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Abstract—In the area of code performance optimisation and
tuning, we are faced on the difficult problem of selecting
the ”best” code version based on empirical experiments and
statistical analysis. With the massive introduction of general
purpose multicore processors, programs performances become
more and more instable, especially parallel programs. Usual
statistical methods for computing performance speedups and
comparing between programs are based on testing mean or
median values. In this article, we explain why these metrics may
be inadequate for making relevent decisions, and we propose
new performance metrics based on parametric statistics using
gaussian mixture models. Our new statistical methods are
more accurate for decision making, they are formally defined,
computed, implemented and distributed as free software in [1].

Keywords-programs performances modelling, gaussians mix-
ture, programs performances variability, parametric statistics.

I. INTRODUCTION AND MOTIVATION

When you read books or articles on computer archi-
tectures, performance analysis, operating systems (OS) or
compilation, some people still think that the execution time
of a program P on a fixed machine M with fixed data input I
is stable around a value, that can be noted as a single number
ExecutionTime(P,I,M). This situation was true in old
computers, but nowadays nobody really observes constant
execution times, except in rare situations: ideal execution
environment, special processor architectures designed for
performance stability, bare mode execution, etc. Even SPEC
organisation resumes the execution times of a program as a
single number (computed as the sample median of a set of
observed values).

The consequence of performance variability is that the
reported constant numbers of program performances in the
literature are not reproducible, and it becomes more and
more difficult to decide about the most effective program
version or OS configuration. As in car industry, a random
car driver can hardly ever reproduce the gas consumption
reported by the vendor.

There are many factors that explain why the observed
programs performances are instable: technological factors
(electronics, variable clock frequency, input/output periph-
erals, etc), micro-architectures (hardware prefetching, out
of order execution, speculation, memory hierarchy), thread
and process competition on shared ressources or data, op-
erating systems services and actions, algorithmic factors

(some application are designed to not behave exactly from
one run to another), etc. If the user has complete control
of its execution environment, he may be able to stabilise
performances by configuring the BIOS (to deactivate some
hardware features), by configuring the OS, by reducing the
workload of the shared machine, etc. Unfortunately regular
users cannot get such privileged rights, they are just allowed
to use some computing power. Such users observe that their
programs have unstable performances. These users may rely
on rigorous statistical methods to decide which code version
they should use for their production computation.

The instability of programs performances makes difficult
to check whether a code version is better than another.
So people usually make standard statistics based on mean
or median values. That is, people resume all the observed
performance numbers by a single value, which is not
adequate in practice. The reason is that the programs
performances are generally not of simple gaussian type in
practice, as demonstrated in [1]. So what is the consequence
if the performances of a program do not follow a gaussian
distribution ? In theory, it means that some statistical tests
designed for gaussians (such as the Student t-test) would
compute a wrong risk level. Likewise, the well known
formula that computes the confidence interval of an average
would correspond to a wrong confidence level. Of course,
if the performances sample is large enough, the statistical
error must be asymptotically bounded (but nobody is able
to define how large it should be).

In practice, the observed performances are often multi-
modal data distributions (see Sect. II). This suggests us to
use gaussian mixtures to model the density distributions.
Based on this modeling, we are able to do rigorous and
flexible parametric statistics. We define and compute new
performance metrics that go beyond mean and median val-
ues. These metrics will provide additional decision criteria to
the user to analyse and to compare programs performances.

Now, what does the word parametric mean for a statistical
model ? This is fairly simple: if X = (x1, . . . , xn) denotes
some execution times data (n repetitions of program execu-
tions), we suppose that they are independent realisations of
some probability distribution having a probability density
function (p.d.f.) fX . The approach will be parametric if
we suppose that this p.d.f. belongs to some family of



distributions fθ where θ is a vector parameter composed
of d real-valued sub-parameters, which exact values are
unknown: d is the dimension of the model. Since the set
of all possible distributions is infinite dimensional, we thus
reduced the problem of estimating fX to the problem of
estimating a finite-dimensional parameter θ: this is the main
purpose of the parametric approach.

