Renal, Hepatic and Splenic Biotoxicity of Cadmium Sulphate in the Wistar Rats
Vandjiguiba Diaby, Francis Adou Yapo, Adon Mousan, Mireille Dosso, Joseph Allico Djama

To cite this version:

HAL Id: hal-02092756
https://hal.archives-ouvertes.fr/hal-02092756
Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Renal, Hepatic and Splenic Biotoxicity of Cadmium Sulphate in the Wistar Rats

DIABY Vandjiguiba 1,2*, YAPO Adou Francis 2, ADON Arsène Mousan 1, DOSSO Mireille 1,3, DJAMA Allico Joseph 2,3

1 Cellular unit of biology, Institute Pasteur de Côte d’Ivoire, 01 BP 490 Abidjan 01, Côte d’Ivoire
2 Laboratory of Pharmacodynamics-Biochemical, UFR Biosciences, University of FELIX Houphouet Boigny-Abidjan (Côte d’Ivoire), 22 BP 582 Abidjan 22.
3 Department of Medical and Fundamental Biochemistry Institute Pasteur de Cote d’Ivoire, 01 BP 490 Abidjan 01.

Received 8 July, 2016; Accepted 18 July, 2016

Heavy metals (lead, mercury and cadmium) cause problems of public health. Studies undertaken in Côte d’Ivoire within the framework of the environmental monitoring made it possible to apprehend the state of the cadmium pollution of the sediments, of the market garden grounds. Six (6) batches of rats Wistar males and females were made up. These rats were contaminated with cadmium sulfate by daily during 30 days with various proportion respectively 4; 5; 6.66; 10 and 20 mg/kg body weight (bw). The rats were weighed each week. At the end of the experiment, the serum was used for proportioning of the enzymes and of the substrates using Cobas C311 ROCHE HITACHI. Work completed made it possible to determine the LD50 of cadmium sulfate which is of 200 mg/kg bw. The weight of the rats of the batches treated with cadmium decreased significantly compared to the batch untreated (control). Transaminases, creatinine and the urea were increased significantly (p<0.05) when the bilirubin and cholesterol were decreased at the two sexes. However, the effect on cholesterol is not significant. Cadmium caused liver and kidney dysfunction and it decreased the weight of rats of both sexes.

Keywords: Cadmium, Biochemical markers of kidneys, Biochemical markers of liver and spleen.

INTRODUCTION

Heavy metals (lead, mercury, arsenic, cadmium...) are pollutants generated for most of the time by the human activity. They have a high toxicological impact on the plants, the products for current human consumption and on man (Amir et al., 2014).

These heavy metals remain a serious problem of environment more and more worrying especially because of the affections noted on the populations which are exposed (Oumar et al., 2014). With regard to cadmium, it is present in a significant way in certain food, like the seafood, meat offal, certain cereals (rice, corn...), mushrooms, vegetables and to a lesser extent, in fish, the fruits and meat (Pascal et al., 2010).

In Côte d’Ivoire, the Cadmium concentrations are 5 to 127 times more significant in the discharges than in the grounds according to Traoré et al. (2014). Environmental pollution with cadmium relates to especially the rubbish dump garbage of Akouedo (Abidjan, Côte d’Ivoire) where place of many studies had. Indeed, this discharge of Akouedo is known for its heavy metal threat in particular with cadmium. It is classified with the row of the wild discharges whose natural drainage is done towards the lagoon Ebrié (bay of Me Badon), to less than 2.1 km. This liquid rejection downstream from the discharge generates a significant flow (474 m3 /days). Indeed, the lixiviat resulting from waste drains heavy metals (cadmium) and constitutes a potential source of underground pollution waters and surface (Adjiriet et al., 2008). The populations generally
complain about the bad smells, of diseases (respiratory, digestive, cutaneous) and the ground of the discharge contains a high heavy metal concentration (9.87 cadmium ppm) (Adjiriet et al., 2008). In addition, metals and metalloids associated with the aqueous phase with the grounds can be transported through Unsaturated Zone (ZNS) either towards the plants, or towards the underground sheet of water (Adjiriet et al., 2008). It is thus to fear as for the exposure of the populations to the consumption of water of well, of the market-gardening and food products cultivated on the site of the discharge. For the simple reason that this accumulation of heavy metals in the environment can be reflected on the health of the human beings and the animals (Yao and Kouassi, 2015). Several studies undertaken on the mammals showed that it causes genetic damage, the change of genes, the break of the ADN (IARC, 1993). Different experimental studies also showed that cadmium causes testicular attacks and decreases the fertility in males (Pascal et al., 2010).

