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TRANSPORT-ENTROPY INEQUALITIES

ON LOCALLY ACTING GROUPS OF PERMUTATIONS

PAUL-MARIE SAMSON

Abstract. Following Talagrand’s concentration results for permutations picked

uniformly at random from a symmetric group [Tal95], Luczak and McDiarmid

have generalized it to more general groups G of permutations which act suitably

‘locally’. Here we extend their results by setting transport-entropy inequalities

on these permutations groups. Talagrand and Luczak-Mc-Diarmid concentra-

tion properties are consequences of these inequalities. The results are also gen-

eralised to a larger class of measures including Ewens distributions of arbitrary

parameter θ on the symmetric group. By projection, we derive transport-entropy

inequalities for the uniform law on the slice of the discrete hypercube and more

generally for the multinomial law. These results are new examples, in discrete

setting, of weak transport-entropy inequalities introduced in [GRST15], that con-

tribute to a better understanding of the concentration properties of measures on

permutations groups. One typical application is deviation bounds for the so-

called configuration functions, such as the number of cycles of given lenght in

the cycle decomposition of a random permutation.

1. Introduction

Let S n denote the symmetric group of permutations acting on a set Ω of cardi-

nality n, and µo denote the uniform law on S n, µo(σ) := 1
n!
, σ ∈ S n. A seminal

concentration result on S n obtained by Maurey is the following.

Theorem 1.1. [Mau79] Let dH be the Hamming distance on the symmetric group,

for all σ, τ ∈ S n,

dH(σ, τ) :=
∑

i∈Ω
1σ(i),τ(i).

Then for any subset A ⊂ S n such that µo(A) ≥ 1/2, and for all t ≥ 0, one has

µo(At) ≥ 1 − 2e−
t2

64n ,

where At := {y ∈ S n, dH(x, A) ≤ t}.

Milman and Schechtman [MS86] generalized this result to some groups whose

distance is invariant by translation. For example, in the above result we may replace
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2 P.-M. SAMSON

(up to constants) the Hamming distance by the transposition distance dT (σ, τ) that

corresponds to the minimal number of transpositions t1, ..., tk such that σt1 · · · tk =
τ. The distances dT and dH are comparable,

1

2
dH(σ, τ) ≤ dT (σ, τ) ≤ dH(σ, τ) − 1, ∀σ , τ.

(We refer to [BHT06] for comments about these comparison inequalities).

Let us also observe that Theorem 1.1 can be also recover from the transportation

cost inequality approach of Theorem 1 of [Mar03].

A few years later, a stronger concentration property in terms of dependence in

the parameter n, has been settled by Talagrand using the so-called “convex-hull”

method [Tal95] (see also [Led01]). This property implies Maurey’s result with

a slightly worse constant. Let us recall some notations from [Tal95]. For each

A ⊂ S n and σ ∈ S n, let V(σ, A) ⊂ R
Ω be the set of vectors z = (z j) j∈Ω ∈ R

Ω with

z j := 1σ( j),y( j) for y ∈ A. Let conv(V(σ, A)) denote the convex hull of V(σ, A) in

R
Ω,

V(σ, A) :=

ß
x = (x j) j∈Ω,∃p ∈ P(A),∀ j ∈ Ω, x j =

∫
1σ( j),y( j)dp(y)

™
,

where P(A) denotes the set of probability measures on A. Talagrand introduced the

quantity

f (σ, A) := inf{‖x‖22; x ∈ conv(V(σ, A))}.
with ‖x‖22 :=

∑
i∈Ω x2

i , that measures the distance from σ to the subset A.

Theorem 1.2. [Tal95] For any subset A ⊂ S n,
∫

S n

e f (σ,A)/16dµo(σ) ≤ 1

µo(A)
.

Maurey’s concentration result easily follows by observing that

f (σ, A) ≥ 1

n

(
inf

{
∑

i∈Ω
xi; x ∈ conv(V(σ, A))

})2

=
1

n
d2

H(σ, A)

and applying Tchebychev inequality with usual optimization arguments.

Talagrand’s result has been first extended to the uniform probability measure on

product of symmetric groups by McDiarmid [McD02], and then further by Luczak

and McDiarmid to cover more general permutation groups which act suitably “lo-

cally” [LM03].

