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ABSTRACT

Automatic identification of jump Markov systems (JMS) is
known to be an important but difficult problem. In this
work, we propose a new algorithm for the unsupervised
estimation of parameters in a class of linear JMS called
“conditionally Gaussian pairwise Markov switching
models” (CGPMSMs), which extends the family of classic
“conditionally Gaussian linear state-space models”
(CGLSSMs). The method makes use of a particular
CGPMSM called “conditionally Gaussian observed Markov
switching model” (CGOMSM). The algorithm proposed
consists in applying two EM algorithms sequentially: the
first one is used to estimate the parameters and switches of
the discrete pairwise Markov chain (PMC), which is a part
of CGOMSM. Once estimated, it is used to sample switches
and then the second one, called switching EM, is used to
estimate the parameters of the distribution driving hidden
states given the observations and the switches. The entire
algorithm is evaluated with respect to data simulated
according to CGPMSMs, and comparisons with several
supervised methods attest its good efficiency.

Index Terms—Jump Markov linear
Expectation-Maximization, parameter estimation.

systems,

1. INTRODUCTION

Let us consider three random sequences X{V = (X1,
Xy), RY =(Ry,...,Ry) and YV =(Y,...,YnN),
taking their values in R™, Q@ ={0,..., K —1}and RY,
respectively.

{x,m} _ {}'“(RZ”) 7’“"”(%”)} [xn} +

Yol [FURGTH FURETY] Ly,

e EmE B
[“’;}{H}_{_{Nﬁ—l(R:’H)
Wnt Ny (R

RY is a Markov chain and the couple (X1, YY) is
assumed Markov and Gaussian conditionally on R{'. The
distribution of (XY RY,YY) is defined by p(r;),
Gaussian  distributions ~ p(x;,y;|r1),  transitions
P (Tn+1 |7 ), and the system (1), in which wy, represents the
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Thus, system parameters F(R”™"), Q(R""") depend on
the switches R = (R,,Ry11) , and NZ_ (R
denotes the item about the mean values,
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where M” (R,,) and MY (R,,) are the means of the two
processes respectively, which are only decided by the value
of R,, and without dependence on n.

Such a system, named “conditionally Gaussian pairwise
Markov switching model” CGPMSM [1], extends the well-
known “conditionally Gaussian linear state-space model”
(CGLSSM) [2-3]. The latter in which F*Y(R""") and
FYY(R™ 1) in (1) are set to be zero, is considered as the
“natural” switching Gaussian system, however, its
application is quite limited as it does not allow fast optimal
filters [4-5]. Another recent particular case of CGPMSM,
called “conditionally Gaussian observed Markov switching
model” (CGOMSM), consists in taking CGPMSM with
FY"(Rn41) = O. Decisive advantage of CGOMSM over
classic switching systems is that it does allow fast exact
optimal filtering.

This paper proposes a novel algorithm to automatically
estimate the parameters {.’F'(RZ‘H)7 Q(RIM), MY (Rn41)}
and the parameters defining the distribution of the switches
of CGPMSM described above from a limited-size set of



observations only, with M” (R,,41) assumed to be known
as zero. The interest of such a general algorithm relies on
the fact that it is theoretically possible to approximate any
non-linear and non-Gaussian system by the linear switching
system (1).

The new proposed method, called “double expectation-
maximization-CGPMSM” (DEM-CGPMSM), uses the well-
known EM method at two different levels:

(i) The first one is to consider that (RY, Y7 ) is Markov,
and to use EM to estimate its parameters from Y2'. This is
an approximation, as (R}, Y7 ) is not necessarily Markov
in general CGPMSM. However, this approximation does not
seem too strong for what is to be done, and different
experiments show a good robustness of the whole
unsupervised filtering method with respect to it;
(i) Once the parameters of (lev , Yiv ) are estimated, they
are used to sample a realization r) of RY using
r¥ ‘yf[ ), and taking rl¥ as it were a true realization of

RY. Then the “true” switches so obtained are taken for
applying an adaptation of a recent EM [8] for estimating the
parameters of p (xIV, y2 [r])

The proposed method can be considered as an extension
to the classical EM method [6-9] for switching cases, and
also as an alternative to particle filter based methods [10-
11], which can be time consuming. Moreover, it is more
general than the ones described in [12], in which the system
at the origin of the observations is supposed to be known
(and in which sampling can be used for parameters
estimation).

