Max-min convolutional neural networks for image classification

Michael Blot 1 Matthieu Cord 1 Nicolas Thome 1
1 MLIA - Machine Learning and Information Access
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : Convolutional neural networks (CNN) are widely used in computer vision, especially in image classification. However, the way in which information and invariance properties are encoded through in deep CNN architectures is still an open question. In this paper, we propose to modify the standard convo-lutional block of CNN in order to transfer more information layer after layer while keeping some invariance within the network. Our main idea is to exploit both positive and negative high scores obtained in the convolution maps. This behavior is obtained by modifying the traditional activation function step before pooling. We are doubling the maps with specific activations functions, called MaxMin strategy, in order to achieve our pipeline. Extensive experiments on two classical datasets, MNIST and CIFAR-10, show that our deep MaxMin convolutional net outperforms standard CNN.
Type de document :
Communication dans un congrès
ICIP 2016 - IEEE International Conference on Image Processing, Sep 2016, Phoenix, United States. IEEE, Image Processing (ICIP), 2016 IEEE International Conference on, pp.3678-3682, 2016, 〈10.1109/ICIP.2016.7533046〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01372216
Contributeur : Michael Blot <>
Soumis le : mardi 4 octobre 2016 - 13:43:25
Dernière modification le : jeudi 22 novembre 2018 - 14:09:35
Document(s) archivé(s) le : jeudi 5 janvier 2017 - 12:57:37

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Michael Blot, Matthieu Cord, Nicolas Thome. Max-min convolutional neural networks for image classification. ICIP 2016 - IEEE International Conference on Image Processing, Sep 2016, Phoenix, United States. IEEE, Image Processing (ICIP), 2016 IEEE International Conference on, pp.3678-3682, 2016, 〈10.1109/ICIP.2016.7533046〉. 〈hal-01372216〉

Partager

Métriques

Consultations de la notice

379

Téléchargements de fichiers

385