For any finite subset A, let #A denote the cardinality of A. For any σ ∈ S n, the

support of σ, denoted by supp(σ), is the set {i ∈ Ω, σ(i) , i} and the degree of σ,

denoted by deg(σ), is the cardinality of supp(σ), deg(σ) := # supp(σ).

By definition, according to [LM03], a group of permutations G is ℓ-local, ℓ ∈
{2, . . . , n}, if for any σ ∈ G and any i, j ∈ Ω with σ(i) = j, there exists τ ∈ G such

that supp(τ) ⊂ supp(σ), deg(τ) ≤ ℓ and τ(i) = j.

The orbit of an element j ∈ Ω, denoted by orb( j), is the set of elements in Ω

connected to j by a permutation of G,

orb( j) :=
{
σ( j), σ ∈ G

}
.
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The set of orbits provides a partition of G.

As explained in [LM03], any 2-local group is a direct product of symmetric

groups on its orbits, the alternating group (consisting of even permutations) is 3-

local, and any 3-local group is a direct product of symmetric or alternating groups

on its orbits.

In the present paper, the concentration result by Luczak-McDiarmid and Ta-

lagrand is a consequence of a weak transport-entropy inequality satisfied by the

uniform law on G, µo. We also prove weaker types of transport entropy inequali-

ties. Moreover we extend the results to a larger class of probability measures on G,

denoted byM.

For a better comprehension of the class of measuresM, let us first consider the

case of the symmetric group S n on [n] := {1, . . . , n}. Let (i, j) denote the transpo-

sition in S n that exchanges the elements i and j in [n]. It follows by induction that

the map

{1, 2} × {1, 2, 3} × · · · × {1, . . . , n} → S n

U : i2, i3, . . . , in 7→ (i2, 2)(i3, 3) · · · (in, n),

is one to one.

The set of measuresM consists of probability measures on S n which are pushed

forward by the map U of product probability measures on {1, 2} × {1, 2, 3} × · · · ×
{1, . . . , n},

M :=
{

U#ν̂, ν̂ = ν̂2 ⊗ · · · ⊗ ν̂n with ν̂ j ∈ P([ j]), ∀ j ∈ {2, . . . , n}
}
,(1)

where by definition U#ν̂(C) = ν̂(U−1(C)) for any subset C in S n.

The uniform measure µo on S n belongs to the set M since µo = U#µ̂ with

µ̂ = µ̂2 ⊗ · · · ⊗ µ̂n, where for each i, µ̂i denotes the uniform law on [i].

The Ewens distribution of parameter θ > 0, denoted by µθ, is also an example

of measure of M. Indeed, it is well known (see [ABT03, Chapter 5], [JKB97])

that µθ = U#µ̂θ with µ̂θ = µ̂θ2 ⊗ · · · ⊗ µ̂θn, where for any j ∈ {2, . . . , n}, the measure

µ̂θj ∈ P([ j]) is given by

µ̂θj( j) =
θ

θ + j − 1
, , µ̂θj(1) = · · · = µ̂θj( j − 1) =

1

θ + j − 1
.

This definition provides an easy algorithm for simulating a random permuta-

tion with law µθ. This procedure is known as a Chinese restaurant process (see

[ABT03, Chapter 2], [Pit06]).

Let us observe that the uniform distribution µo corresponds to the Ewens distri-

bution with parameter 1, µ1.

The Ewens distribution is also given by the following expression (see [ABT03,

Chapter 5]),

µθ(σ) :=
θ|σ|

θ(n)
, σ ∈ S n,(2)
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where |σ| denotes the number of cycles in the cycle decomposition of σ and θ(n) is

the Pochhammer symbol defined by

θ(n) :=
Γ(θ + n)

Γ(θ)
, with Γ(θ) :=

∫
+∞

0
sθ−1e−sds.

Let us now construct the class of measuresM for any group G of permutations.

To clarify the notations, the elements of Ω are labelled with integers, Ω = [n]. Let

Gn := G and for any j ∈ [n − 1], let G j denotes the subgroup of G defined by

G j := {σ ∈ G, σ( j + 1) = j + 1, . . . , σ(n) = n} ,
We denote by O j the orbit of j in G j,

O j :=
{
σ( j), σ ∈ G j

}
.