The remaining of the paper is organized as follows.
Section 2 explains the implementation details of the DEM-
CGPMSM algorithm proposed. The Switching EM and the
integrated DEM-CGPMSM algorithm are tested in Section 3
to verify the robustness of parameter estimation and
smoothing performance against several supervised methods.
Some potential impact factors on the performance of our
algorithm are analyzed. Finally, Section 4 presents further
possible improvements for our algorithm.

2. DOUBLE EM ALGORITHM FOR PARAMETER
ESTIMATION OF CGPMSM

As mentioned in the Introduction, the DEM-CGPMSM is
based on two EM algorithms. It runs as follows:

1. Consider the distribution of (R}, Y?)in CGPMSM as
being a PMC distribution; apply EM to estimate the related
parameters. Sample RY = r according to p( ‘yl , and
estimate MY (R,,) through emplrlcal estlmatlon,

2. Consider the RY =r) sampled and the means
MY (R,,) estimated in step 1. The second EM (Switching
EM) is applied to get the remaining parameters F(R"™) and
Q(R]""!). Use the estimated parameters to restore X7

2.1. EM for discrete pairwise Markov chain

Let us consider RY = (Ry,...,Ry), YV =(Y4,...,
Y n) above, and TV = (RN YN), with T), = (R, Y5,).
The process T1 is called a “pairwise Markov chain” (PMC),
if it is Markov, i.e. its distribution can be written as:

p(tY) =pt)p(talts)...p(tnlty-1). (2

Assuming that the PMC is “Stationary” and “Gaussian”,
which means that thep (t, |[t,,+1) do not depend on nand
P (YnsYni1 |'n,Tng1 ) are Gaussian. The distribution is
then given by:
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where

with j, k € {0, K — 1}. EM can be applied on this Gaussian
PMC system [13]. For later use, we define:
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2.1.1. Forward & Backward probabilities
on (j) and 1, (4,k) in (4) can be calculated recursively by
Baum's algorithm [14]:
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where a,, and (3,, denote the “normalized” forward and
backward probabilities defined by:

an (§) =p(ra=7ly1), (7)
d‘n (J (y” ! |j e : y”.) ] (8)
p (.Y-n.+1 |Y1 )

The recursive computation of o, (j) and 3, (j) are:
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2.1.2. EM parameter estimation



For starting the EM, the switches are initialized by K-means.

ontl(j,k) is denoted as function Lir,=jrnsr=k) and
Card (j. k) =N 671 (k). The

n=1
parameters is calculated from the following empirical

equations:
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and the EM updates the parameters by maximizing the
likelihood function of £ [h.p (Tj”) |y-'l'"}, as
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Iterations are stopped after sufficient iterations, assun(ling)
that the estimated parameters do not change a lot. Once
¢n (j) are got, Maximizer of the posterlor marginal (MPM)
), then MY (R,,)
are estimated through the emplrlcal estlmatlon.

is applied for sampling r1 with p |y1

N L

21 Ly, =it
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Card (]
2.2. Switching EM

This section is based on the assumption that switches are
known, and the object is to expand the recent EM for
parameter estimation of pairwise Markov models to a
“Switching EM”, which is new suiting the switch models.

2.2.1. Forward & Backward probabilities
Assuming the switches RY = r)V are given, from the

properties of CGPMSM, we have:

p(xiﬁ-l YM+1 |Xﬂ [,nl l'yn)

N (FO 4 N @)

To simplify, let us remove the fixed r”*1 in the derivation.
Calculate the intermediates for forward probabilities:

)A(n|n+1 = inln + Kn|n+lyn+1|n; (14)
t
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Backward probabilities (smoothing):
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2.2.2. EM algorithm for switching model

Let ©=(0,,0)" 0)%. . . 0lF . kK be the

O,
parameters in CGPMSM, in which ©; = (X1, Py),

assuming that x; ~ N (X1, P,); ©)F = (F/F Q7)) with
FIF = F (xpt! = (j,k)) and Q7% = Q (x1*! = (j,k)).
The recursion function of the EM algorithm is
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Maximizing the likelihood function of the complete data, we
can get the recursive EM update for 6)-é’k and O;.
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2.3. Integrated Double EM-CGPMSM algorithm

The integrated DEM-CGPMSM algorithm is constructed by
the EM for discrete PMC and the Switching EM described
in previous subsections. For reducing the failure of
parameter initialization, a feedback of parameters:
MY, F7F and Q7* is added from the result of Switching
EM to EM for discrete PMC. It is based on the assumption
that data follows a homogeneous CGPMSM system, in
which the parameters do not depend on n, given by the
covariance matrix of Z7 = [Z; (R = j), Z2(Ra = k)] as

. [T mt
Iy = |i(zi__~}.:)’ I } : 25)
with
1)? ! ik ik
I _ (0-.'}.') b ik a’ d’-
F;; (b{)!‘- (0_3)2 1 E‘i - |:e;3n C_'j._k: 1
u

for all € {0,K —1} . Thus, the conversion formula

between F’ ’k, Q’ "% and the co-variances are given by:

1

P (N (1) @ =T o)

The feedback parameters are calculated through the
inverse of relations in (26) and empirical estimation from
parameters estimated by the two EMs at previous iteration.

