underlying causes, e.g., a given
object motion is only plausible if the hand pose is such that there are contact
points that are able to produce a compatible force distribution. While physi-
cally valid, these simulated forces are generally not constructed to resemble
the actual forces exerted by humans during grasping.

In this work, we show that the FSV framework can be extended be-
yond the direct estimation of contact forces and, conversely, be used as an
implicit force model for physics-based tracking, to reconstruct hand poses
that are both physically plausible and in agreement with the way humans
naturally grasp objects. Our methodology is as follows. First, while our
approach relies on the good tracking of the object due to its unarticulated,
lower-dimensionality nature, we consider the hand tracking data as an ini-
tial, possibly erroneous guess rather than an absolute reference. We then
initialize our search space by constructing a set of possible contacting hand
poses using existing grasp taxonomies [2] in the vicinity of the initial hy-
pothesis. At this stage, we have a set of hand poses that represent a wide
variety of ways a human operator could grasp the object. The goal is now to
reconstruct the actual hand pose the human operator uses.

To do so, we postulate that humans spontaneously manipulate objects
using grasps that are optimal in some sense with regard to the task they
try to execute. For instance, previous studies showed that humans notably
regulate their grip strength to prevent muscle fatigue [5]. Given the observed
object’s kinematics and using the FSV framework, it is possible to predict
the actual force distributions that would be incurred by each of the hand
pose candidates. We then search for the actual hand pose by exploring the
search space with Particle Swarm Optimization (PSO) and generate a final
grasp that minimizes the force distribution’s intensity, which we take as a
measure of the perceived effort for the human operator. To each hand pose
candidate H, we associate the following cost based on the resulting nominal
and internal force decomposition:
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In order to assess the validity of our approach, we consider a standard
unconstrained manipulation experiment involving rapid motions. Except for
the initial frames, the hand quickly becomes at least partially unobservable,
either because of self occlusions between the palm and the fingers, or exter-
nal occlusions from the object. While the hand tracking is unreliable, when
in contrast the object tracking is fairly accurate, we can rely on it to compute
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Figure 4: We compute alternative hand poses in the vicinity of the erro-
neous initial hypothesis using existing grasp taxonomies (a) and look for the
configuration that best explains the object’s kinodynamics (b).

the object’s kinematics over time. Generating initial hand pose candidates
by combining grasp taxonomies and tracking data yields various plausible
grasps (see Fig. 4(a)). We then assess each of these candidates by com-
puting the corresponding force distribution and optimizing the cost function
described in Eq. (5) with PSO. Experimental results show that focusing on
reducing the intensity of the force distribution yields grasps that may be
substantially different from the initial hypothesis. We therefore augment the
PSO objective function with a term penalizing visual discrepancy between
hand pose hypothesis and observation as in [3], therefore allowing the re-
construction of physically realistic grasps that match the actual observation
despite inaccurate tracking data (see Fig. 4(b)). As such, we showed that the
FSV framework can be used as a valuable implicit force model for physics-
based tracking, motion editing and retargeting, as human-like forces can
augment the pose search with biomechanical considerations such as muscle
fatigue or energy expenditure.

Discussion and future work

Towards estimating contact forces from vision, the issue of static indeter-
minacy was tackled by applying machine learning techniques to internal
forces. An alternative approach would be to formulate the evolution of the
full contact forces following various objects and grasp taxonomies as an in-
verse optimal control problem. If invariants are found, they could be used
to refine the formulation of the optimization problem and possibly result in
a better understanding of human grasping. Extending the ground truth force
measurement setup with embedded three-axis or force-torque miniature sen-
sors would also benefit both learning and optimal control approaches. The
FSV framework could also expand to the robotics field for human activities
monitoring, serving various purposes such as task segmentation and learn-
ing from demonstration.
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