Let us observe that { j} ⊂ O j ⊂ [ j].

Definition 1.1. Let G be a group of permutations. A family T = (ti j , j) of permuta-

tions of G, indexed by j ∈ {2, . . . , n} and i j ∈ O j, is called “ℓ-local base of G” if

for every j ∈ {2, . . . , n}, t j, j := id, for every i j , j, ti j , j ∈ G j and

ti j , j(i j) = j, and deg(ti j j) ≤ ℓ.

Lemma 1.1. Let T = (ti j , j) be a ℓ-local base of a group of permutations G. Then

the map

O2 × O3 × · · · × On → G

UT : i2, i3, . . . , in 7→ ti2 ,2ti3 ,3 · · · tin,n,
(3)

is one to one.

Lemma 1.2. Any ℓ-local group of permutations admits a “ℓ-local base”.

For completeness, a proof of these two lemmas is given in the Appendix.

As a consequence of these lemmas, if G is a ℓ-local group, then there exists a

ℓ-local base T , such that the uniform probability measure µo satisfies µo = UT #µ̂,

with µ̂ = µ̂2 ⊗ · · · ⊗ µ̂n, where for each j, µ̂ j is the uniform law on O j.

As for the symmetric group, given a ℓ-local base T of a group G, the class of

measures M = MT on G is made up of all probability measures on G which are

pushed forward of product probability measures on O2 ×O3 × · · · ×On by the map

UT defined by (37),

MT :=
{

UT #ν̂, ν̂ = ν̂2 ⊗ · · · ⊗ ν̂n with ν̂ j ∈ P(O j), ∀ j ∈ {2, . . . , n}
}
.(4)

As explained above, if G is a ℓ-local group, the classMT contains the uniform law

µo on G for a well choosen ℓ-local base T .

In this paper, the concentration results are derived from weak transport-entropy

inequalities, involving the relative entropy H(ν|µ) between two probability mea-

sures µ, ν on G given by

H(ν|µ) :=

∫
log

Å
dν

dµ

ã
dν,

if ν is absolutely continuous with respect to µ and H(ν|µ) := +∞ otherwise.
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The terminology “weak transport-entropy” introduced in [GRST15], encom-

pass many kinds of transport-entropy inequalities from the well-known Talagrand’s

transport inequality satisfied by the standard Gaussian measure on R
n [Tal96], to

the usual Csizár-Kullback-Pinsker inequality [Pin64, Csi67, Kul67] that holds for

any (reference) probability measure µ on a Polish metric space X, namely

‖µ − ν‖2TV ≤ 2 H(ν|µ), ∀ν ∈ P(X).(5)

where ‖µ − ν‖TV denotes the total variation distance between µ and ν,

‖µ − ν‖TV := 2 sup
A

|µ(A) − ν(A)|.

Above, the supremum runs over all measurable subset A of X. We refer to the

survey [Sam16, Sam17] for other examples of weak transport-entropy inequalities

and their connections with the concentration of measure principle.

The next theorem is one of the main result of this paper. It presents new weak

transport inequalities for the uniform measure on G or any measure in the class

MT , that recover the concentration results of Theorems 1.1 and 1.2.

We also denote by dH the Hamming distance on G: for any σ, τ ∈ G,

dH(σ, τ) := deg(στ−1) =

n∑

i=1

1σ(i),τ(i),

and the distance dT (σ, τ) is defined as the minimal number of elements of G,

t1, ..., tk, with degree less than ℓ, such that σt1 · · · tk = τ.

For any measures ν1, ν2 ∈ P(G), the set Π(ν1, ν2) denotes the set of all probabil-

ity measures on G ×G with first marginal ν1 and second marginal ν2. The Wasser-

stein distance between ν1 and ν2, according to the distance d = dH or d = dT , is

given by

W1(ν1, ν2) := inf
π∈Π(ν1,ν2)

"
d(σ, τ) dπ(σ, τ).

