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body systems, and a symposium in his honor well illustrates the breadth and variety of modern
screw theory applications [14]. Comprehensive treatments in kinematics and mechanism theory
are presented by Bottema and Roth [2], Hunt [11], and Phillips [18].

Although it would appear that the time derivative of screw quantity should be well under-
stood, that is not the case. There is active discussion in the literature of: the general topic by
[21,25,29]; applications to acceleration analysis by [22,8], with historical background in [20];
applications to stiffness by [9,5,10,26,24]; and applications to dynamics by [15,7,13,4,17,27].
A growing trend is to use differential geometry, and in particular, Lie algebras, such as pre-
sented in [12,23].

Two important classical works are Brand [3] and von Mises [28] who use motor representations
for the derivative of a screw. Interestingly, the Brand derivation has significant typographical er-
rors in early printings (e.g. 1947, p. 126) that are corrected in latter printings (e.g. 1954). Von
Mises only states the results without derivation [28, Secs. A.7, B.8, C.1], although he does derive
the derivative of the inertia dyad. Dimentberg [6] uses the principal of transference to state the
moving body derivative formula with dual vectors. Yang [30] uses the dual vector representation
of screws and refers to the fixed body derivative of a screw as a ‘‘pseudodual vector’’ since it vio-
lates the shifting law. In [31] he formulates the dynamic equations of a rigid body with the
momentum screw differentiated in the moving body and shows that the formulation holds at
all points.

The presentation here provides a novel and somewhat paradoxical approach using a continuum
mechanics viewpoint for rigid body mechanics. This requires representing a screw quantity by a
vector field [15]. It is the goal of this paper to provide the simplest explanation and clearest nota-
tion to unambiguously characterize the properties of screw differentiation with respect to time. To
this end only three fundamental formulations are required: (i) the relationship between the deriv-
atives of vectors as observed from fixed and moving bodies that is fundamental in rigid body
mechanics, (ii) the relationship between the material and local derivatives of vectors that is fun-
damental in continuum mechanics, and (iii) the shifting law that identifies how the representation
of a screw changes from point to point.

Four distinct cases of differentiation are considered that occur according to what quantities are
assumed to be constant. It is shown that the material derivative of a screw with respect to a fixed
body is generally not a screw quantity. This is especially important since it is the most common
type of differentiation and leads to special results for Euler�s Laws and the stiffness of an elastic
system when expressed at the center-of-mass. However it is shown that the forms of the equations
are not invariant when expressed at an arbitrary point, i.e. the shifting property is violated. Alter-
native screw formulations preserve invariance.

In the following development it is assumed that there are only two rigid bodies, arbitrarily
referred to as the fixed and moving bodies. The formulation can be easily extended to more
bodies, and for illustration is done so in an example at the end. There are also two arbitrar-
ily selected points on the moving body, a and c. In the case of inertial systems, it is assumed
that the fixed body is replaced by an inertial body and that point c is the moving body
center-of-mass. All vectors are assumed to be Cartesian and the underlying space is Eucli-
dean. The remainder of the paper is in three parts: first, the differentiation of vectors is re-
viewed; second, vector differentiation is applied to screw quantities, and; third, applications
are discussed.



2. Differentiation of Cartesian vectors

A Cartesian vector has direction and magnitude. Under rotational transformations the direc-
tion changes and the magnitude remains invariant. Fixed body, moving body, material, and local
derivatives are discussed.

2.1. Vectors

The time derivative of vector g(t) depends on how the rate of change is observed, particularly if
the observation is with respect to a fixed or moving body. A simple way to express this is with
vector coordinates either in frame (i, j,k) rigidly attached to the fixed body or frame (i 0, j 0,k 0) rig-
idly attached to the moving body. Differentiation with respect to an observer on the fixed body,
dgðtÞ

dt , means that (i, j,k) are held constant. Differentiation with respect to an observer on a moving

body, d0gðtÞ
dt , means that (i 0, j 0,k 0) are held constant. A scalar however has the same derivative with

respect to the fixed and moving bodies.
The time derivatives of g(t) with respect to fixed and moving bodies are related by the well-

known derivative law,
dgðtÞ
dt

¼ d0gðtÞ
dt

þ xðtÞ � gðtÞ
where x is the angular velocity of the moving body with respect to the fixed body.

