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Level set method for optimization of contact problems

Andrzej Myslinski

Systems Research Institute, ul. Newelska 6, 01-447 Warsaw, Poland
E-mail address: myslinsk@ibspan.waw.pl

This paper deals with the numerical solution of topology and shape optimization problems of an elastic body in unilateral contact with a rigid
foundation. The contact problem with the prescribed friction is described by an elliptic variational inequality of the second order governing a
displacement field. The structural optimization problem consists in finding such shape of the boundary of the domain occupied by the body that the
normal contact stress along the contact boundary of the body is minimized. The shape of this boundary and its evolution is described using the level set
approach. Level set methods are numerically efficient and robust procedures for the tracking of interfaces. They allow domain boundary shape changes
in the course of iteration. The evolution of the domain boundary and the corresponding level set function is governed by the Hamilton-Jacobi equation.
The speed vector field driving the propagation of the level set function is given by the Eulerian derivative of an appropriately defined functional with
respect to the free boundary.

In this paper the necessary optimality condition is formulated. The level set method, based on the classical shape gradient, is coupled with the
bubble or topological derivative method, which is precisely designed for introducing new holes in the optimization process. The holes are supposed to
be filled by weak phase mimicking voids. Since both methods capture a shape on a fixed Eulerian mesh and rely on a notion of gradient computed
through an adjoint analysis, the coupling of these two method yields an efficient algorithm. Moreover the finite element method is used as the

discretization method. Numerical examples are provided and discussed.

1. Introduction

The paper is concerned with the numerical solution of a
structural optimization problem for an elastic body in unilateral
contact with a rigid foundation. The contact with a given friction,
described by Coulomb law, is assumed to occur at a portion of the
boundary of the body. The displacement field of the body in
unilateral contact is governed by an elliptic variational inequality
of the second order. The results concerning the existence,
regularity and finite-dimensional approximation of solutions to
contact problems are given, among others, in [1]. The structural
optimization problem for the elastic body in contact consists in
finding such shape of the boundary of the domain occupied by the
body that the normal contact stress along the boundary of the
body is minimized. It is assumed, in a case of shape optimization
problem, that the volume of the body is constant.

Shape optimization of contact problems is considered, among
others, in [1,2], where necessary optimality conditions, results
concerning convergence of finite-dimensional approximation and
numerical results are provided. The material derivative method is

employed in monograph [2] to calculate the sensitivity of
solutions to contact problems as well as the derivatives of domain
depending functionals with respect to variations of the boundary
of the domain occupied by the body. Shape optimization of a
dynamic contact problem with a given Coulomb friction and heat
flow is considered in [3]. In this paper the material derivative
method is employed to formulate a necessary optimality condi-
tion. The finite element method for the spatial derivatives and the
finite difference method for the time derivatives are employed to
discretize the optimization problem. The level set based method is
applied to find numerically the optimal solution.

Topology optimization deals with the optimal material
distribution within the body resulting in its optimal shape [4].
The topological derivative is employed to account variations of the
solutions to state equations or shape functionals with respect to
emerging of small holes in the interior of the domain occupied by
the body. The notion of topological derivative and results
concerning its application in optimization of elastic structures
are reported in the series of papers [4-9]. Among others, paper [9]
deals with the calculation of topological derivatives of solutions to
Signorini and elastic contact problems. Asymptotic expansion
method combined with transformation of energy functional are
employed to calculate these derivatives. Simultaneous shape and



topology optimization of Signorini and elastic frictionless contact
problems are analyzed in papers [10,11]. In these papers the level
set method is incorporated in numerical algorithms.

In structural optimization the level set method [12,13] is
employed in numerical algorithms for tracking the evolution of
the domain boundary on a fixed mesh and finding an optimal
domain. This method is based on an implicit representation of the
boundaries of the optimized structure. A level set model describes
the boundary of the body as an isocontour of a scalar function of a
higher dimensionality. While the shape of the structure may
undergo major changes the level set function remains to be simple
in its topology. Level set methods are numerically efficient and
robust procedures for the tracking of interfaces, which allow
domain boundary shape changes in the course of iteration.
Applications of the level set methods in structural optimization
can be found, among others, in [3,7,14-17]. The speed vector field
driving the propagation of the level set function is given by the
Eulerian derivative of an appropriately defined cost functional
with respect to the variations of the free boundary. Recently, in
the series of papers [18-20] different numerical improvements of
the level set method employed for the numerical solution of the
structural optimization problems are proposed and numerically
tested.

This paper deals with topology and shape optimization of an
elastic contact problems. The structural optimization problem for
elastic contact problem is formulated. Shape as well as topological
derivatives formulae of the cost functional are provided using the
material derivative [2] and the asymptotic expansion [4] methods,
respectively. These derivatives are employed to formulate neces-
sary optimality condition for simultaneous shape and topology
optimization. Level set based numerical algorithm for the solution
of the shape or topology optimization problem is proposed. The
finite element method is used as the discretization method.
Numerical examples are provided and discussed. This paper
extends results of [11] to contact problems with the prescribed
friction.