Let us also mention that, despite the appeal of the non-
parametric approach, the parametric approach is still very
heavily used in the scientific activities involving statistics
thanks to numerous reasons:

1) The parameters of a parametric model can often be in-
terpreted (which helps understanding and summarising
the data);

2) Some computations cannot be performed, or some
mathematical results cannot be proved, without para-
metrically specifying some parts of the model (for
example, the perturbation part);

3) For really large datasets, it is often proved that the
parametric techniques are indeed more accurate than
their non-parametric alternatives;

4) For high dimensional data, non-parametric techniques
may suffer from a lack of accuracy which is called
the ”curse of dimensionality”, and which is out of the
scope of our present research work.

It is important to notice that our statistical methods treat
any kind of continuous performance data (execution times,
energy consumption, network traffic, memory bandwidth,
etc). We make experiments and demonstrations with pro-
grams execution times because this sort of performance
is the most common and easiest to collect. Any other
kind of continuous performance can be analysed using the
parametric statistics we present in this article.

Our article is organised as follows. Sect. II presents our
method of modelling the performance data using gaussian
mixtures. Sect. III formally defines and computes four new
performance metrics, and explain why they are useful in
practice. Sect. IV resumes our experimental study. Related
work and discussion are given in Sect. V, then we conclude.

II. MODELING PROGRAMS PERFORMANCES WITH
GAUSSIAN MIXTURES

The central idea of our work in this direction stems from
the following remark: in our own experience in parallel and
sequential application performance analysis, the variability
of such data is not necessarily of the ”deviation around a
single mean value” kind, it often exhibits a clear clustering
pattern: in other words, the observed performances often
vary from each other by clustering around two or more
central values. Examples of such observed performances are
given in pages 16 and 17 in [1]. Therefore, we cannot choose
for our modelling classical families of distributions such as
the Gaussian, Exponential, Gamma or Weibull family, which
are by nature monotonic or unimodal.

We propose to model the performances by mixtures
of gaussian distributions: this family of distributions has
demonstrated to be an essential tool in many areas of sci-
entific activities for many years now (biology, engineering,
astronomy, among many others), particularly in the image
analysis and pattern recognition fields. Mixtures of gaussian
distributions is a highly flexible family of distributions which
can fit a great variety of data: it is not only naturally adequate
for modelling data which exhibits clusters, but it can also
handle the problem of possible skewness in the data, despite
the symmetry of the gaussian components of the mixtures.

A. Definition of the gaussian mixtures family

Remind that we consider data sample X = (x1, . . . , xn)
which are independent realisations of a probability density
function (p.d.f.) fX . We say that the data are issued from a
finite mixture of gaussian distributions (or simply a gaussian
mixture, which we will abbreviate by GM from now on) if
fX is equal to some p.d.f. gθ,K (parametrized by θ and K
described below) of the form:

gθ,K(x) = π1ϕ(x;µ1;σ1) + . . .+ πKϕ(x;µK ;σK)

=
∑K
k=1 πkϕ(x;µk;σk)

(1)
where:

− π1, . . . , πK ∈ R+ are the mixture weights, which are
positive and sum to 1;

− µ1, . . . , µK and σ1, . . . , σK are the mean values and
standard deviations of the mixture individual compo-
nents;

− ϕ( · ;µk;σk) denotes the p.d.f. of the gaussian/normal
distribution N (µk, σk). Also, for the sequel of this
article, we note Φ the cumulative distribution function
(c.d.f.) of ϕ( · ;µk;σk);

− K ∈ N is the number of components in this mixture;
− θ is a vector gathering all the parameters (except K)

in a single notation,

θ = (π1, . . . , πK ; µ1, . . . , µK ; σ1, . . . , σK)

We will denote by FGM the set of all mixtures of
gaussian distributions, and say that X is GM-distributed
if its cumulative distribution function (c.d.f.) FX belongs
to FGM , which means there exists some parameters K and
θ = (π1, . . . , πK ; µ1, . . . , µK ; σ1, . . . , σK) such that

∀x ∈ R, FX(x) equals Fθ,K(x) =
K∑
k=1

πkΦ(x;µk;σk)

(2)
which is (of course) itself equivalent to fX being equal
to the density gθ,K defined in Equ. 1. Naturally, the more
components the mixture has, the more flexible the shape of
the distribution can be (but this has a cost: the model has
more parameters to be estimated).



The next section presents the method for building a GM
model based on a data sample. This is called clustering in
the literature.