2.2. Vector fields

A vector field associates a vector with each point of a body, such as gc(t) with point c of the
moving body. Examples are the linear velocity field of points on a body or the bending moment
field of points on a loaded cantilever beam. The time derivatives with respect to the fixed and mov-
ing bodies follow pointwise from those of vectors,
dgcðtÞ
dt

¼ d0gcðtÞ
dt

þ xðtÞ � gcðtÞ
It is valuable to express a vector field both as a function of time and as a function of time and a
position vector rc,
gcðtÞ ¼ gcðrcðtÞ; tÞ
There is a subtle distinction between the two forms of gc that is well-known in the area of contin-
uum mechanics but is presented here in a simplified approach and notation for brevity. For a
more rigorous approach the reader is directed to basic references in continuum mechanics such
as [16].

The first form, gc(t), is called the material or Lagrangian description where point c is explicitly
held constant with respect to the moving body. This description is most commonly used in rigid
body mechanics where it is desired to track individual particles. For example, if c represents the
center-of-mass of a rigid body it is possible to measure its velocity by a tracking device. During a



small time increment the velocity of a single particle c is measured at two distinct locations, and in
the limit their difference is used to determine the so-called material acceleration.

The second form, gc(rc(t), t), is called the spatial or Eulerian description where rc(t) tracks the
place in the fixed body currently occupied by particle c of the moving body 1 (see [16]). This
description is most commonly used in fluid mechanics where it is difficult to track individual par-
ticles. For example, a fluid measuring device, such as for velocities, is often attached to a fixed
location. During a small time increment the velocities of two different particles are measured at
a single location, and in the limit their difference is used to determine the so-called local
acceleration.

Differentiating gc with respect to the fixed body and omitting the explicit arguments gives,
1 T
dgc
dt

¼ ogc
ot

þ ogc
orc

vc
where vc ¼ drc
dt is the velocity of point c with respect to the fixed body. This holds for both rigid and

deformable bodies. Assuming rigid bodies and differentiating with respect to the moving body
gives,
d0gc
dt

¼ o
0gc
ot
since o0gc
orc

v0c vanishes because the velocity of c with respect to the moving body is zero, v0c ¼ 0.
The operators d

dt and d0

dt are known as the material or total derivatives with respect to the fixed
and moving bodies respectively. The operators o

ot and o0

ot are known as the local or spatial derivatives
with respect to the fixed and moving bodies respectively. It is emphasized that while the material
derivative exists for both an isolated particle and a continuum, the spatial derivative exists only
for a continuum.

Example 1. Fig. 1 shows two particles on the edge of a rigid disk rotating about a fixed axis with
an angular acceleration. In Fig. 1(a) rc(t) points to the place in the fixed body (not shown)
currently occupied by point c with velocity vc(rc(t), t). In Fig. 1(b) the disk has turned and a new
particle with velocity vc(rc(t),t + dt) now occupies rc(t), the position previously occupied by c. In
the limit the change in velocity is ovc

ot dt where ovc
ot is the local acceleration. In Fig. 1(c) rc(t + dt)

points to the place in the fixed body currently occupied by the new position of particle c. In the
limit the change in velocity is dvc

dt dt where dvc
dt is the material acceleration. Note that in this example:

the local acceleration is also the tangential component of the material acceleration; in the special
instance of no angular acceleration, the local acceleration vanishes, ovc

ot ¼ 0, and the material
acceleration, dvc

dt , becomes the centripetal acceleration to the center of the disk.
3. Screw quantities

A screw quantity can be conveniently defined in terms of Cartesian vectors and the shifting
property,
his seemingly awkward device is required to justify the existence of partial derivatives in t and rc.