2. Problem formulation

Consider deformations of an elastic body occupying a two-
dimensional domain © with Lipschitz continuous boundary T, i.e.,
the function describing the boundary I' of the domain Q is
continuous and the increment of its value is bounded. Assume
Q c D where D is a given bounded hold-all subset of R* with
piecewise smooth boundary containing domain @ as well as
all perturbations of domain Q. The body is subject to body
forces f(x) = (f1(x),f»(x)), x € Q. Moreover, surface tractions p(x) =
(p1(%), p5(x)), x € I', are applied to a portion I'y of the boundary I
We assume that the body is clamped along the portion Iy
of the boundary I, and that the contact conditions are prescribed
on the portion I, where I'nIj=4¢, i#j, ,j=0,1,2, I'=
1:0 U F] @] fz.

We denote by u = (uy, up), u = u(x), x € Q, the displacement of
the body and by a(x) = {5;(u(x))}, i,j = 1,2, the stress field in the
body. Consider elastic bodies obeying Hooke’s law [1]:

o (UX) = auXeuux), Ljkl=1,2, xeQ. (1)

Functions aj,(x) are components of elasticity tensor satisfying
usual symmetry, boundedness and ellipticity conditions [1].
We use here and throughout the paper the summation convention
over repeated indices [1]. The strain ey(u)), k,1=1,2, is
defined by

ouE(x)
0x;

€4 (Ux) = 3 () + Uex). g0 = kX, ()

The stress field o(u(x)) satisfies the system of equations [1-3]
—ojuX); =fix), xe€Q, i,j=1,2, (3)

aij(U(x))j = doy(u(x))/3x;, 1,j = 1,2. The following boundary condi-
tions are imposed:

ui(x)=0, i=1,2o0n I, (4)
oijon; =p;, ij=1,2o0nT1, (5)
uny<0, on<0, uyoy=0o0nT5>, (6)
lor|<1, uror+|ur|=0o0n Iy, (7)

where n = (ny,n,) is the unit outward versor to the boundary r.
Here uy = u;n; and oy = oynin;, i,j = 1,2, represent the normal
components of displacement u and stress o, respectively. The
tangential components of displacement u and stress ¢ are given by
(ur); = u; — unn; and (ot); = oyn; — onMy, 1,j = 1,2, respectively. |ur|
denotes the Euclidean norm in R? of the tangent vector ur.

2.1. Variational formulation of contact problem

Let us formulate contact problem (3)-(7) in variational form.
Denote by V, and K the space and set of kinematically admissible
displacements:

Vg ={zeH@P:z=00nTy, i=1,2}, (8)
K={ze Vsp :zy<0on I'y}.

H'(Q) denotes Sobolev space of square integrable functions and
their first derivatives. [H'(Q)]> = H'(Q) x H(Q). Denote also by A
the set

A={elXI): [I<1).

Variational formulation of problem (3)-(7) has the form: find a
pair (u, 4) € K x A satisfying

/Qaijkleij(u)ekl(‘f’ —uydx — /in(% —u)dx
- [ ptoi—upas+ [ ior—undsz0. vo ek, (9)
Jr, Jr,

((—Durds<0, V(ed, (10)
I

i,j,k,1=1,2. Function /. is interpreted as a Lagrange multiplier
corresponding to term |ur| in equality constraint in (7) [1,2]. This
function is equal to tangent stress along the boundary I, i.e.,
4= oy, . Function . belongs to the space H'/?(I";), i.e., the space
of traces on the boundary I'; of functions from the space H'(Q).
Here following [1] function 4 is assumed to be more regular, i.e.,
7 € L2(I'y). The results concerning the existence of solutions to
system (9)-(10) can be found, among others, in [1].

2.2. Optimization problem

Before formulating a structural optimization problem for
(9)-(10) let us introduce the set U, of admissible domains.
Denote by Vol(Q) the volume of the domain Q equal to

Vol(Q) = / dx. (11)
Q
Domain  is assumed to satisfy the volume constraint of the form

Vol(Q) — Vol <0, (12)

where the constant Vol = consty >0 is given. In a case of shape
optimization of problem (9)-(10) the optimized domain Q is
assumed to satisfy equality volume condition, i.e., (12) is assumed
to be satisfied as equality. In a case of topology optimization Vol
is assumed to be the initial domain volume and (12) is satisfied in
the form Vol(Q) = rj;Volf" with ry € (0, 1) [20]. The set U,y has the



following form:

U ={Q:EcQcDcR?:Qis Lipschitz continuous,
Q satisfies condition (12), Pp(Q)<consty}, (13)

where Ec R? is a given domain such that @ as well as all
perturbations of it satisfy E c Q. Pp(Q) = f,-dx is a perimeter of a
domain @ in D [2, p. 126, 21]. The perimeter constraint is added in
(13) to ensure the compactness of the set U, in the square
integrable topology of characteristic functions as well as the
existence of optimal domains. The constant const; >0 is assumed
to exist. The set U,y is assumed to be nonempty. In order to define
a cost functional we shall also need the following set M* of
auxiliary functions