B. Clustering method

Our aim is then, for the moment, to estimate the parame-
ters of the distribution described in Equ. 1, from which we
assume our data are issued: the parameters are the clusters
weights (πk)k=1..K , the clusters means (µk)k=1..K and the
clusters standard deviations (σk)k=1..K , and they are gath-
ered in one single notation, θ (which is 3K-dimensional).
The formal details of our clustering method are given in [1],
this section is a synthesis.

1) Estimation of the parameters of the mixture for fixed
K: How then is θ estimated? Remind that the dimension of
θ depends on the value of K, which is fixed for the moment.
We naturally adopt a parametric approach, and intend to
compute the maximum likelihood estimator θ̂ of θ, which
is defined as the (global) maximiser of the log-likelihood
function. This function, given the observations x1, . . . , xn
and Equ. 1, is defined by:

L(θ) =
n∑
i=1

log gθ,K(xi) =
K∑
k=1

πkϕ(xi;µk;σk)

Maximising it consists in calculating the various partial
derivatives of L with respect to the different parameters
πk, µk, σk (k = 1, . . . ,K), and equalising them to 0 to
obtain the so-called score equations. It is rather clear that
any attempt to directly solve these score equations will turn
out to be an unsolvable problem, due to the presence of a
log of a sum.

This major obstacle was overcome thanks to the approach
synthesised in the celebrated paper [2]: the EM algorithm.
The acronym EM means a succession of E-steps (E for
Expectation) and M-steps (M for Maximisation), which
eventually lead to obtaining (numerically) the value of the
maximum likelihood estimator θ̂. We do not detail this
algorithm here, we sketch/vulgarise/explain it in [1].

2) Determination of the number K of components of the
mixture: Let us explain how the number K of components
of the gaussian mixture model can be chosen. In practice,
several candidate values are considered for K, and one of
them, noted K̂, is chosen so that the corresponding GM
model best fits the data at hand. The determination of K̂ is
nearly the most important issue in clustering analysis, and in
this work we adopt a simple and widespread strategy: using
the BIC criterion (BIC stands for Bayesian Information
Criterion).

The principle of the BIC criterion for determining K̂ is the
following. If, for a given K ≥ 1, we note LK the maximum
value of the log likelihood for the model with K compo-
nents, then it should be easy to conceive that the greater K

is, the greater the value LK will be: indeed, for instance,
if you consider the model with K + 1 components which
best fits your data, then it will certainly better fit your data
than the best model having K components (maybe not far
better, but better all the same). Therefore, choosing K which
maximises LK would not work. The likelihood value needs
to be penalised by a value which grows with K, in order
to counterbalance the fitting gain that more complex models
yield. That is the idea of the so-called information criterions,
for instance the BIC criterion: to choose the value of K
that minimises the value BIC(K) = −2LK + K log(n)
(this value of the penalisation term K log(n) has theoretical
justifications, which will not be detailed here). Therefore,
if BIC(K̂) = maxK≥1BIC(K), then the model with K̂
components will be a tradeoff between good data fitting and
reasonable complexity. Note that, in practice, the maximum
is chosen among a finite number of candidate values, for
instance 1 ≤ K ≤ Kmax (where Kmax does not exceed 10
in general).

This section presented the skeleton of our clustering
method based on EM algorithm. Now, we are able to build
a GM model for any sample X. The next section provides
two simple examples.

3) Simple examples: Let us consider two well known
SPEC benckmarks which are named galgel and apsi.
Running these benchmarks multiple times on the same low
overhead machine results in variable execution times, as
illustrated by histograms in Fig. 1. The histograms show
the frequency of observed execution times (sample of 35
runs). After clustering, the approximate theoretical models
based on GM are illustrated with the curves in Fig. 1. As
can be seen, the execution times of these benchmarks exhibit
multi-modal behaviour.

However, how can we check if this computed model fit
well the data or not? This is the purpose of a goodness-
of-fitting test. We developed such test in details in [1],
and demonstrated its robustness. We will discuss it later in
Sect. V. We draw in Fig .2 the empirical CDF (step function)
versus theoretical CDF (cuve). For both examples, the fitting
is very good.

The next section presents new performance metrics for
analysing and comparing programs performances, based on
parametric statistics.

III. NEW PROGRAM PERFORMANCE METRICS

In the literature, people are mainly focused on the average
or median program performance. However in practice, the
average or the median value may not be the most interesting
summary measure that reflects the program performance, or
may not be the best performance metric to make a decision
about selecting the most suitable program version.