4. Differentiation of screws

Four cases of differentiating a screw are examined by using material or local derivatives with
respect to moving or fixed bodies. One case does not yield a screw quantity and two cases yield
the same screw quantity.

4.1. Material derivative—moving body

Differentiating the shifting law with respect to the moving body gives,
d0ga
dt

¼ rac �
d0g
dt

þ d0gc
dt
where rac is constant with respect to the moving body. However this is just the shifting law for
d0

dt ðg; gcÞ so the following has been shown,

Proposition 5. For a screw quantity (g,gc) where c is a point of the moving body, the material
derivative with respect to the moving body d0

dt ðg; gcÞ is a screw quantity.

It is also useful to express this quantity in terms of fixed body material derivatives,
d0g
dt

;
d0gc
dt

� �
¼ dg

dt
x � g;

dgc
dt

x � gc

� �
Example 6. For a twist (g,gc) = (x,vc),
d0x
dt

;
d0vc
dt

� �
¼ dx

dt
x � x;

dv
dt

x � vc

� �
¼ ða; ac x � vcÞ
where a is the angular acceleration and ac is the linear acceleration of point c. This is an important
special case where one of the terms, x · x, cancels out.
Example 7. For a wrench (g,gc) = (f,mc),
d0f
dt

;
d0mc

dt

� �
¼ df

dt
x � f ;

dmc

dt
x � mc

� �
Unlike acceleration, this is indicative of the generic case since x · f does not generally vanish.
4.2. Local derivative—moving body

Since g(t) is not a function of rc then d0g
dt ¼

o0g
ot . Also in Section 2.2 it was shown that d0gc

dt ¼ o0gc
ot

since v0c ¼ 0. Together with Proposition 5 this gives,

Proposition 8. For a screw quantity (g,gc) where c is a point of the moving body, the local derivative
with respect to the moving body o0

ot ðg; gcÞ is a screw quantity, and further o0

ot ðg; gcÞ ¼ d0

dt ðg; gcÞ.
Thus the local and material derivatives with respect to the moving body are equal.



4.3. Material derivative—fixed body

This is the most important case. If (g,gc) is a screw quantity then in general d
dt ðg; gcÞ is not a

screw quantity since it does not satisfy the shifting property. This is easy to show by differentiating
the shifting law,
dga
dt

¼ drac
dt

� g þ rac �
dg
dt

þ dgc
dt
For d
dt ðg; gcÞ to satisfy the shifting law it is necessary to satisfy the condition drac

dt � g ¼ 0 for every
pair of points a and c on the moving body which implies that g = 0 or that the body is translating,
drac
dt ¼ 0.

Proposition 9. For a screw quantity (g,gc) where c is a point of the moving body, the material
derivative with respect to the fixed body d

dt ðg; gcÞ is generally not a screw quantity, except for the
special cases where g = 0 or the body is translating.

Example 10. For a twist (g,ga) = (x,va),
d

dt
ðx; vaÞ ¼

dx
dt

;
d

dt
ðrac � x þ vcÞ

� �
¼ a; ac þ a � rca þ x � ðx � rcaÞð Þ
This is a well-known relation in kinematics. For d
dt ðx; vaÞ to be a screw quantity the body must be

instantaneously translating, x = 0, so the centripetal acceleration of a about c vanishes,
x · (x · rca) = 0, for all such pairs of points. In this particular example the two special cases of
Proposition 9 are the same.