M = (¢ = (¢1.42) e [H' (D) : p;<0o0n D, i=1,2,
”(lbll[Hl(D)]Z sl}v (14)

2 1/2
where the norm (1]l pyp = (i 16ill7 )"

In order to formulate an optimization problem for system
(9)-(10) we have to define the cost functional. Measurements and
engineering practice indicate that when two surfaces are in
contact a large stress along the contact boundary occurs. The goal
of structural engineers is to reduce this maximal value of the
stress as much as possible. Thus the cost functional S(I';) =
MaXxer, |on(X)| is natural criterion of optimization directly reflect-
ing the design objectives. Unfortunately, the optimization pro-
blem with the cost functional S(I";) is nonsmooth and difficult for
analysis and numerical solution [1]. This is the reason, that the
criterion of maximal contact stress is approximated by integral,
differentiable functionals. Recall from [3] the cost functional
approximating the normal contact stress on the contact boundary

Jo(u(@) = /F on(U) by (x) ds, (15)

depending on the auxiliary given bounded function ¢(x) € M*. oy
and ¢y are the normal components of the stress field o
corresponding to a solution u satisfying system (9)-(10) and the
function ¢, respectively.

Consider the following structural optimization problem: for a
given function ¢ € M*, find a domain Q* e Ugq such that

Jp(u(@") = min ,u(@). (16)

The existence of an optimal domain Q* € Uy, follows by standard
arguments (see [2,21]).

3. Optimality conditions

Let us recall the optimality conditions for structural optimiza-
tion problem (16). We consider this problem either as the shape
optimization problem or the topological optimization problem.

3.1. Shape derivative

Consider variations of domain @ c D with respect to the
boundary I" only. Assume that in (13) volume condition is satisfied
as equality, i.e., constant volume condition holds. Let = be a given
parameter such that 0<t<rtg, 79 is prescribed, and V = V(x, 1),
x € Q, be a given admissible velocity field. The set of admissible
velocity fields V consists from vector fields regular enough (C*
class, k=1, for details see [2]) with respect to x and ¢ and such that
on the boundary aD of D either V = 0 at singular points of this
boundary or normal component V-n of V equals to V-n =0 at
points of this boundary where the outward unit normal field n
exists. Therefore the perturbations of domain Q are governed by
the transformation T(z,V):D — D, i.e., Q. = T(z, V)(Q) [2]. Since

only small perturbations of Q are considered this transformation
can have the form of perturbation of the identity operator I in R?.
An example of such transformation is T(z, V) = I + tV(x), where V
denotes a smooth vector field defined on R? [2]. The Euler
derivative of the domain functional J,(Q) is defined as

J¢(Qz)1—]¢(9). (17)

d/,(Q,V) = lir£1+
In [3], using the material derivative approach [2], the Euler
derivative of the cost functional (15) has been calculated and
a necessary optimality condition for the shape optimization
problem (16) has been formulated. This Euler derivative has
the form

d,(@); V)
- /r (oyeu(d + p) — f - p)V(0) - nds

. (padt
- / {76(1) (pan +¢))+Kp~(p“dt+¢) V(0)-nds
Jry

+ [ L+ b+ turev(©) - nds, (18)
Jry

where i,j,k,1=1,2, V(0) = V(x,0), the displacement u € Vs, and
the stress / € 4 satisfy state system (9)-(10). x denotes the mean
curvature of the boundary I'. The adjoint functions p% e K; and
q* e Ay satisfy for i,j,k,1=1,2, the following system:

/ gaei(p + p*e(p) dx + / q%prds=0, Voek; (19)
Q I

and

[ttt gpnds=o. viea, (20)
Jr,

where the cones K; and A, are given by [3]

Ki={e Vsp : &y =0o0n ASt},
A1 ={{ e ’(I')) : {(x) =0 on B; UB, UB} UBJ},

while the coincidence set A% = {xeI'y:uy=0}. Moreover
Bi={xel:Mx)=—-1}, By={xely:ix)=+1}, Bi={xeB;:
unx)=0},i=1,2, Bf = B:\B;, i = 1,2. The necessary optimality
condition is formulated in [22].

Lemma 3.1. Let Q* € Uy be an optimal solution to the problem (16).
Then there exist Lagrange multipliers p, € R associated with the
constant volume constraint and p, € R, u, >0, associated with the
finite perimeter constraint such that for all admissible vector fields V
and such that all perturbations 8Q € Uy of domain Q € Uy satisfy
Ec QudQ c D, at any optimal solution Q* € Uy to the shape
optimization problem (16) the following conditions are satisfied:

d,(u(@*); V)+u1/ V(0) - nds + i, dPp(@*: V) >0, 1)
.
1 (/ dx — const0> =0, (22)
-
(15 — up)(Pp(Q*) — const1)<0, Vu; €R, u3 >0, (23)

where u(Q*) denotes the solution to (9)-(10) in the domain Q*,
I'* =0Q*, the Euler derivative dJ,(u(Q*);V) is given by (18) and
dPp(Q;V) denotes the Euler derivative of the finite perimeter
functional Pp(Q) (see [2, p. 126]). The given constant consty>0
and constant const, >0 are the same as in (13).