For instance, consider the situation of a very long running
application that a user executes very few times. The user has
the choice between many code versions, which one should
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he select? If he bases his choice only on the expected average
or median execution time, he may be disappointed if he
executes his application very few times. If an application
is rarely executed, the mean or median performances are
not felt, especially if the performance distribution is multi-
modal. So, additional performance metrics can help him
making better selection.

Also, consider the situation where a user wants to know if
the performances of his application are stable or not. Which
metric can he use? The well known variance is a metric that
measures how data is spread out around the average only:
knowing how to interpret this metric is not so widespread
among the practicians, and can be misleading when the data
distribution is multi modal, because the variance is a measure
of dispersion around a single value, the average. Therefore it
cannot be the unique metric used for evaluating performance
stability, additional metrics can be introduced and used, as
we will see later.

This section provides new performance metrics that help
the user to select a good program version based on per-
formance analysis. Let X and Y two random variables,
representing the performances of two code versions. Let X
be a sample of X and Y be a sample of Y , meaning that
X = (x1, . . . , xn) and Y = (y1, . . . , ym), with n and m
denoting the respective sample sizes.

A. The metric I1: the mean difference

We may be interested in quantifying the average differ-
ence between the performances of two code versions. That
is, we may be interested in computing the expected value
E [ |X − Y | ]. This defines our first performance metric as
I1 = E [ |X − Y | ]. Our parametric estimation, noted Î1,
assumes that both X and Y are modelled with gaussian
mixture distributions. This means that the underlying p.d.f.
fX and fY of X and Y equal weighted combinations of
gaussian p.d.f.

fX(x) =
K∑
i=1

πiϕ(x;µi;σi) and fY (x) =
K′∑
j=1

π′jϕ(x;µ′j ;σ
′
j)

where we recall here that ϕ(x;µ;σ) denotes the p.d.f. of
the gaussian distribution N (µ, σ), and K and K ′ are the
respective number of clusters of these gaussian mixtures.
Under this model, we readily have

I1 =

∫∫
|x− y| fX(x)fY (y) dx dy

=
K∑
i=1

K′∑
j=1

πiπ
′
j

∫∫
|x− y|ϕ(x;µi;σi)ϕ(y;µ′j ;σ

′
j) dx dy

=
K∑
i=1

K′∑
j=1

πiπ
′
jE
[
|Zi − Z ′j |

]

where Zi and Z ′j denote independent gaussian variables
with distributions N (µi, σi) and N (µ′j , σ

′
j). By classical

properties of the gaussian family, Zi − Z ′j has distribution

N
(
µi − µ′j ,

√
σ2
i + (σ′j)

2
)

. Therefore, we use the follow-
ing formula (proved in [1]): if Z has distribution N (µ, σ)
then E [ |Z| ] = (2Φ(µ/σ)−1)µ+2σϕ(µ/σ). This entails the
following formula for our theoretical performance metric:

I1 =
K∑
i=1

K′∑
j=1

πiπ
′
j

(
(µi−µ′j)

2Φ

 µi − µ′j√
σ2
i + (σ′j)

2

− 1



+

√
2(σ2

i + (σ′j)
2)

π
e−(µi − µ′j)2/(2(σ2

i + (σ′j)
2))
)

Consequently, using the estimations θ̂, K̂, θ̂′, K̂ ′ of the pa-
rameters θ,K, θ′,K ′ (i.e. the parameters of the estimated
gaussian mixtures distributions F̂ GM

X and F̂ GM
Y ), the paramet-

ric estimation Î1 of our first performance metric I1 comes:

Î1 =

K̂∑
i=1

K̂′∑
j=1

π̂iπ̂
′
j

(
(µ̂i−µ̂′j)

2Φ

 µ̂i − µ̂′j√
σ̂2
i + (σ̂′j)

2)

− 1



+

√
2(σ̂2

i + (σ̂′j)
2)

π
e−(µ̂i − µ̂′j)2/(2(σ̂2

i + (σ̂′j)
2))
)

B. The metric I2: the probability that a single program run
is better than another

When the user needs to select which code version to
execute, he may base his selection criteria on the expected
average speedup for instance. But if his application is
rarely executed, the average performance gain may not be
interesting for him. He may be interested in executing a
single time his application, and he wishes that his single
run has the best chances of being the fastest between the
two code versions. Formally, to help him to decide, we can
compute P [X < Y ], the probability that a single run of X
would be better than a single run of Y . This defines our
second metric of program performances I2 = P [X < Y ].