It is necessary to examine the field viewpoint of the material derivative,
d

dt
ðg; gcÞ ¼

og
ot

þ og
orc

vc;
ogc
ot

þ ogc
orc

vc

� �
To evaluate og
orc

note that g = g(t) does not depend on rc so og
orc

¼ 0. To evaluate ogc
orc

the shifting law is
expressed as ga = g · (ra rc) + gc and the partial is taken with respect to rc to give
ogc
orc

¼ g�
where g, ga, ra are not functions of rc. These results yield the material derivative of a screw as
d

dt
ðg; gcÞ ¼

og
ot

;
ogc
ot

þ g � vc

� �
which is generally not a screw quantity unless g = 0 or the body is translating. This expression is
used frequently throughout the sequel.



4.4. Local derivative—fixed body

Again using the material derivative of the shifting law but now substituting in the partials gives,
dga
dt

¼ drac
dt

� g þ rac �
dg
dt

þ dgc
dt

oga
ot

þ g � va

� �
¼ ðvc vaÞ � g þ rac �

og
ot

þ ogc
ot

þ g � vc

� �

oga
ot

¼ rac �
og
ot

þ ogc
ot
However the last expression is just the shifting law for o
ot ðg; gcÞ so the following has been shown,

Proposition 11. For a screw quantity (g,gc) where c is a point of the moving body, the local
derivative with respect to the fixed body o

ot ðg; gcÞ is also a screw quantity.

It is also useful to express this quantity in terms of fixed body material derivatives,
og
ot

;
ogc
ot

� �
¼ dg

dt
;
dgc
dt

g � vc

� �
Example 12. For a twist (g,gc) = (x,vc),
ox
ot

;
ovc
ot

� �
¼ dx

dt
;
dv
dt

x � vc

� �
¼ ða; ac x � vcÞ
This is the same result as in Example 6, where x · x cancelled out in the calculation of d0x
dt and

thus o
ot ðx; vcÞ ¼ d0

dt ðx; vcÞ. This is a special situation that only occurs for acceleration. The term
alc � ac x � vc is the local acceleration.

Example 13. For a wrench (g,gc) = (f,mc),
of
ot

;
omc

ot

� �
¼ df

dt
;
dmc

dt
f � vc

� �
In contrast to the acceleration case, this result is distinct from Example 7 so o
ot ðf ;mcÞ 6¼ d0

dt ðf ;mcÞ
and is representative of the general situation.

Example 14. For momentum (g,ga) = (p,ha),
op
ot

;
oha
ot

� �
¼ dp

dt
;
dha
dt

p � va

� �
where a is an arbitrary point of the body. This result is similar to the general wrench case. How-
ever, in the particular for the center-of-mass,



Table 1

Derivatives of screw quantities expressed using fixed body material derivatives

Material derivative Local derivative

Fixed body d
dt ðg; gcÞ ¼ ðdg

dt ;
dgc
dt Þ (not a screw) o

ot ðg; gcÞ ¼ ðdg
dt ;

dgc
dt g � vcÞ

Moving body d0

dt ðg; gcÞ ¼ ðdg
dt x � g; dgc

dt x � gcÞ o0

ot ðg; gcÞ ¼ ðdg
dt x � g; dgc

dt x � gcÞ
op
ot

;
ohc
ot

� �
¼ dp

dt
;
dhc
dt

� �
since p · vc = mvc · vc = 0 and so o
ot ðp; hcÞ ¼ d

dt ðp; hcÞ. This is a another special instance of cancel-
lation and only occurs when the angular momentum is expressed at the center-of-mass. However
this instance is a very important case in dynamics.
4.5. Summary of cases

In the previous sections the alternative expressions for the various derivatives were developed
using material derivatives in the fixed frame. These are particularly useful for calculation since
they are the most basic derivatives in rigid body mechanics. For ease of comparison and reference
the expressions are collected in Table 1.