3.2. Topological derivative
Classical shape optimization is based on the perturbation of

the boundary of the initial shape domain. The initial and final
shape domains have the same topology. The aim of the topological



optimization is to find an optimal shape without any a priori
assumption about the structure’s topology.

The value of the goal functional (15) can be minimized by the
topology variation of the domain Q. The topology variations of
geometrical domains are defined as a function of a small
parameter p such that O<p<R, R>0 given. They are based on
the creation of a small hole B(x, p) = {z € R? : |x — z| < p} of radius p
at a point x € Q in the interior of the domain Q. The Neumann
boundary conditions are prescribed on the boundary 0B of the
hole. Denote by Q,=Q\B(x,p) the perturbed domain. The
topological derivative TJ,(2,x) of the domain functional J,(2) at
Q c R? is a function depending on a center x of the small hole and
is defined by [4,6,14]

U@ = lim [ (@B, p)) —J(@)/mp”. (24)

This derivative is calculated by the asymptotic expansion method
[4]. To minimize the cost functional J,(€) the holes have to be
created at the points of domain Q where TJ, is negative.

The formulae for topological derivatives of cost functionals for
plane elasticity systems or contact problems are provided, among
others, in papers [5,8,9]. Using the methodology from [4] as well
as the results of differentiability of solutions to variational
inequalities [2], we can calculate the formulae of the topological
derivative TJ,(Q;Xo) of the cost functional (15) at a point xp € Q.
This derivative is equal to

T]¢(Q3 XO)

1
=— [f(qﬁ +wadty 4 I3 (AuGypade . 4 2Dy b yaae 4, COS 20)

|x=Xo

- / . (™ ur 4+ AW+ )i ds, (25)
I

where LZ/; = 01(B) + ou(P), by = o1(B) — ou(P), and either p = “u" or
B ="“wu 4 ¢”, o (u) and oy(u) denote principal stresses for
displacement u, 6 is the angle between principal stresses
directions. E denotes Young’s modulus. The dependance of tangent
displacement and stress functions on p along I'; is assumed. The
adjoint state (w9 s%") e Ky x A satisfies system (19)-(20) in
domain Q, rather than @, i.e.,

/Q‘ (¢ + wiley(p) dx + /12 si%prds =0, Voeki (26)

and

/r (Wt ryds =0, VC e Ay, (27)
2

where wdt  — wadt(xy). By standard arguments [2,8,21] it can

P lp=0 . . .
be shown that if Q* € U,y is an optimal domain to the problem

(16) it satisfies for all xo € 2* the necessary optimality condition
of the form (21)-(23) with topological derivative (25) rather than
Euler derivative (18) in (21) and inequality in (22) rather than
equality as well as with Lagrange multiplier y; >0.

3.3. Domain differential

Finally, consider the variation of the functional (15) resulting
both from the nucleation of the internal small hole as well as from
the boundary variations. In order to take into account these
perturbations, in [8] the notion of the domain differential of the
domain functional has been introduced. The domain differential
D] ,(2;V,xo) of the shape functional (15) at Q R? in direction V
and at point x¢ € Q is defined as

DJ 4(Q: V. Xo0)(x, p) = Td] (2, V) + 1p° T 4 (2, Xo). (28)

This differential completely characterizes the variation of the cost
functional J,(Q) with respect to the simultaneous shape and

topology perturbations provided that the constant volume
condition holds (for details see [8]). The shape derivative
d/,(Q,V) and the topological derivative TJ (€2, xo) are provided by
(18) and (25), respectively. Using standard arguments [8] we can
show that if @* € Uyy is an optimal domain to problem (16) it
satisfies for all admissible velocity fields V, for all admissible pairs
(p,7) of parameters and for all xo € Q* the necessary optimality
condition of the form (21)-(23) with the domain differential (28)
rather than Euler derivative (18).

4. Shape representation by level set method

In order to solve structural optimization problem (16) in
numerical algorithm we employ the level set method [13] to
describe the position of the boundary 02 of the design domain
QcDcR? as well as its evolution. It is well established
[13,14,17,23] that the level set formulations of moving interface
problems possess several advantages including flexibility with
respect to topology changes, the possibility to use fixed grids, low
computational cost and robustness.