Our parametric estimation assumes that both X and Y are
modeled with gaussian mixture distributions.

I2 =

∫∫
1x<y fX(x)fY (y) dx dy

=
K∑
i=1

K′∑
j=1

πiπ
′
j

∫∫
1x<y ϕ(x;µi;σi)ϕ(y;µ′j ;σ

′
j) dx dy

=
K∑
i=1

K′∑
j=1

πiπ
′
jP
[
Zi − Z ′j < 0

]
where Zi and Z ′j denote independent gaussian variables such
that Zi − Z ′j is gaussian distributed with expectation µi −
µ′j and variance σ2

i + (σ′j)
2. Since P [Z < 0] = Φ(−µ/σ)



whenever Z has distribution N (µ, σ), we thus have I2 =∑K
i=1

∑K′

j=1 πiπ
′
j Φ

(
µ′
j−µi√

σ2
i+(σ′

j)
2

)
. Consequently, plugging

in the estimators of the parameters of the gaussian mixture
distributions leads to the following parametric estimator of
I2:

Î2 =
K̂∑
i=1

K̂′∑
j=1

π̂iπ̂
′
j Φ

 µ̂′j − µ̂i√
σ̂2
i + (σ̂′j)

2


Alternatively, we can also generalise this metric to con-

sider a constant real shift ∆ ∈ R to check between X and Y ,
and thus consider I2 = P [X < Y + ∆] with its parametric
estimation:

Î2 =
K̂∑
i=1

K̂′∑
j=1

π̂iπ̂
′
j Φ

∆ + µ̂′j − µ̂i)√
σ̂2
i + (σ̂′j)

2


C. The metric I3: the probability that a single run is better
than all the others

In practice, a user may have more than only two code
versions. How can he decide about the best code version
among many others, for a single run only ? Comparing
code versions two by two is misleading. All code versions
must be compared together. Let X1, X2, · · · , Xr denote r
random variables corresponding to r distinct code versions.
We propose to compute the probability that one code version,
say the first one, executes faster than all the others for
a single run only (not in average or in median), i.e. that
X1 < min(X2, . . . , Xr). This defines the following program
performance metric:

I3 = P [X1 < min(X2, · · · , Xr)] = E
[
1X1<min(X2,··· ,Xr)

]
The parametric estimation of I3 is noted Î3. Here
we assume that, for every given j ∈ {1, . . . , r}, the
random variable Xj is distributed as a gaussian mix-
ture with parameters K = Kj and θ = θj =
(π1,j , . . . , πKj ,j ;µ1,j , . . . , µKj ,j ;σ1,j , . . . , σKj ,j).

As we did for I1 and I2, we need to obtain a formula
for the metric I3 in terms of the parameters. Let us note
Y = min(X2, · · · , Xr), and let G be the c.d.f. of Y . By the
mutual independence of X1, X2, . . . , Xr, the variables X1

and Y are independent and therefore a classical probability
property yields, since P [x < Y ] = (1−G)(x),

I3 = P [X1 < Y ] = E [1X1<Y ]

= E [(1−G)(X1)] =

∫ ∞
−∞

(1−G(x))f1(x)dx.

By independence of the variables X2, . . . , Xr, and Equ. (2),
we have:

(1−G)(x) = P [X2 > x, . . . ,Xr > x ] =
r∏
j=2

P [Xj > x]

=
r∏
j=2

Kj∑
i=1

πj(1− Φ(x;µi,j ;σi,j)).

Our parametric estimator Î3 of the metric I3 is then equal
to the following integral (which we compute numerically,
by using the R software for instance)

Î3 =

∫ ∞
−∞

(1− Ĝ(x))f̂1(x)dx

where Ĝ(x) =
∏r
j=2

∑K̂j

i=1 π̂j(1 − Φ(x; µ̂i,j ; σ̂i,j)) and

f̂1(x) =
∑K̂1

i=1 π̂i,1ϕ(x; µ̂i,1; σ̂i,1)

D. The metric I4: the variability level

People do not always know how to quantify the variability
of programs performances. By default, they use the variance,
but they may not know how to interpret it. The variance mea-
sures how the data spread out around the average: but if the
data are multi-modal or present clusters, then the average is
not necessarily a good measure of the variability, especially
when the modes or clusters are particularly distant from each
other, and therefore the variance loses its attractiveness.