The I‘“’Zf can be reconstructed as:
1

f‘i = argvec {(I - .7:'U ® .'IA"'“) ' vee (Q“ﬂ : @

t
Sk i kg
Sk = (y-‘-*- r;) .

Observation: Y
Initial parameters:

P (j: k), pud*, TH*

fo=Fb+1

EM (PMC) - S
= i=i+
I LLh o —

Update
Smoothing(F&BProb)

parameters:
i = Num;

p (i, k), uf*, T3

no

yes

Estimated: R, MY

Update pa-

rameters:

ke jsk Tk
P (k) s 3%, T

Switching EM U
it =1di+1

1
J_» Update pa-
Smoothing(F&BProb) rameters:
it =10 Fik Qik

no

it = Num;;

yes

Estimated:
X, Fik Qik

JFb= Numy,

no

yes

Estimated: X, R

MY, Fik, Qch

Fig. 1. Flowchart of DEM-CGPMSM.

in which argvec (.) is the inverse function of the operator
vector that stacks the columns of a matrix and ® represents
the Kronecker product. So, the feedback fu;k can be
restored by the corresponding covariance elements of
[Y1,Y5] in I‘“’Z? estimated. The other two feedback

parameters are calculated as:

bk = SO e Gy N )] @8)

N-1 = "

The flowchart of the
algorithm is shown in Fig. 1.

integrated DM-CGPMSM

3. EXPERIMENTS

We present here the results of two series of experiments on
scalar data (m = ¢ = 1). The first series allows analyzing
the robustness of the switching EM part only, and the
second series experiments the global DEM-CGPMSM
algorithm. Evaluations are performed using the Mean
Square Error (MSE) between the estimated states and the
simulated ones (ground truth). Comparisons are performed
with respect to the Optimal Smoother Approximation (OSA)
and other supervised methods which assume that all
parameters are known.



For simplification, all experiments assume two jumps
only and F(R!'') = F(Rpi1), QR = ORu11),
with transition matrix: p(r, =0) =p(r, =1) = 0.5 and
p(rpy1=0|r,=0)=p(rpy1=1|r, =1)=0.9.

The abbreviations and meaning of all comparative
method used in this section are:

1. DEM (no feedback): DEM-CGPMSM without feedback;

2. DEM (one feedback): DEM-CGPMSM with one
feedback;

3. OS: Optimal Smoothing with true RY =rV and true
parameters

4. OSA: Optimal Smoothing Approximation with true
parameters modified to be CGOMSM.

5. CGLSSM: Classical Smoothing with true RY = r¥ and
true parameters modified to be CGLSSM.

3.1. Experiment regarding the Switching EM

The aim of this series is to test the performance of the
Switching EM which is a part of our integrated method for
parameter estimation. N = 2000 samples of (X RV, YY)
are simulated according to a CGPMSM with zero means.
The true parameters for data simulation are reported in
column “©” of Table II, then parameters are estimated from
the observation and switches through Switching EM with
500 iterations. The initialization was set according to
column “©(” in which “ Var[Y(R)]” means to take the
variance of the subseries of Y,, according to current value
of R,,. The same initialization and iteration are executed
when doing parameter estimation through Classical EM
which assumes no switch in data. The parameters estimated
from Switching EM and Classical EM are shown

: ey (500)
respectively under the column “© hingEM
500) »

Classical EM °

Table I shows all the restoration MSE including the
Optimal Kalman Smoothing (or Optimal Smoothing) with
true parameters for comparison. Results are averages of 100
independent experiments.

From table I, we find that Switching EM is more
suitable for switch models than Classical EM; in addition,
its performance can be close to the Optimal Smoothing with
true parameters. Besides, the parameters estimated through
Switching EM can be very similar to the true parameters,
even with initial values set far from the true ones.