The level set method is based on implicit description of the
boundary of the domain. An implicit representation of the
boundary of the domain is based on defining it as the isocontour
of some function ¢ defined on the hold-all domain D. Consider the
evolution of a domain Q under a velocity field V. Let t € [0, to),
to>0 given, denote the (artificial) time variable. Under the
mapping T(t, V) we have Q; = T(t,V)(Q). By @; and Qf we denote
the interior and the outside of the domain €, respectively. The
domain Q; and its boundary 0Q; are defined by a function & =
d(x,t) : R* x [0, tg) — R satisfying

d(x,t) =0 if x € 0,
P(x,t)<0 if x € QF, (29)
o(x,t)>0 if x e Qf,

i.e., the boundary 94, is the level curve of the function &. Recall
[13], the gradient of the implicit function is defined as
V® = (00 /0x1,0®/3x;), the local unit outward normal n to the
boundary is equal to n = V&/|V®|, the mean curvature x = V- n.
In the level set approach Heaviside function H(®) and Dirac
function (&) are used to transform integrals from domain @ into
domain D. These functions are defined as

H@) =1if >0, H(®) =0 if $<0, (30)
8(®) = H(D), (x) = (P(x))|VP(X)|, x e D. (31)

The implicit function & is used both to represent and to evolve the
domain boundary. Recall [13] differentiating with respect to t the
interface equation

d(x(t),t) = 0,

and using dx/dt = V(x,t) for all x with &(x,t) = 0 as well as using
the formula for the local unit outward normal n to the boundary
leads to Hamilton-Jacobi equation governing the evolution of the
domain boundary

De(x,t) + V(x,t) - n|VP(x, t)] = 0 in D x [0, tp), (32)

where &; denotes a partial derivative of ¢ with respect to the
time variable t and V -n is the normal component of velocity
field V on the boundary of the domain. The initial condition is
@(x,0) = dg(x) with dg(x) = dist(x,0Qp), i.e., it is chosen as the
signed distance function to the initial boundary 0Qy with
the minus sign if the point x is inside the initial domain Q. The
homogeneous Neumann boundary condition is imposed on the
whole boundary aD.



4.1. Structural optimization problem in domain D

Using the notion of the level set function (29) as well as
functions (30) and (31) structural optimization problem (16) may
be reformulated in the following way: for a given function ¢ € M*,
find function & such that

J, (@) = min ], (u(@)), (33)
where
nww=éww%wmwmm, (34)

U2, = (& : @ satisfies (29), Vol(®)<VoFE™,
Pp(®)<consty}, (35)

Vol(P) = /D H(®)dx, Pp(®)= /D 3(®)|VP| dx.
Moreover, a pair (u, 1) € K x A satisfies system
[ asesweno —wH@)dx— [ fitor — upHw) dx
- [ pios—wpscayvaldx
+ /D Hor — upd(@)| V| dx=0, Vo <K, (36)
/D(g — Durs(@)|Ve|dx<0, V(e A, (37)

while Vs, and K are defined by (8) and (9), respectively, on domain
D rather than Q and i,j,k,[=1,2.

5. Level set based numerical algorithm

The topological derivative can provide better prediction of the
structure topology with different levels of material volume than
the method based on updating the shape of initial structure
containing many regularly distributed holes [4,14]. Our approach
is based on the application of the topological derivative to predict
the structure topology and substitute material according to the
material volume constraint and next to optimize the structure
topology to merge the unreasonable material interfaces and to
change the shape of material boundary. For the sake of simplicity
in the description of the algorithm we omit the bounded
perimeter constraint in (13). Therefore, the level set method
combined with the shape or topological derivatives results in the
following conceptual algorithm (A1) to solve structural optimiza-
tion problem (16):

Step 1: Choose: a computational domain D such that Q c D, an
initial level set function ®° = ¢, representing Q° = @, function
¢ € M*, parameters 10, ¢1,¢,q, 15 € (0,1). Set mo = Vol(Q°), 19 =
W=0k=n=0.

Step 2: Calculate the solution (u",.") to the state system
(36)-(37).

Step 3: Calculate the solution ((W®)" (s%dt)") to the adjoint
system (26)-(27) as well as the topological derivative TJ,(Q", x) of
the cost functional (15) given by (25).

Step 4: For given ji! set Q™! = (x e Q" : T 4(Q, %)= )41} Where
An+1 1S chosen in such a way that Vol(Q™1) = my,1, mu,; = qm,,.
Fill the void part D\Q™! with a very weak material with Young's
modulus E" =107°E. Update ' =pl +r"(Vof"), >0,
VOB = Vol(@™) — rp VoI, If |i;™1 — ;" <e; then set QF =
Q"1 and go to Step 5. Otherwise set n = n + 1, goto Step 2.

Step 5: Calculate the solution ((pe@),(qu*)*) to the adjoint
system (19)—(20). Calculate the shape derivative d](/)(u(Qk)) of the
cost functional (15) given by (18).

Step 6: For given uX solve the level set equation (32) to
calculate the level set function @**1,

Step 7: Set Q¥+ equal to the zero level set of function &+1.
Calculate ;&' = ik + ¥ (Vol(@*+1) — VOBY), 1k > 0. If |pk+1 — 1k <ey
then Stop. Otherwise set k = k + 1, Q" = @**! and go to Step 2.

Let us describe some details of this algorithm and indicate its
modifications to solve shape and/or topology optimization
problems.