This is the reason why our study is focused on cadmium sulfate biotoxicity in Wistar rats.

MATERIAL AND METHODS

Material

Biological material

The biological material is the serum of rats male and female of Wistar weighing 106 ± 6g and old from 8 to 12 weeks. The rats were placed in cages furnished with litters of shaving of which revival was done each week. They were acclimatized before the beginning of handling.

Chemical Products

The cadmium sulfate used for the tests was dehydrated salt (MERCK), and of serial number 1.02027.0100.

Methods

Preparation of the cadmium sulfate solution

The rats were weighed by batch and the average (P) for each batch was thus determined. For the preparation of the cadmium sulfate solution, the formula below was used (Michel, 2011):

\[
C = \frac{D \times P}{V}
\]

V: Volume to be managed or with gaver (ml)
D: Proportion to manage (mg/Kg body weight or 0. 001 mg/g)
C: Concentration of the solution (mg/ml)

The quantity of cadmium sulfate to be weighed was thus given. This quantity was deposited in a tube falcon and was supplemented to 10 ml with water distilled to constitute the cadmium sulfate solution. For an amount of 300 mg/Kg or 0.3 mg/g of body weight and for an average weight of 78g,

\[
C = \frac{0.3mg/g \times 78g}{1ml} = 23.4 mg/ml \text{ i.e. } 23.4 \text{ powder mg of cadmium for } 1ml
\]

Thus, for a final cadmium sulfate solution of 10 ml, it will be necessary to weigh 234 mg.

Study of acute toxicity by method 423 OECD

Method 423 OECD allowed to determine the lethal amount 50% (DL50) of cadmium sulfate managed by way oral examination with the rats.

Study of the subacute toxicity of cadmium sulfate

Identification of the animals

Each batch consists of the same animal’s sex and appreciably equal weights. The animals were marked with the tail by batch and inside each batch in order to identify them during the experimentation.

Methodologies of cramming

Twelve (12) Batches of five (5) rats were made up including 6 male groups and 6 group of females. The Groups 1 of males and females constituted the control groups where the animals received distilled water (1ml/day). Groups 2, 3, 4, 5 and 6 of each sex received respectively 1/50th, 1/40th, 1/30th, 1/20th and 1/10th of the DL50 of the cadmium sulfate solution. They are the treated groups.

The duration of treatment of the rats with cadmium sulfate was 30 Days (Layachi, 2012) and managed volume was of 1ml per day each morning throughout treatment.

Weighing of the rats, taking away of blood and experimental techniques

The rats were weighed the first day (D0) of the experimentation before the force-feeding and were weighed each week (D7, D14, D21, D30). For each batch and each week of weighing, the percentage P (see formula below) is calculated where Po represents the weight at the day 0 (D0) of the treatment and Pn weight
Effect of Cadmium on the Body Weight of the Rats

Generally, the cadmium sulfate reduced the body weight of the males rats tested compared to the control males rats that weighed D7 = 115.244 ± 4.96g; D14 = 130.598 ± 8.27g; D21 = 142.088 ± 12.11g; D30 = 148.03 ± 11.93g. Thus, according to figure 1, this reduction was significant for the rats of batch 2 in D21(128.106 ± 5.84g; p<0.05) and D30 (129. 922 ± 7.37g; p<0.05), of batch 3 in D21 (127.116 ± 7.13g; p<0.05), of batch 4 in D14 (115.034 ± 2.95g; p<0.05), D21 (122.084 ± 3.56g; p<0.05) and J30 (129. 922 ± 4.05g; p<0.05), of batch 5 since D14 (110.470 ± 11.17g; p<0.001) until D30 (116.306 ± 7.68g; p<0.0001) and of batch 6 since D7 (102.634 ± 8.61g; p<0.001) until D30 (110.577±6.16g; p<0.0001). The rate in body weight reduction of the male animals is dose-dependent and this reduction is high to the animals of batch 6 in D30 (25.30%; p<0.0001) (Figure 1).