4.6. Local derivatives connecting fixed and moving bodies

The previous results on local derivatives can be combined to give the connection between the
local derivatives of screws with respect to moving and fixed bodies,
og
ot

;
ogc
ot

� �
¼ dg

dt
;
dgc
dt

g � vc

� �
¼ d0g

dt
þ x � g;

d0gc
dt

þ x � gc g � vc

� �

¼ o0g
ot

þ x � g;
o0gc
ot

þ x � gc þ vc � g
� �

¼ o
0g
ot

;
o
0gc
ot

� �
þ x � g;x � gc þ vc � gð Þ ¼ o

0g
ot

;
o
0gc
ot

� �
þ x; vcð Þ � g; gcð Þ
where in the last term the screw cross product is defined as
ðe; ecÞ � ðg; gcÞ ¼ ðe� g; e� gc þ ec � gÞ

The screw cross product yields a screw since it is direct to show that it satisfies the shifting law,
ðe� ga þ ea � gÞ ¼ rac � ðe� gÞ þ ðe� gc þ ec � gÞ

As a point of reference, the screw cross product is equivalent to the Lie bracket of screw quanti-
ties. The results are summarized as,

Proposition 15. For a screw quantity (g,gc) where c is a point of the moving body, the fixed and
moving local derivatives are related by



3 N

bodie
o

ot
ðg; gcÞ ¼

o0

ot
ðg; gcÞ þ ðx; vcÞ � ðg; gcÞ
This relation is rather remarkable in form because it generalizes the vector relation
d
dt g ¼ d0

dt g þ x � g.
5. Applications

Two fundamental applications are considered, the dynamics of a rigid body and the stiffness of
an elastically suspended rigid body. Special results occur when they are formulated at the center-
of-mass.

5.1. Euler’s Laws

Euler�s 1st and 2nd Laws provide the six dynamic equations for an unconstrained rigid body in
space. 3 These are combined as ðf ;mcÞ ¼ d

dt ðp; hcÞ where c is the center-of-mass and p, hc are the
linear momentum and angular momentum as in Example 4. However there appears to be an
inconsistency because the wrench (f,mc) is identified as a screw quantity in Example 3 while Prop-
osition 9 shows that the material derivative d

dt ðp; hcÞ is generally not a screw quantity because the
shifting law is not satisfied.

The resolution is in Example 14 where the fortuitous cancellation p · vc = 0 makes the nonscrew
quantity d

dt ðp; hcÞ equivalent to the screw quantity o
ot ðp; hcÞ, but only at the center-of-mass c. At an

arbitrary point a of the body a similar cancellation does not occur for the material derivative,
ðf ;maÞ 6¼ d

dt ðp; haÞ, however it is direct to show that Euler�s Laws retain the correct form for the
local derivative, ðf ;maÞ ¼ o

ot ðp; haÞ. Thus the local derivative yields the most general form of
Euler�s Laws. The properties are summarized in Table 2.

From Proposition 15 Euler�s Laws can be expressed using a derivative with respect to the mov-
ing body at point a,
ðf ;maÞ ¼
o0

ot
ðp; haÞ þ ðx; vaÞ � ðp; haÞ
which generalizes the familiar form of Euler�s 2nd Law expressed at the center-of-mass,
mc ¼ d0

dt hc þ x � hc ¼ Ica þ x � Icx.
It is also useful to represent Euler�s Laws in a matrix form, and for simplicity is first done at the

center-of-mass,
f

mc

� �
¼

m1 0

0 Ic

� �
alc
a

� �
þ

vc
x

� �
�

m1 0

0 Ic

� �
vc
x

� �
ewton�s 2nd Law, f ¼ d
dt mv, applies to particles and point masses whereas Euler�s 1st Law, f ¼ d

dt mvc, applies to

s.