5.1. Extended normal velocity

In order to solve the level set equation (32) in Step 6 of the
aforementioned algorithm (A1) the normal velocity V(0) - n has to
be determined on the whole domain D. Since the normal velocity
is determined on the boundary I'; only it has to be extended to the
domain D. Following [13] the extension Vx(x,t)-n of V(x,t)-n is
calculated as a solution g to the following auxiliary equation up to
the stationary state:

Vo .
q. + S((D)qu =0 inD x (0,ty), (38)

q(x,0) =px,t), xeD, (39)

where p(x,t) = V(x,t) - n on I'; and 0 elsewhere. The function S(®)
approximating the sign distance function is given by

)]
(@) = ———,
VO + V)i
where yi, = min(Ax;, Axy) and Ax;, i = 1,2, denote discretizations

steps in directions x;, respectively. Let us remark that the
extension of velocity V to the whole domain D allows to enforce
the solution @ to the level set equation to remain close to a
distance function. For the discussion of the other extension
methods of normal velocity see [19,20].

5.2. Shape optimization problem

First we solve numerically the structural optimization problem
(16) as the shape optimization problem only. We can employ
algorithm (A1) omitting the Steps 3 and 4 dealing with the
topology optimization. In this paper, following [23,24], we slightly
modify this procedure for solving shape optimization problem
(16). For the sake of simplicity we assume that the measure of the
boundary I'; is not equal to 0. In the modified algorithm first we
neglect some inequality type boundary conditions on the
boundary I'; and solve the systems (9)-(10) and (19)-(20) with
equality type boundary conditions only. Next the violation of
inequality type boundary conditions is taken into account. This
violation defines a distance of the actual computed configuration
I'; to the optimal one I'3. The violation of the unilateral boundary
conditions (6)-(7) is measured by an appropriate penalty type
cost functional K(I';) depending on the boundary I';. Let us define
this cost functional as equal to

K(Iy) = / (¢ Max2(0, uy) + ¢ max2(0, |2] — 1)y dr, (40)
Jr,

where (u,2) € Vg x [2(I';) satisfies the equality state system

(9)-(10) and cq, c, are given positive constants. Using the

formulae from [2] Euler derivative of the cost functional (40) at
I in direction of velocity field V can be characterized as

dK(I,V) = 2/ {01 max(0, uy) <6qu + KuN>p”th
I on

+c; max(0, |4 — 1)sgn(A) (% + KA> q%df}



V(0) - ndr, (41)

where the adjoint pair (p,q®t) e V, x L?(I'y) satisfies system
(19)-(20) in a whole space Vs, x L?(I',) rather than in the cone
Ky x Aq. sgn(-) denotes signum function. We solve the following
optimization problem (Pg): for given ¢ € M*, find Q € U,y mini-
mizing

T3 (@) = /F on(U)n(x)ds + K(I'y)

+ 11, (Vol(Q) — VoIE™), (42)

uy is Lagrange multiplier associated with constant volume
condition. Euler derivative of this functional is equal to

dfy (@) V) = / GV(0)-ndr
I
= dJ,WQ); V) + dK(I2; V)
+ i V(0) - ndr, (43)

I

where the Euler derivatives dJ,(u(Q), V) and dK(I"3, V) are given by
(18) and (41), respectively. The shape gradient G of the cost
functional (42) with respect to the variation of the boundary I is
used as the velocity field in Eq. (32) to define a family of
propagating interfaces I';(t) = {x(t) : xo € I'2(0)} in time t < [0, tp).
Therefore, the conceptual level set based algorithm (A2) for
solving the shape optimization problem (16) can be described as
follows:

Step 1: Choose an initial domain Q°, 1 =0, 1%, & € (0,1). Set
n=0.

Step 2: Evaluate the cost functional (42) and compute its Euler
derivative (43) with respect to perturbation of I'}.

Step 3: For given pf, calculate an extension of the shape
gradient G" of cost functional (42) and use it as the speed function
in the level set equation (32) for updating the level set function
(pn+l.

Step 4: Set Q"1 equal to the zero level set of the calculated
level set function &™1. Set: u™1! =t + r*(Vol(@™') — Vol"),
mM>0. If |1 — u|<ep then Stop. Otherwise set n=n+1, and
go to Step 2.

5.3. Topology optimization problem

For the sake of comparison next the optimization problem (16)
is solved as a topology optimization problem only. Algorithm (A1)
without level set method is employed to solve numerically this
problem, i.e., in this case Steps 5-7 of algorithm (A1) dealing with
shape optimization are omitted. The topological derivative is
calculated at each grid point of design domain [5]. These points
are sorted with respect to the calculated sensitivity and the points
with the lowest sensitivity are removed, i.e., the circular small
holes are inserted. The number of points removed at each step is
given by a ratio equal to volume of elements removed divided by
volume of elements of the previous structure. This ratio is usually
taken between 5% and 15%. Void parts of the computational
domain are filled with a very weak material having Young's
modulus E¥ much smaller than Young’s modulus E of solid initial
material. The computational process stops when a given volume
constraint equal to the prescribed fraction of the initial volume of
the structure is reached. It means that the Lagrange multiplier i,
calculated in Step 4 associated to this volume constraint differs
from the Lagrange multiplier calculated in the previous iteration
less than prescribed tolerance and the optimality condition
(21)-(22) is satisfied. In this algorithm (m),., is assumed to be
a decreasing sequence of volume constraints. This procedure may

be also updated to be used to add material at grid points of
domain D\Q [15,16].