We also consider two other optimal weak transport costs, T̃2(ν2|ν1) and ÛT2(ν2|ν1)

defined by

T̃2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ Å∫
d(σ, τ) dpσ(τ)

ã2

dν1(σ),(6)

and

ÛT2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ n∑

i=1

Å∫
1σ(i),τ(i) dpσ(τ)

ã2

dν1(σ),

where pσ represents any probability measure such that π(σ, τ) = ν1(σ)pσ(τ) for

all σ, τ ∈ G. By Jensen’s inequality, these weak transport costs are comparable,

namely

W2
1 (ν1, ν2) ≤ T̃2(ν2|ν1) ≤ nÛT2(ν2|ν1),

where the last inequality only holds for d = dH .

By definition a subgroup G of S n is normal if for any t ∈ S n,t−1Gt = G.

In the next theorem the constant Kn is the cardinality of the set
{

j ∈ {2, . . . , n},O j ,

{ j}
}

. It follows that 0 ≤ Kn ≤ (n − 1) and Kn = 0 if and only if G = {id}.
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Theorem 1.3. Let G be a group of permutations with ℓ-local base T . Let µ ∈ P(G)

be a measure of the setMT defined by (4).

(a) For all probability measures ν1 and ν2 on G, one has

2

c(ℓ)2
W2

1 (ν1, ν2) ≤ Kn

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,(7)

and

1

2c(ℓ)2
T̃2(ν2|ν1) ≤ Kn

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,(8)

where

c(ℓ) :=

{
min(2ℓ − 1, n) if d = dH ,

2 if d = dT .

When µ = µo is the uniform law of a ℓ-local group G, inequalities (7) and

(8) hold with

c(ℓ) :=

{
ℓ if d = dH ,

1 if d = dT .

(b) • Assume that µ = µo is the uniform law of a ℓ-local group G. Then, for

all probability measures ν1 and ν2 on G,

(9)
1

2c(ℓ)2
ÛT2(ν2|ν1) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,

with c(ℓ)2
= 2(ℓ − 1)2

+ 2.

• Assume that G is a normal subgroup of S n, and that µ satisfies for all

σ ∈ G, t ∈ S n

µ(σ) = µ(σ−1) and µ(σ) = µ(t−1σt).(10)

Then, the inequality (9) holds with c(ℓ)2
= 8(ℓ − 1)2

+ 2.

The proofs of these results, given in the next section, are inspired by Talagrand

seminal work on S n [Tal95], and Luczak-McDiarmid extension to ℓ-local groups

[LM03].

Comments :

• If G = S n and the class of measure M is given by (1), the Ewens distri-

bution µθ introduced before, is an interesting example of measure in M,

satisfying condition (10). This simply follows from its expression given

by (2), since for any σ, t ∈ S n, |σ−1| = |σ| and |t−1σt| = |σ|.
An open question is to generalize the above transport-entropy inequali-

ties to the generalized Ewens distribution (see the definition in [MNZ12,

HNNZ13]). This measure no longer belongs to the class of measureM. In

other words, no Chinese restaurant process are known for simulating the

generalized Ewens distribution.
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• From the triangular inequality satisfied by the Wasserstein distance W1,

the transport-entropy inequality (7) is clearly equivalent to the following

transport-entropy inequality, for all probability measure ν on G,

2

c(ℓ)2
W2

1 (ν, µ) ≤ Kn H(ν|µ).

Here is a popular dual formulation of this transport-entropy inequality: for

all 1-Lipschitz functions ϕ : G → R (with respect to the distance d),
∫

eϕdµ ≤ e

∫
ϕ dµ+Knc(ℓ)2t2/8, ∀t ≥ 0.(11)

For the uniform measure on S n, Kn = n − 1 and this property is widely

commented in [BHT06]; it is also a consequence of Hoeffding inequalities

for bounded martingales (see page 18 of [Hoe63]). The concentration re-

sult derived from item (a) are of the same nature as the one obtained by

the “bounded differences approach” in [Mau79, McD89, McD02, LM03,

BDR15].

• Similarly, by Proposition 4.5 and Theorem 2.7 of [GRST15] and using the

identity
Ä√

u +
√

v
ä2
= inf

α∈(0,1)

ß
u

α
+

v

1 − α

™
,

we may easily show that the weak transport-entropy inequality (8) is equiv-

alent to the following dual property: for any real function ϕ on G and for

any 0 < α < 1,

Å∫
eαQ̃Knϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(12)

where the infimum-convolution operator ‹Qtϕ, t ≥ 0, is defined by

‹Qtϕ(σ) := inf
p∈P(G)

®∫
ϕ dp +

1

2c2(ℓ)t

Å∫
d(σ, y) dp(y)

ã2
´
, σ ∈ G.