Table 2

Properties of Euler�s Laws

Material derivative Local derivative

Mass center ðf ;mcÞ ¼ d
dt ðp; hcÞ ðf ;mcÞ ¼ o

ot ðp; hcÞ

Arbitrary point ðf ;maÞ 6¼ d
dt ðp; haÞ ðf ;maÞ ¼ o

ot ðp; haÞ
where the applied wrench is in Plücker ray coordinates, the velocity and acceleration twists are in
Plücker axis coordinates, and the screw cross product must be defined in a manner consistent with
this representation. The term alc is the linear local acceleration as defined in Example 12 and Ic is
constant with respect to the moving body. A more condensed expression, using f̂ , âl, and v̂ to
denote screw quantities, is f̂ c ¼ Mcâ

l
c þ v̂c �Mcv̂c. At an arbitrary point a of the body the dy-

namic equations have the same form f̂ a ¼ Maâ
l
a þ v̂a �Mav̂a, where, if Tac represents the matrix

operator of the shifting law for Plücker ray coordinates as in Section 3 then, f̂ a ¼ T acf̂ c,
âla ¼ T T

ac â
l
c, v̂a ¼ T T

ac v̂c, and the congruence transformation Ma ¼ T acMcT T
ac is the generalization

of the parallel axis theorem for screw inertias.

5.2. Stiffness

An elastically suspended rigid body can be modeled using screw quantities [9,5]. Consider n line
springs, each attached to the moving body at point ci with the other end attached to the fixed body
(see Fig. 2). For each spring the stiffness is ki, the length is li, the undeformed length is l0i, and the
direction is ei. Point a on the rigid body is the location of an external wrench that loads the system
in static equilibrium.

In this type of problem, it is commonplace to introduce differentials d(Æ) rather than time deriv-
atives dð
Þ

dt . A small displacement of the moving body changes the springs by d(liei) = drci and
together with d(liei) = lidei + eidli yields the kinematic relations
Fig. 2. An elastically suspended rigid body (one spring shown).



ei dli ¼ eieT
i drci

li dei ¼ ei � ei � drci
The displacement shifting law becomes dra = raci · dh + drci where dh is a small rotation of the
body (but is not a true differential). The force applied to each spring is fi = ki(li l0i) so the net
wrench applied to the moving body at a is ðf ;maÞ ¼

P
ðfi; raci � fiÞ. Taking the material differen-

tial of the wrench with respect to the fixed body, using the kinematic relations and shifting law to
simplify, and arranging in a matrix form yields,
df

dma

� �
¼ K

dra
dh

� �
where K is the 6 · 6 material stiffness matrix written as the sum of three parts,
K ¼ K1 þ K2 þ K3

K1 ¼
X
i

ki
ei

raci � ei

� �
ei

raci � ei

� �T

K2 ¼
X
i

kið1 qiÞ
ei�

raci � ei�

� �
ei�

raci � ei�

� �T

K3 ¼
X
i

0 0

0 fi � raci�

� �
and where qi � l0i/li. Terms K1 and K2 are symmetric while K3 is not. When all the springs are un-
loaded, qi = 1 and fi = 0 so K2 and K3 vanish. The stiffness can also be expressed as the sum of
symmetric and skew-symmetric parts, K = Ksym + Kskew. Using the Jacobi identity, (a · b)· =
(a · b·) (b · a·), the skew part reduces to the simple form,
Kskew ¼ 1

2

0 0

0 ma�

� �
Therefore the applied moment accounts for the skew-symmetry; when the system is unloaded, the
stiffness is symmetric.

Though the material stiffness relation is correct, d(f,ma) is not a screw quantity. As a conse-
quence, when changing to another point the stiffness matrix K does not transform by the congru-
ence transformation given in Section 5.1 and hence the form of K is not invariant. For example,
consider the important special case where the external load is due to the gravity load of the sus-
pended body. At the center-of-mass c the moment vanishes, mc = 0, and the material stiffness is
symmetric. If another point a on the body is selected, then generally ma 5 0 and the material stiff-
ness has a skew-symmetric component. This highlights a deficiency of material stiffness—the form

of the matrix representation is dependent on the selected point, i.e. it is not invariant.
However, a stiffness relation based on a local differential operation does yield an invariant