The females rats also knew a reduction in their body weight compared to the control batch that weighted D7 = 117.446 ± 2.32g; D14 = 130.986 ± 5.10g; D21=135.108 ± 4.74g; D30=140.822 ± 5.49g. According to figure 2, this reduction was significant for batch 2 in D7 (104.104 ± 2.58g; p<0.0001) and D14 (113.016 ± 5.71g; p<0.0001), batch 3 in D7 (106.848 ± 3.02g; p<0.001), batch 5 in D7 (103.312 ± 3.95g; p<0.0001) and D14 (108.846 ± 9.78g; p<0.001) and batch 6 since D7 (95.472 ± 6.64g; p<0.0001) until D30 (103.924 ± 5.43g; p<0.0001). In the females, this reduction in the body weight is not dose-dependent, but remains very high in female animals from D14 to D30 at about 25% (figure 2).

Cadmium sulfate induced a slowdown in the growth of animals.

Action of Cadmium on the Hepatic Function

Table I as well shows an increase in the activity of the ALT in the males as in the females compared to the control batches (male: 42.66 ± 9.796 UI/L and female: 40.17± 1.88 UI/L). This increase is significant in the males rats for batches 2 (70.62±20.09 UI/L; p<0.001), batch 5 (74.47±9.05 UI/L; p<0.0001) and batch 6 (161.4 ± 1.13 UI/L; p<0.0001). In the females, the increase in the activity of the ALT is significant for the batches 5 (60.18 ± 12.34 UI/L; p<0.0001) and batch 6 (77.64± 17.80 UI; p<0.0001).

As for the AST, the concentration of 5mg/kg bw induced a significant reduction in the activity as well in the males (223.2± 35.18UI/L; p<0.05) that in the females (228.75± 15.20 UI/L; p<0.01) compared to the activity at the control rats (male: 316.76 ± 60.03 UI/L; females: 307.82± 34.77 UI/L). The high concentrations did not induce a significant variation of the AST activity in female rats, whereas in the males, this high concentration (batch 6: 20mg/kg bw) induced a
Figure 1. Effect of cadmium on the body weight of male rats
Significance level: * = p<0.05; ** = p<0.001; *** = p<0.0001 with n = 5

Figure 2. Effect of cadmium on the body weight of female rats
Significance level: * = p<0.05; ** = p<0.001; *** = p<0.0001 with n = 5

Table 1. Effect of cadmium sulfate on the liver enzymes in the rats

<table>
<thead>
<tr>
<th>Sex</th>
<th>Parameter</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTL (UI/L)</td>
<td>ALTL (UI/L)</td>
<td>ASTL (UI/L)</td>
</tr>
<tr>
<td>LOT 1 (Témoin)</td>
<td>316.76 ± 60.03</td>
<td>42.66 ± 9.796</td>
<td>307.82 ± 34.77</td>
</tr>
<tr>
<td>LOT 2 (4mg/Kg)</td>
<td>352 ± 48.74</td>
<td>70.62 ± 20.09**</td>
<td>334.40 ± 3.81</td>
</tr>
<tr>
<td>LOT 3 (5mg/Kg)</td>
<td>223.2 ± 35.18*</td>
<td>37.60 ± 10.37</td>
<td>228.75 ± 15.20**</td>
</tr>
<tr>
<td>LOT 4 (6.66mg/Kg)</td>
<td>339.7 ± 54.76</td>
<td>58.6 ± 0.61</td>
<td>315.53 ± 7.87</td>
</tr>
<tr>
<td>LOT 5 (10mg/Kg)</td>
<td>374.4 ± 57.23</td>
<td>74.47 ± 9.05***</td>
<td>324.02 ± 33.30</td>
</tr>
<tr>
<td>LOT 6 (20mg/Kg)</td>
<td>1025.5 ± 66.04***</td>
<td>161.4 ± 1.13***</td>
<td>333.16 ± 51.83</td>
</tr>
</tbody>
</table>

Significance level: ¶* = p<0.05; ¶** = p<0.001; ¶*** = p<0.0001 with n = 5
significant increase (1025.5 ± 66.04 UI/L; p<0.0001) (Table I). The AST and ALT activities were dose-dependent in male rats, but on the other hand, the ALT activity was not significantly varied for the female rats.