Moreover, let us observe that following our proof of (12) in the next sec-

tion, for each α ∈ (0, 1) the inequality (12) can be improved by replacing

the square cost function by the convex cost cα(u) ≥ u2/2, u ≥ 0 given in

Lemma 2.2. More precisely, (12) holds replacing ‹QKn
ϕ by ‹Qα

Kn
ϕ defined

by

‹Qα
t ϕ(σ) := inf

p∈P(S n)

®∫
ϕ dp + tcα

Å
1

c(ℓ)t

∫
d(σ, y) dp(y)

ã2
´
,

for any σ ∈ G, t > 0.

• Proposition 4.5 and Theorem 9.5 of [GRST15] also provide a dual formu-

lation of the weak transport-entropy inequality (9): for any real function ϕ

on G and for any 0 < α < 1,

Å∫
eα
ÛQϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(13)
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where the infimum convolution operator ÙQϕ is defined by

ÙQϕ(σ) = inf
p∈P(G)

{∫
ϕ dp +

1

2c(ℓ)2

n∑

k=1

Å∫
1σ(k),y(k) dp(y)

ã2
}
, σ ∈ G.

As explained at the end of this section, the property (13) directly provides

the following version of the Talagrand’s concentration result for any mea-

sure on G of the setMT .

Corollary 1.1. Let G be a group of permutations with ℓ-local base T . Let

µ ∈ P(G) be a measure of the setMT defined by (4). Assume that µ and

G satisfy the conditions of (b) in Theorem 1.3. Then, for all A ⊂ G and all

α ∈ (0, 1), one has
∫

e
α

2c(ℓ)2
f (σ,A)

dµ(σ) ≤ 1

µ(A)α/(1−α)
,

with the same definition for c(ℓ)2 as in part (b) of Theorem 1.3. As a

consequence, by Tchebychev inequality, for any α ∈ (0, 1) and all t ≥ 0,

µ
(
{σ ∈ G, f (σ, A) ≥ t}

)
≤ e

− αt

2c(ℓ)2

µ(A)α/(1−α)
.

For α = 1/2 and µ = µo the uniform law on a ℓ-local group of G, this

result is exactly Theorem 2.1 by Luczak-McDiarmid [LM03], that gener-

alizes Theorem 1.2 on S n (since S n is a 2-local group).

By projection arguments, Theorem 1.3 applied with the uniform law µo on the

symmetric group S n, also provides transport-entropy inequalities for the uniform

law on the slices of the discrete cube {0, 1}n. Namely, for n ≥ 1, let us denote by

Xk,n−k, k ∈ {0, . . . , n}, the slices of discrete cube defined by

Xk,n−k :=

{
x = (x1, . . . , xn) ∈ {0, 1}n,

n∑

i=1

xi = k

}
.

The uniform law on Xk,n−k, denoted by µk,n−k, is the pushed forward of µo by the

projection map

S n → Xk,n−k

P : σ 7→ 1σ([k]),

where σ([k]) := {σ(1), . . . , σ(k)} and for any subset A of [n], 1A is the vector with

coordinates 1A(i), i ∈ [n]. In other terms, µk,n−k = P#µo and µk,n−k(x) =
(n

k

)−1
for

all x ∈ Xk,n−k. Let dh denotes the Hamming distance on Xk,n−k defined by

dh(x, y) :=
1

2

n∑

i=1

1xi,yi
, x, y ∈ Xk,n−k.

Theorem 1.4. Let µk,n−k be the uniform law on Xk,n−k, a slice of the discrete cube.

(a) For all probability measures ν1 and ν2 on Xk,n−k,

2

Ck,n−k

W2
1 (ν1, ν2) ≤

(»
H(ν1|µk,n−k) +

»
H(ν2|µk,n−k)

)2
,
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and

1

2Ck,n−k

T̃2(ν2|ν1) ≤
(»

H(ν1|µk,n−k) +
»

H(ν2|µk,n−k)
)2
,

where W1 is the Wasserstein distance associated to dh, T̃2 is the weak op-

timal transport cost defined by (6) with d = dh, and Ck,n−k = min(k, n − k).