We propose to consider an alternative or complementary
measure of the variability of programs performances: the
number of modes of the underlying p.d.f. of the data, which
we will note I4. It is simply equal to the number of local
maxima of the p.d.f., which is supposed to represent the
different values around which the data are spreading or
clustering. A local maxima is called a mode in statistics.

Thanks to the gaussian mixture modelling, which yields
an explicit formula for the estimated p.d.f., we can compute
a parametric estimation Î4 of I4, which is simply equal to
the number of local maxima of the gaussian mixture p.d.f.
fθ̂,K̂ estimated from the data. Often, this estimation Î4 turns
out to be equal to K̂, the estimated number of clusters of the
fitted gaussian mixture distribution. But it is not necessarily
always the case, since sometimes the gaussian mixture fitting
algorithm proposes a higher value of K̂ than the actual
number of groups in the data, in order to flexibly account
for assymetry. Formally, the variability level is computed as:
Î4 =number of local maxima of the estimated gaussian

mixture p.d.f., which is often equal to K̂, the number of
components in this model.

IV. IMPLEMENTATION AND EXPERIMENTS

We implemented all our statistical methods using the R
software, and we delivered our software with a free academic
licence. We did a huge and extensive set of experiments and
simulations, all are detailed in [1]. We collected during more
than 10 years a great amount of performance data, resulted
from many empirical studies: SPEC CPU applications (2001,
2006), all SPEC OMP applications, NAS Parallel Bench-
mark, own micro-benchmarks, other parallel applications,
various compilers versions and options, Linux versions,



different HPC machines architectures and generations, etc.
The number of samples is 2438, each one contains between
30 and 1000 execution times. In this section we present the
list of the most important conclusions.

The gaussian mixture model fits well the data:: The
first empirical study was devoted to validating the robustness
of our goodness-of-it test, based on Kolmogorov-Smirnov
distances. We used extensive statistical simulations to check
the robustness and the error ratio of the test and bootstrap
calibration, the results are very satisfying compared to what
is used in practice for other tests [1]. Based on this test,
we are able to ensure that 83% of the samples are very
well fitted with gaussian mixtures. The remaining 17% sam-
ples were rejected from gaussian mixture modelling. After
investigation, we found that the reason is mostly because
they contain ties (identical values), that result from rounding
errors when collecting performance data. It remains however
a marginal set of samples that cannot be modelled by
gaussian mixtures, other distributions should be considered.

The performance metrics are accurate enough:: we
also did an extensive set of experiments to check the
accuracy of our new performance metrics Î1, Î2, Î3 and Î4.
We computed by simulations their mean square errors and
mean absolute percentage errors, compared to the theoretical
exact values I1, I2, I3 and I4. The accuracy of our metrics
are empirically satisfactory [1].

Empirical study of variability levels of programs ex-
ecution times:: Based on our metric for the estimation of
variability level (Î4), we computed the value of this metric
for all the samples. We found:
• ≈ 37% of the samples have a variability level equal to

one, which means that the execution times are spread
around a single value.

• ≈ 32% of the samples have a variability level equal
to 2, which means that the execution times are spread
around two values.

• ≈ 12% of the samples have a variability level equal
to 3, which means that the execution times are spread
around three values.

• ≈ 19% of the samples have a variability level ≥ 4,
which means that the execution times are spread around
more than three values.

The above observations reinforce our opinion that program
performances follow multimodal distributions, thus mean
and median values are not always adequate to resume
performance data.

V. RELATED WORK AND DISCUSSION

Program performance evaluation:: In the field of code
optimisation and high performance computing, most of
the published articles declare observed speedups or other
performance metrics. Unfortunately, few studies based on
rigorous statistics are really conducted to check whether

the observations of the code performance improvements are
statistically significant or not.

Program performance analysis and optimisation may rely
on two well known books that explain digest statistics to our
community [3], [4] in an accessible way. These two books
are good introductions for doing fair statistics for analysing
performance data. Based on these two books, previous work
on statistical program performance evaluation have been
published [5]. In the later article, the authors rely on the
Student’s t-test to compare between two average execution
times (the two sided version of the student t-test) in order
to test if two theoretical means are unequal. We improved
the previous work in [6]: first, we showed how to conduct a
one-sided Student’s t-test to validate that µX > µY . Second,
we show how to check the normality if small samples and
the equivalence of their variances (using the Fisher’s F-test)
in order to use the classical Student’s t-test instead of the
Welch’s variant.

