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INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY
NUMBERS

J. CHIKHI

Abstract. In this note, we establish an integral representation for a special function Ejs ¢(z) and apply it to some
generalized poly-Cauchy numbers cﬁ, zx = n![t"|E; o (log(1+1)). We recover, in the special case & = s = 1, the integral

representation of the Bernoulli numbers of the second kind b, = c / n! obtained by Feng Qi by quite different methods.

1. INTRODUCTION

Let o and s be parameters, with o real and postive and s complex with Rs > 0. We define some generalized
poly-Cauchy numbers, see [3]] for s = k integer, by the generating function

sa10g1+t ZC 7" (‘l|<1),

where E  is the function, defined for any complexe number z, by

0 n

Z
Eso(z) =) —F/——
S,Ot( ) l;)n‘(n_'_a)s
This function is called poly-exponnential in [[1] and, for s = k a positive integer, the extended polylogarithm factorial
function, see [3]] for instance.
In the sequel, we
e obtain a first integral representation for E; o(z) and use it to obtain the main integral representation,

e apply it to get an integral representation for the generalized poly-Cauchy number C;S,Bx,

e recover, by specialisation, the F. Qi’s integral representation for the Cauchy number cfl%
2. MELLIN TYPE INTEGRAL REPRESENTATIONS

The firts integral representation is basic and, more or less well known.

Proposition 1. The function E; o(z) admits the following integral representation,

1 1
1 E, =—— [ (—logx)"'x* 1e¥dx .
QY 5,0(2) 1_,<S)/0 (—logx)" 'x¥ 'e*dx
Proof. We firts obtain a Mellin type integral representation. As o and Rs are positive, we have for any non negative
integer n,
['(s) _ /w 1= (nta) gy 7
(n+a) Jo
o)
S z 1,~(n+a)t
E; = -~ 1o (n dt .
9= L ey~ 7 B
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2 J. CHIKHI

The convergence modes of the series and integral permit to exchange X and [ and obtain

1 © ol [ e
E =—— [ ' le” dt
na(2) I'(s) /o ¢ n;) n!

1 o0 —t
= — P le %o gy
I'(s) /0

At the end, the change e™" = x gives the desired formula.

3. MAIN INTEGRAL REPRESENTATION

Here is our main result.

Theorem 2. Let a and b be real numbers and z = a+ ib, then

2 Esa(2)

[ Bl Eala)
0

" 2in u(u+e%)
where 71 (u) =logu+i(b+ r) and z(u) =logu+i(b—rm) .
Proof. As mentionned bellow, we shall use the first integral representation (T)),

1/
Eq(2) = 7F(s)/0 (—logx)*'x*te™dx

T .
= @/0 (—logx) ~1x¥ et e®qy |

We put § = ¢“, write

B /1 “1. a—1 ibxpr—1
Es‘ — 71 s o 1bX QX d ,
5,0(2) 71—‘(s) A (—logx)" 'x¥ '™ P X
and use the lemma
Lemma 3.
1 oo X—l
3 =1 Sm(m)/ Y du (0<x<1).
) B ) )

Indeed, we find in many tables of integrals, as [2], the Mellin integral transform expression

/wﬁdt— 7r (0<Rs< 1)
o t+1 sin(ms) ’

and just transform it, by the change of variable u = ¢, to get the formula (3) for any real number x € (0, 1).
Hence, we have

Eso(2) = MF(S) ./O‘l (—logx)*~'x* 1e®* sin(rx) (/Ow 51113 du) dx ,

and, by the Fubini’s theorem, that

Bualo) = gy o (] oyt sty ) Lo




INTEGRAL REPRESENTATION FOR SOME GENERALIZED POLY-CAUCHY NUMBERS 3

We after consider the integral inside,

1
/ (—logx)* x¥ ey sin(mx)dx
0

1! . . ‘

= ﬁ/ (—logx)sflxafle’bxux(emx—eilm)dx
in Jo
1 1 ) 1 | ' '
- ﬂ/o (—loga)~xotelloen Mgy — — /0 (= Togax)*~ 1y~ llozurito-m))x
1
- %(Ex,a(logu+ i(b+ 7)) — Esq(logu+i(b—1))) ,
and we are done . -

4. THE GENERALIZED POLY-CAUCHY NUMBER INTEGRAL REPRESENTATION

Letr € (—1,1) and put z = log(1+1¢). Then z; (u) = logu+im, z>(u) = logu — iw and the integral representation (@)
writes,

Corollary 4.

du

7

1+¢ /°° Eso(logu+im) — Ey o (logu — im)

4 E; o(log(1+1¢)) =
“® sallog(1+0) =77 w(u+1+1)
Remark 1. If s is a real positive number, then

(5) Es o (log(1+1))

Y

1+t1/ mlogu—kzn)d
u(u+1+1)

where Im stands for the imaginary part.

In order to get successive derivatives, in ¢, under the sign [, that is legitimate, we write that (1 +¢)(u+1+1¢)"! =
1 —u(u+1+1)~" and obtain for any positive integer 7,

da" (=) n! [~ E q(logu+ i) — Es o (logu — i)
—FE o(log(1+1)) = " : d
g Dee(log(1+1)) 2in /0 CES “
Letting t = 0, we obtain the integral representation for the generalized poly-Cauchy numbers,
Corollary 5.
© C%‘ B (—1)n! /°° Es o(logu+im) — Es o (logu —im) i
n!  2m Jo (u+ 1)+l

5. THE QI INTEGRAL REPRESENTATIONS

For the special case o = s = 1, we have

oo P ef—1
E 7) = = ,
11(2) ng’o(n—i-l)! Z
then
—u—1 w(u+1)
ImE; ;(logu+ir)) =Im — = ,
1,1( g )) 10gM+l7r 1ngu+ﬂ2
and finally by (@),

u+1
5 du
log°u+m?)(u+1+1)

7 Elvl(log(1+t))k)g(]l_i_t)(l+t)/omu(
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and by (0)),

Cnl et [T du
®) n! == /() (log?u+m2)(u+1)"

The formulae (/) and (&) above are the integral representations found in [4] by different methods.

6. FINAL REMARK

When the parameter s is real, so are the numbers chfzx, one could investigate, as done by Feng Qi, the complete mono-

tonicity, the log-convexity and, may be, more other proprieties of these numbers by using the integral representations

() and (6).
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