(b) For all probability measures ν1 and ν2 on Xk,n−k,

(14)
1

8
T̂2(ν2|ν1) ≤

(»
H(ν1|µk,n−k) +

»
H(ν2|µk,n−k)

)2
,

where

T̂2(ν2|ν1) := inf
π∈Π(ν1,ν2)

∫ n∑

i=1

Å∫
1xi,yi

dpx(y)

ã2

dν1(x),

with π(x, y) = ν1(x)px(y) for all x, y ∈ Xk,n−k.

Up to constants, the weak transport inequality (14) is the stronger one since for

all ν1, ν2 ∈ P(Xk,n−k),

W2
1 (ν1, ν2) ≤ T̃2(ν2|ν1) ≤ n

4
T̂2(ν2|ν1).

The proof of Theorem 1.4 is given in section 3. The transport-entropy inequality

(14) is derived by projection from the transport-entropy inequality (9) for the uni-

form measure µo on S n. The same projection argument could be used to reach the

results of (a) from the transport-entropy inequality of (a) in Theorem 1.3, but it

provides worse constants. The constant Ck,n−k is obtained by working directly on

Xk,n−k and following similar arguments as in the proof of Theorem 1.3.

Remark : The results of Theorem 1.4 also extend to the multinomial law. Let

E = {e1, . . . , em} be a set of cardinality m and let k1, . . . , km be a collection of

non-zero integers satisfying k1 + · · · + km = n. The multinomial law µk1,...,km
is by

definition the uniform law on the set

Xk1 ,...,km
:=

ß
x ∈ En, such that for all l ∈ [m], #

{
i ∈ [n], xi = el

}
= kl

™
.

For any x ∈ Xk1 ,...,km
, one has µk1,...,km

(x) = k1!···km!
n!

. As a result, the weak transport-

entropy inequality (14) holds on Xk1 ,...,km
replacing the measure µk,n−k by the mea-

sure µk1,...,km
. The proof of this result is a simple generalization of the one onXk,n−k,

by using the projection map P : S n → Xk1,...,km
defined by: P(σ) = x if and only if

xi = el, ∀l ∈ [m], ∀i ∈ Jl,

where Jl :=
{

i ∈ [n], k0 + · · ·+ kl−1 < i ≤ k0 + · · ·+ kl

}
, with k0 = 0. The details of

this proof are left to the reader.

A straightforward application of transport-entropy inequalities is deviation’s

bounds for different classes of functions. For more comprehension, we present

below deviations bounds that can be reached from Theorem 1.3 for any measure

inMT . A similar corollary can be derived from Theorem 1.4 on the slices of the

discrete cube.

For any h : G → R, the mean of h is denoted by µ(h) :=
∫

h dµ.
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Corollary 1.2. Let G be a group of permutations with ℓ-local base T , G , {id}.
Let µ ∈ P(G) be a measure of the setMT defined by (4). Let g be a real function

on G.

(a) Assume that there exists a function β : G → R
+ such that for all τ, σ ∈ G,

g(τ) − g(σ) ≤ β(τ)d(τ, σ),

where d = dT or d = dH . Then for all u ≥ 0, one has

µ (g ≥ µ(g) + u) ≤ exp

Ç
− 2u2

Knc(ℓ)2 supσ∈G β(σ)2

å
.

and

µ (g ≤ µ(g) − u) ≤ exp

Ç
− 2u2

Knc(ℓ)2 min(supσ∈G β(σ)2, 4µ(β2))

å
,

where the constants c(ℓ) and Kn are defined as in part (a) of Theorem 1.3.

(b) Assume that µ and G satisfy the conditions of (b) in Theorem 1.3. Let g be

a so-called configuration function. This means that there exist functions

αk : G → R
+, k ∈ {1, . . . , n} such that for all τ, σ ∈ G,

g(τ) − g(σ) ≤
n∑

k=1

αk(τ)1τ(k),σ(k) .