expression amongst screw quantities. Introducing a differential operator defined by the local time

derivative, oð
Þ � oð
Þ
ot dt, then (df,dma) = (of,oma + f ·dra). Substituting this into the material stiff-

ness expression yields the corresponding local stiffness expression,



4 N

ray co
of

oma

� �
¼ Kl dra

dh

� �
where Kl ¼ K1 þ K2 þ Kl
3 and
Kl
3 ¼

X
i

0 0

fi� fi � raci�

� �
Expressing the local stiffness in symmetric and skew-symmetric parts, Kl ¼ Ksym þ Kl
skew, gives [5],
Kl
skew ¼ 1

2

0 f�
f� ma�

� �
� 1

2
ðf ;maÞ�
where (f,ma)· is a form of the screw cross product operator which in this case is a transformation
from Plücker axis coordinates to Plücker ray coordinates. 4

The result is rather remarkable because it shows that the skew-symmetry of the local stiffness
matrix is only dependent on the external wrench; therefore, the stiffness matrix is symmetric if and

only if the system is at an unloaded equilibrium. For the gravity load case, the local stiffness Kl al-
ways has a skew-symmetric part no matter which point on the body is selected. Thus in contrast to
material stiffness, the form of the local stiffness matrix is invariant with respect to the selected
point. As a consequence the local stiffness undergoes a congruence transformation,
ðKlÞa ¼ T acðKlÞcT T

ac (subscripts added for emphasis), whereas the material derivative does not.
The moving body material and local the stiffness matrices are the same since d 0(f,ma) = o 0(f,ma).

This stiffness is determined from Proposition 15, o(f,ma) = o 0(f,ma) + (dra,dh) · (f,ma), and substi-
tution into the previous local stiffness relation with (dra,dh) · (f,ma) = (f,ma) · (dra,dh) to give
the moving body local stiffness as
o0f

o0ma

� �
¼ K 0l dra

dh

� �
where K 0l ¼ ðK lÞT ¼ Ksym þ ðK l
skewÞ

T ¼ Ksym þ 1
2
ðf ;maÞ�. Thus the fixed and moving body stiff-

nesses are simply transposes of each other. This was shown in [19] for the planar case and ex-
tended to the spatial case in [5].

A short example from [10] illustrates the extension of the formulation to more than two bodies.
Consider a third body that is moving with respect to the other two. The local derivatives observed
with respect to the fixed and third bodies are related by Proposition 15 as oðf ;maÞ ¼
o00ðf ;maÞ þ ðdr00a; dh00Þ � ðf ;maÞ where ðdr00a;dh00Þ is the motion of the third body with respect
to the fixed body and o

00
(Æ) is the derivative with respect to the third body. Expressing the fixed

body local stiffness relation as, oðf ;maÞ ¼ ðKsym
1
2
ðf ;maÞ�Þðdra;dhÞ and eliminating o(f,ma)

yields,
o00ðf ;maÞ ¼ Ksymðdra; dhÞ þ ðf ;maÞ � ðdr00a;dh00Þ 1

2
ðdra;dhÞ

� �
ote that the matrix form of the screw cross product operator is dependent on the specific combination of axis and

ordinates used.



If the motion of the third body is half as fast as the moving body, ðdr00a; dh00Þ ¼ 1
2
ðdra; dhÞ, then the

resulting stiffness matrix is just the symmetric part Ksym.
6. Concluding remarks

In this exposition, a basic continuum mechanics formulation facilitates identification of prop-
erties for various time derivatives of a screw quantity; an unambiguous derivative notation helps
make the differences evident. Local differentiation always produces a screw quantity and, with re-
spect to rigid body formulations, could rightly be called ‘‘screw differentiation.’’ Two applications
have been identified where initially it appears that the fixed body material derivative could yield
the most general formulation. However, these are shown to be dependent on using the center-of-
mass and the same results do not apply when formulated at an arbitrary point.
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