In [7], we presented a rigorous statistical methodol-
ogy regarding program performance analysis. We rely on
well known statistical tests (Shapiro-wilk’s test, Fisher’s F-
test, Student’s t-test, Kolmogorov-Smirnov’s test, Wilcoxon-
Mann-Whitney’s test) to study if the observed speedups are
statistically significant or not. By fixing 0 < α < 1 a desired
risk level, we are able to analyse the statistical significance
of the average execution time as well as the median.

In the current article, we go beyond the classical mean
and median performance factors. We provide additional in-
teresting performance metrics, based on parametric statistics
(gaussian mixture modelling).

References on gaussian mixtures:: References about
mixture models and particularly gaussian mixture models
are numerous, in the statistics literature, machine-learning
literature, as well as in many statistics-using fields (in
particular image analysis, bioinformatics, biology, medicine,
etc); we therefore only cite the reference book on mixture
models [8], [9], [10].

The use of the EM algorithm as a solution to finite mix-
tures fitting is a classical subject in the statistics and pattern
recognition literature, since the release of the breakthrough
paper [2] (note that the strength of the EM algorithm is that
it is not restricted to the estimation of gaussian mixtures,
but extend to other mixtures, often with a computational
cost though). In the present work, we decided to address
the important issue of choosing the appropriate number
K of components by relying on the BIC criterion: there
are however several popular alternatives, for which some
references are [11], [12].

Discussion:: Concerning the performance of the
goodness-of-fit test we introduced in [1], we found out that
it was very satisfying. We nonetheless observed that, in the
presence of too much a proportion of equal data in the
dataset, our fitting test tends to artificially reject the gaussian
mixture model too often: a simple solution to this problem



would be to increase the precision of the measurement
method so that the risk of observing exæquo is reduced.

Gaussian mixtures seem to be good model for most of the
performances data that we observed in practice. Also, such
data distributions provide interesting perspective regarding
multi-dimensional performance data. Indeed, an interesting
performance analysis must consider the performance as
multi-dimensional data, each dimension corresponds to a
specific performance nature. For instance we can consider
the triplet {Execution time, energy consumption, network
traffic}. Fortunately gaussian mixtures are a good solution
for modelling multi-dimensional data in order to analyse the
relationship between multiple dimensions.

Some people are interested in extreme values statistics
(Worst Case Execution Times, Best Case Execution Times).
In that case, gaussian mixture modelling is not necessarily
the adequate way of addressing this issue: either mixtures
of other data distributions must be considered, or alterna-
tive methods should be considered (extreme value analysis
techniques in particular, although they require quite a large
number of data values to be truly reliable).

VI. CONCLUSION

In the presence of program performance variability, we
must rely on formal statistics to decide about the best code
version. Currently, people analyse mainly mean and median
performances only. In the current research work, we extend
these metrics as follows:

1) We build a statistical modelling based on gaussian
mixtures to fit multi-modal data distributions;

2) We build a statistical test to quantify the quality
of data-model fitting, based on Kolmogorov-Smirnov
distances;

3) We define new code performance metrics that go
beyond mean and median performances.;

4) We implemented all our statistical methods using R
software, and we demonstrate its practical efficiency.

5) Our software, called VARCORE, is publicly distributed
as a free open source code.

Our gaussian mixture modelling provides a new and inter-
esting metric to evaluate the variability of performances.
Indeed, instead of only considering means and variances
(the variances being, by the way, difficult to interpret in
practice), we propose to consider as well the modes of the
data distributions. Thus, the variability level of performances
can be measured by the number of these modes, which we
can compute with a parametric method based on gaussian
mixtures. The number of modes is a natural way of giving an
idea of the performance variability: a data distribution with
a single mode means that the performances are quite stable
around a single value; with two modes, it means that the
performances are varying around two values, etc. In addition,
if the number of modes is greater than one, this can be a
good indication of being careful with the interpretation (and

comparison) of the variance (since the usual interpretation
generally assumes that the data are issued from a unimodal
distribution). Moreover, the existence of these modes can be
further investigated by trying to explain them with auxiliary
measurements made during the execution of the program,
which is certainly the most fruitful perspective of this
research work.
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