Action of Cadmium on the Renal Function

The tested concentrations induced a non-significant increase in creatinin in the rats regardless of sex from the values in the control groups (Table 2). However, according to table II, the high concentrations (6.66; 10 and 20 mg/kg bw) induced respectively a significant increase in urea in the males rats (0.50 ± 0.06 g/L, p<0.001; 0.51 ± 0.06 g/L, p<0.001 and 0.498 ± 0.025 g/L, p<0.0001). However, only the high concentration (20mg/kg bw) induced a significant increase in the females (0.524 ± 0.08 g/L; p<0.05) compared to the control groups values (male: 0.38 ± 0.06 g/L and female: 0.3914± 0.01 g/L). The change of renal function both in male and female rats, is correlated to the variation of the value of the urea.

Action of Cadmium on the Splenic Function ¶

The rate of total bilirubin was decreased significantly for all the test concentrations (4; 5; 6.66; 10 and 20 mg/kg bw) both in the male rats (1.35 ± 0.7g/L; p<0.0001; 1.60 ± 0.31 g/L; p<0.001; 1.76 ± 0.27 g/L; p<0.0001 and 0.21 ± 0.09 g/L; p<0.0001) than in females compared to the control rats groups (male: 2.43 ± 0.68 g/L and female:1.62 ± 0.26 g/L) (table 3). This reduction is dose-dependent in the male rats.

For total cholesterol, table 3 shows non-significant variation both in the two sex. The disturbance of the splenic function in the rat would be due to the variation of the rate of the total bilirubin.

DISCUSSION

For the population, the principal ways of contamination to cadmium are food, water and cigarette smoke. According to conditions of exposure to metal, 5% of introduced cadmium is absorbed by the gastro-intestine tract in the form of salt, while 90% of inhaled cadmium is absorbed by pulmonary way (Jarup, 2002). The experimental study showed that the cadmium sulfate cause losses of weight and a deceleration of the growth. That can be explained by the fact why the rats treated with cadmium ate little compared to the control animals noted at the time of the study of Wang et al. (2014) according to the dose of exposure. Consequently, for Sajjadet et al. (2014), cadmium would have caused a loss of appetite in the rats (Sajjadet et al., 2014). Indeed, there is a correlation between the loss of body weight and the cadmium concentration in the hypothalamus and the pituitary gland in the animals treated with cadmium (Sajjadet et al., 2014). For several authors, other factors can explain this loss of weight. In the guinea-pigs, the loss noted during the exposure to cadmium 5 mg/Kg is explained by damage of the system glucocorticoid, essential hormone in the regulation of glucose and the metabolism of the lipids and proteins (Mouhamed and Azab, 2014) necessary to the loss and the profit of weight. These results of loss of weights noted at the time of the study are in agreements with those of Sandrita et al., (2003) where the mice were watered with water enriched with cadmium chloride (10 mg/L) during 8 weeks. Losses of weight, weaknesses and mortalities were noted. Indeed, Already with 0.15mg/kg cadmium sulfate considered as proportions pathological at the time of the study of Berroukche et al. (2014) showed a similar loss of weight where the weakest concentration was 4 mg/kg body weight.

The biochemical parameter makes it possible to evaluate possible toxic effects of an agent on the physiological functions of the organism responsible for many diseases (Smaoui et al., 2000). The aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are used in animal toxicology like markers of the dysfunction of liver (Hannah et al., 2002). The quantification of the activity of these enzymes in the animals is a marker of the exposure to pollutants (Hannah et al., 2002) observed in fish.

The results of the study showed a significant increase in the enzymatic activity of AST and ALT in the serum of the contaminated rats with cadmium sulfate compared to the control group in the males as in the females. Increased in these activities of enzymes in the blood, represented their leakage of tissue into plasma following a hepatic lesion responsible for the deterioration of the membrane permeability (Layachi and Kechrid, 2013). This damage and the relaxation of the enzymes in blood is due to an accumulation of cadmium sulfate in the liver. In his study, Nashwa (2013) put in obviousness two ways characterizing the hepatotoxicity of cadmium. On a side it causes an inflammation leading to damage of the liver and kidneys (Fahim et al., 2012) characterized by the high rate of white globules (Mouhamed and Azab, 2014), and other, it destroys the cells of the liver directly.

In their studies (Egwurugwu et al., 2007), the Wistar rats exposed to 200 mg/L showed a similar rise in transaminases compared to the control group rats like in fish (Jisha et al., 2013) and in chickens with a concentration of 100 ppm cadmium (Bharavi et al., 2011). The rate of accumulation of heavy metals in the animals varies according to the species and on the individuals in the population, but, also depends on the sex, the age, the size and the food (Bedii and Kenan, 2005; Haki et al., 2005).