”” and column “

3.2. Experiment regarding the entire DEM-CGPMSM

The aim of this series is to analyze the performances of

DEM-CGPMSM with respect to several supervised
methods.
Data is sampled according to a homogeneous

CGPMSM described as (25). To simplify, we assume that
all variances are 1 and b° = b! = b. Thus, the parameter
matrices F and Q is defined by the co-variances: a, b, ¢, d
and e (Dropping the explicit dependence on current switch),

Table I Restoration results.
Optimal Smoothing Switching EM

Classical EM

MSE 0.158 0.175 0.341
Table II True and estimated parameters.
o e OF chingEns O iameicaten
5 5 6. 362
Fr=0) | |0 05 1.0 0.0 0663 0.362 0.541  0.541
L0 0.0 1077 —0.164 o 2
T 10 0.0 36T —osar 1 (0647 —0.132
FE=D 1105 00 0.533  —0.071
Q(R =0) E:(l) 8‘: [().5 0.0 ] :;(1]‘:; 827") {0.276 o.un]
Qr—1) || |05 00 00 varlY (R)] 0463 0.010 0.074 0317
0.0 0.1 0.010 0.093

Table III MY (R) estimated from DEM-CGPMSM.

M| 0.0 05 1.0 15 2.0 25
(R=0) || —0.004 0.539 1.014 1.505 2.001 2.501
(R=1) —0.001 | —0.405 | —1.020 | —1.518 | —2.013 | —2.512

0.45 ;
4 OSA
0-40'; v« DEM(no feedback)
s, e - DEM(one feedback)
035} "
0.30
0.25}

Error Ratio

0.00 L L L

0.0 0.5 1.0 15 2.0 2.5

(a) Error ratio of estimated R.

1.6} : v-¥ DEM(one feedback)
=4 0S
1.4 4 OSA
) #* =« CGLSSM

12f%; ;

1.0}
x
é gl ,,¢ .......... e e Hieiaiaieien ket ieieiee 4
= X

0.6 5

Vi
0.8 R ST

M

(b) MSE of restored X.
Fig. 2. Restoration results of series 2.

and when d = cb, we have F¥* = (d —cb) / (1 —b?) =0,
the CGPMSM becomes a CGOMSM.

In this experiment, we set the co-variances to be:
b=0.3, a"°=0.1, a"'=0.5, =04, =09,



eh0 =0.75, eb! =0.33, d“° and d"' are got by setting
FY* =0.4. N = 2000 samples are generated with |MY|
ranging from 0.0 to 2.5, while [MY| means the absolute
value of the mean of Y corresponds to the two switches. For
example: |MY| =2.5 indicates that MY (0) =2.5 and
MY (1) = —2.5. Results are averages from 100 independent
experiments, with 100 iterations for EM (PMC), 500
iterations for switching EM and valid feedback situation (the
estimated feedback fu;k is positive semidefinite).

The error ratio of the estimated R} through OSA and
DEM-CGPMSM are shown in Fig. 2 (a). Comparing the
error ratio result of DEM (no feedback) and DEM (one
feedback), feedback from the Switching EM part effectively
offers the proper initialization when |MY| is near zero,
which means a difficult situation for K-means to initialize
the switch. In fact, EM is sensitive to the initialization and
one feedback is enough for finding the proper one under this
model. Fig. 2 (b) shows the restoration MSE of all methods
applied. The confidence interval of DEM (one feedback) is
displayed in light cyan. We can conclude that, when |[MY
increases, the switches are better estimated, and the DEM-
CGPMSM gets better and steadier performance that can
even surpass the OSA and CGLSSM, which are exact
computation for approximation models. In fact, DEM-
CGPMSM does have the chance to perform better than OSA
and CGLSSM since it assumes no permanent 0 in
parameters at special position of the model.

Table IIT reports the estimated value of MY (R) with
the value of [ M| set for data simulation in first line.

4. CONCLUSION

An unsupervised parameter estimation and restoration
method is proposed for “conditionally Gaussian pairwise
Markov switching models” (CGPMSMs), which is based on
two EM algorithms applied successively, named “double
expectation-maximization-CGPMSM” (DEM-CGPMSM).
The newly proposed partial algorithm (Switching EM) and
the entire DEM-CGPMSM have been evaluated by
simulated data. Results show that, the Switching EM, as an
extension of the EM algorithm for switching models with
known switches, can estimate the parameters effectively.
The performance of DEM-CGPMSM can even surpass
some sub-optimal supervised restoration methods.

Our future prospect includes: (i) the improvements on
the initialization of the Switching EM part; (ii) the
introduction of non-Gaussian distributions, taking into
account recent results on hidden Markov chain and copula
theory [15]; and (iii) the application of this method to non-
linear real data.
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