5.4. Topology and shape optimization problem

Finally algorithm (A1) is employed to solve numerically
structural optimization problem (16) considered as the simulta-
neous shape and topology optimization problem. In literature
[14-17,20] many theoretical and numerical difficulties of
incorporating the topological derivatives in the framework of
level set based algorithms for solving structural optimization
problems are reported. It is known that due to conditions imposed
on time step ensuring the stability of the up-wind scheme to
solve the level set equation, level set method lacks nucleation
mechanism for new holes within existing shapes. The level
set method is capable of performing topology changes in the
evolving shape. Merging holes or breaking up of one hole into two
are typical topology changes which can be treated using the level
set method. Therefore, the level set based numerical algorithm
can perform topology optimization either if the number of
holes in the initial structure is sufficiently large [14,17,20] or if
the additional source term taking into account topological
changes is added as a velocity field to the Hamilton-Jacobi
equation (32) [15,16] leading to switched topological and shape
derivative algorithm. Recently, both approaches have been
improved by using radial basis functions to approximate the level
set function @ [20] or improved source term based on the
additional continuity conditions of the cost functional [16],
respectively. Algorithm (A1) follows switched topological and
shape derivative approach. First, the topology optimization
problem is solved with material volume ratio constraint.
Next the shape optimization step is performed using level set
approach where the structure material volume calculated at the
preceding step is being kept constant. The algorithm is stopped if
the volume constraint is satisfied, i.e., the change of Lagrange
multiplier p; associated with this constraint is less than the
prescribed tolerance. It means that the norm of the shape gradient
is small enough.

6. Numerical implementation

In order to solve numerically structural optimization problem
(16) we have to discretize it. Computational domain D, employed
in solving this optimization problem, is divided into mesh of
rectangles. Define the mesh grid of hold-all domain D. Let Ax;,
i=1,2, denote the space discretization steps in x;, i=1,2,
directions, respectively.

State (9)-(10) and adjoint (19)-(20) systems are discretized
using finite element method [1]. Displacement and stress
functions in state system (9)-(10) are approximated by piecewise
bilinear functions in domain D and piecewise constant functions
on the boundary I',, respectively. Similar approximation is used to
discretize the adjoint system (19)-(20) or (26)-(27). These
systems are solved using the primal-dual algorithm with active
set strategy [25]. In level set approach these state and adjoint
systems are transferred from domain  into fixed hold-all domain
D using the regularized Heaviside and Dirac functions. These
functions are approximated by [17]

o, X< — A4,
31 —o)/x X3 1+a

H(x) = a (Z_ﬁ + 5 —A<Xx< A, (44)
1, x=4,



3(1 —w) x2
d-aiy X <4,
) =4 4d ( A2>’ .

0, x| >4,

(45)

where o> 0 is a small number ensuring the nonsingularity of the
state equation (3) and 4 = max(Ax;,Axy) describes the width of
numerical approximation for §(x) and H(x). The regularized
Heaviside function (44) allows to evaluate numerically volume
integrals transformed from Q into D using a standard sampling
technique. Similarly regularized Dirac function (45) allows to
evaluate boundary integrals transformed into D. The embedding
function @, describing the boundary of the optimized structure,
may be represented in the form

DX, 0) =Y D(ON(X), (46)

where &;(t) are the nodal values of the level set function and N;(x)
describe the standard interpolation functions [13]. The choice of
these interpolation functions is governed by accuracy and
computational costs requirements. The nodal values are updated
during the optimization process.

Consider discretization of Hamilton-Jacobi equation (32). Let
us denote t"*! ="+ At, n=1,2,...,N, where At denotes the
time step discretization. Moreover, V',»} = Vi(xy, t), x;j = (X} ,x"z) eD
and @} = &(x;, t"). Following [13,17], the explicit up-wind scheme
is used to solve the discrete Hamilton-Jacobi equation (32) with
the following update equation:

@it = off — Atfmax(vj,0)V* + min(vj, 0)v-], (47)

where vi denotes extended normal velocity at point x;; in time "
and

V* = [max(D;" ' ", 0y + min(D;™ ", 0)?
- 2 . 21172
+max(D;*",0)* + min(D; ™ #", 0)’] 2,

V™ = [max(D;" ", 0% + min(D;™ ", 0)>

+ max(D;*2@",0)* + min(D;** &", 0)*]'/2.
D ", D;"Z o" as well as D;*@", D;**@" are the forward and
backward approximations of the x; and x, derivatives of function
" = P(x,t"), respectively. To ensure stability of this scheme, time
step At is required to satisfy the Courant-Friedrichs-Levy
condition

At max|Vi| < 7min- (48)

Moreover, to increase the accuracy of the numerical results, the
level set function ®(x,t) is initialized as the signed distance
function satisfying the eikonal equation

|V(x, t)] = 1. (49)