Cadmium is biotoxic environmental pollution; it
accumulates in tissues mainly in the liver, the kidneys, osseous marrow, the reproductive bodies and in the immune system (Egwuregwu et al., 2007). In addition, the major body implied in the toxicity of cadmium is liver (Singh et al., 2013). What is confirmed by Sandrita et al., (2003) where the mice contaminated with 10 mg/L cadmium recorded 0.032µg/g and 0.12 cadmium µg/g respectively in the liver and the kidneys.

The results of the study showed in animals of both sexes, a significant increase in levels of creatinine and urea in the blood compared to control group. This increase in these two parameters testifies to a renal insufficiency (Boujelbene et al., 2002). Indeed, a significant rate of the blood volume passes by the kidneys, them making thus extremely vulnerable to the cytotoxic effect of many pollutants such as cadmium, lead and mercury (Boujelbene et al., 2002). During their experiment on the evaluation of the toxicity of cadmium sulfate, the control group of Wistar rats recorded the presence of cadmium in their kidneys (Asagba and Obi, 2004), reflecting food and water pollution. Kidneys are the main targets after ingestion of cadmium (Wang et al., 2014) where 50 % of metal accumulate with a half-life from 10 to 35 years and create kidney damage (Poontawee et al., 2016). Cadmium causes a tubular kidney dysfunction and a decrease in glomerular filtration rate thus leading to kidney failure reported by Fahim et al. (2012). This renal failure is evaluated by creatinine and urea determination (Fahimet et al., 2012). The results showed that the increase of creatinin is not significant (p > 0.05) in the females rats. Our results corroborate those of Fahim et al. (2012) and Wang et al. (2014) who have not observed the changes of creatinine level in the blood after 28 days of cadmium treatment.

The increase of uremia translated some kidney damage and is an acute exposure marker. As for creatinine, its increase is a sign of the kidney function damage and is an acute exposure marker. As for creatinin level in the blood is due to cigarette smoke (Abdel-Moneim and Ghafee, 2007). Therefore, the exposure of the rats to cadmium in this study causes a disturbance of the renal function in the males.

The bilirubin is the breakdown product of red blood corpuscles out-of-date or damage. These red blood corpuscles will release heme and the globine (Basso et al., 1991). In the liver, bilirubin binds to other molecules before being excreted in the bile. The results obtained showed a significant reduction in the bilirubin compared to the control group in both rats sexes. These results confirmed the total correlation between bilirubin and cadmium where Zeneli et al., (2009) noted that the high cadmium concentration in blood is due to cigarette smoke. In fact, this cadmium inhibits the synthesis of bilirubin. The bilirubin rate reduction in blood may be caused by anemia (Zeneli et al., 2009) due to cadmium.

CONCLUSION

Cadmium cause a weight decrease noted by a deceleration of the growth Cadmium causes slower
growth through decreased weight, anemia, renal failure and liver damage. These observed pathologies are the risks to people living in a polluted environment to cadmium. This is the place to draw the attention of clinicians so that incorporation metal settings to blood checkups including cadmium for better management of heavy metal poisoning.

REFERENCES

Treatment chronique au cadmium sur la fonction renale chez le rat. Traitement chronique au cadmium sur la fonction renale chez le rat. L’Eurobiologiste. 35(258): 3-17.

lagune tropicale : la lagune Aghien (Sud-Est de la Côte d’Ivoire).
TRAORE A, SORO G, AHOUSSE KE, BAMBA BS, SORO N, BIEMI J
(2014). Niveau de contamination en métaux lourds des sédiments
d’une lagune tropicale : la lagune Aghien (Sud-Est de la Côte
WANG HJ, LIU ZP, JIA XD, CHEN H, TAN Y (2014). Endocrine
Disruption of Cadmium in Rats Using the OECD Enhanced TG 407
Yao MK, Kouassi N’g LB (2015). Etude des propriétés d’adsorption et
de désorption du Plomb (Pb) et du Cadmium (Cd) par les sédiments
Sci. 9(1): 483-491.
Effects of Air Pollution and Smoking on Cadmium Concentration in
Human Blood and Correlation with Biochemical Parameters. Am. J.

How to cite this article: DIABY V, YAPO AF, ADON AM, DOSSO M, DJAMA AJ (2016). Renal, Hepatic and Splenic Biototoxicity of Cadmium
103-111.

Chloride On Function Of Thyroid Gland In Rats. Egypt. J. Comp.