At each iteration of the scheme (47) we have to extend the normal
velocity field to hold-all domain D according to (38), (39). The
solution qg is computed based on the following up-wind
approximation of (38) at each iteration n of the scheme (47)

a =qf - At[max(s;n, 0)D;™ q* + min(s;n?, 0D, q*

+ max(synj, 0)D;* g + min(synj, 0)D; "],
sij = S(@%) and q* = q(x,t*). Central difference method is used to
compute the approximations of the unit normal vector n = (ny, 1),
ie, Ny = Vy, &/1/Vy, & + Vi, ®?, Ny = Vi, ®/1/Vy, & + Vy, #* and

n}f = ny(x;), k = 1,2. The initial value of g, in (39) is equal to V- n
at the grid points of D which distance from the interface is less
than y,,;; and equals O in other points.

7. Numerical examples and discussion

The discretized structural optimization problem (16) is solved
numerically. The numerical algorithms described in the previous
sections have been used. The algorithm is programmed in Matlab
environment. As an example a body occupying 2D domain

Q= {(x1,%2) € R : 0<x; <8 A 0<V(x) <Xz <4}

is considered. The boundary I' of the domain @ is divided into
three pieces

To = {(X1,%2) € R? : x1 = 0,8 A O<V(X1) <X <4},
It = {(X1,X) e R® : 0<x; <8 AXy =4,
I'y ={(x1,x2) € R? 0<X1 <8 AV(Xq) = x3}.

The domain Q and the boundary I', depend on the function v. This
function is the variable subject to shape optimization. The initial
position of the boundary I, is displayed in Fig. 1. The computa-
tions are carried out for the elastic body characterized by
Poisson’s ratio v =0.29, Young’s modulus E = 2.1 x 10" N/m?2.
The body is loaded by boundary traction p, = 0, p, = —=5.6 x 10°N
along Iy, body forces f; =0, i=1,2. Auxiliary function ¢ is
selected as piecewise constant (or linear) on D and is approxi-
mated by a piecewise constant (or bilinear) functions. The
computational domain D = [0, 8] x [0, 4] is selected. Domain D is
discretized with a fixed rectangular mesh of 24 x 12 and a time
step size of At =102 is adopted. Regularization parameters of
Heaviside and Dirac functions have values =107 and 4 = 2,
while error tolerance parameter in algorithm (A1) ¢; = & = 1074,
The penalty parameters in (40) have values ¢; = 1072, ¢, = 1072.

The obtained results are shown in Figs. 1-4. Fig. 1 displays the
evolution of the zero level set in the computational domain D and
the optimal domain obtained due to shape optimization algorithm
(A2) only. The algorithm terminates at iteration 10 with the value
of cost functional K equal to 1.4 x 1073, The zero level set
describing the optimal boundary evolved from initially convex set
to the nonconvex one at the optimal solution. The maximal
normal contact stress has been reduced. The obtained optimal
normal contact stress shown in Fig. 2 is almost constant along the
optimal shape boundary I';. The cost functional value change in
the iteration process is shown in Fig. 3.

Fig. 4 presents the optimal domain of structural optimization
problem (16) obtained with using topological optimization
procedure only. Material volume fraction r; = 0.5 is prescribed.

I

3 — initial shape 1
---- optimal shape

-1 L L L L L L L L L

Fig. 1. Evolution of zero level set function ¢. Optimal domain—shape optimiza-
tion.
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Fig. 2. Initial and optimal contact stress distribution—shape optimization.
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Fig. 3. Cost functional during the iteration process—shape optimization.
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Fig. 4. The optimal domain—topology optimization.
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Fig. 5. The optimal domain—simultaneous topology and shape optimization.

Holes are denoted by dotted lines. The big hole appears in the
central part of the optimal domain and two smaller ones near the
fixed edges. Optimal normal contact stress distribution and cost
functional value change during the iteration process are similar to
shown in Figs. 2 and 3.

Fig. 5 presents the optimal domain obtained by solving
topological and shape optimization problem in the computational
domain D using algorithm (A1) and employing the optimality
condition (21)-(23) with domain differential (28). As previously,
the holes denoted also by dotted lines appear in the central part of
the body and near the fixed edges. However, in this case, these
holes are smaller than in the previous case of topology optimiza-
tion only. Although the shape of the optimal contact boundary I,
is similar to the optimal shape obtained in Fig. 1 but this shape is
not so strongly changed as the optimal shape obtained in Fig. 1.
The obtained normal contact stress is almost constant along the
optimal shape boundary.

8. Conclusions

In the paper the topology and shape optimization problem for
elastic contact problem with the prescribed friction is solved
numerically using the topological derivative method as well as the
level set approach combined with the shape gradient method. The
friction term complicates both the form of the gradients of the
cost or penalty functionals as well as numerical process. Obtained
numerical results seem to be in accordance with physical
reasoning. They indicate that the proposed numerical algorithm
allows for significant improvements of the structure from one
iteration to the next. They also indicate the future research
direction aiming at better reconciliation in one algorithm
procedures governing holes nucleation and shape evolution.
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