Then, for all v ≥ 0, λ ≥ 0, one has

µ

Ç
g ≥ µ(g) + v +

λc(ℓ)2|α|2
2

å
≤ e−λv,

and for all u ≥ 0,

µ (g ≤ µ(g) − u) ≤ exp

Ç
− u2

2c(ℓ)2µ
(
|α|22
)
å
,

where |α(σ)|22 :=

n∑

k=1

α2
k(σ) and c(ℓ) is defined as in part (b) of Theorem 1.3.

We also have, for all u ≥ 0

µ (g ≥ µ(g) + u) ≤ exp

Ç
− u2

2c(ℓ)2 supσ∈G |α(σ)|22

å
,

and if there exists M ≥ 0 such that |α|22 ≤ Mg, then for all u ≥ 0

µ (g ≥ µ(g) + u) ≤ exp

Ç
− u2

2c(ℓ)2 M(µ(g) + u)

å
,

Comments and examples:

• The above deviation’s bounds of g around its mean µ(g) are directly de-

rived from the dual representations (11),(12),(13) of the transport-entropy

inequalities of Theorem 1.3, when α goes to 0 or α goes to 1. By classi-

cal arguments (see [Led01]), Corollary 1.2 also implies deviation’s bounds
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around a median M(g) of g, but we loose in the constants with this proce-

dure. However, starting directly from Corollary 1.1, we get the following

bound under the assumption of (b): for all u ≥ 0,

µ(g ≥ M(g) + u) ≤ 1

2
exp

Ç
−w

Ç
u√

2c(ℓ) supσ∈G |α(σ)|2

åå
,(15)

where w(u) = u(u − 2
√

log 2), u ≥ 0.

The idea of the proof is to choose the set A = {σ ∈ G, g(σ) ≤ M(g)} of

measure µ(A) ≥ 1/2 and to show that the asumption of (b) implies

{
σ ∈ G, f (σ, A) < t

}
⊂
®
σ ∈ G, g(σ) < M(g) + t sup

σ∈G
|α(σ)|2

´
, t ≥ 0.

Then, the deviation bound above the median directly follows from Corol-

lary 1.1 by optimizing over all α ∈ (0, 1). With identical arguments, the

same bound can be reached for µ(g ≤ M(g) − u).

• In (a), the bound above the mean is a simple consequence of (11). As

settled in (a), this bound also holds for the deviations under the mean, and

it can be slightly improved by replacing supσ∈G β(σ)2 by 4µ(β2). This

small improvement is a consequence of the weak transport inequality with

stronger cost T̃2. The same kind of improvement could be reached for the

deviations above the mean under additional Lipschitz regularity conditions

on the function β.

• Let ϕ : [0, 1]n → R be a 1-Lipschitz convex function and let x = (x1, . . . , xn)

be a fixed vector of [0, 1]n. For any σ ∈ G, let xσ := (xσ(1), . . . , xσ(n)).

By applying the results of (b) (or even (15)) to the particular function

gx(σ) = ϕ(xσ), σ ∈ G, we recover and extend to any group G with ℓ-local

base T and to any measure inMT satisfying (10), the deviation inequality

by Adamczak, Chafaı̈ and Wolff [ACW14] (Theorem 3.1) obtained from

Theorem 1.2 by Talagrand. Namely, since for any σ, τ ∈ G,

ϕ(xτ) − ϕ(xσ) ≤
n∑

k=1

∂kϕ(xτ)(xτ(k) − xσ(k)) ≤
n∑

k=1

|∂kϕ(xτ)|1τ(k),σ(k),

with
∑n

k=1 |∂kϕ(xτ)|2 = |∇ϕ(xτ)|2 ≤ 1, Corollary 1.2 implies, for any choice

of vector x = (x1, . . . , xn) ∈ [0, 1]n,

µ(|gx − µ(gx)| ≥ u) ≤ 2 exp

Ç
− u2

2c(ℓ)2

å
, u ≥ 0.

This concentration property on S n (with ℓ = 2) plays a key role in the

approach by Adamczak and al. [ACW14], to study the convergence of the

empirical spectral measure of random matrices with exchangeable entries,

when the size of the matrices is increasing.

• As a second example, for any t in a finite set F , let (at
i, j)1≤i, j≤n be a collec-

tion of non negative real numbers and consider the function

g(σ) = sup
t∈F

(
n∑

k=1

at
k,σ(k)

)
, σ ∈ G.
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This function satisfies, for any σ, τ ∈ G,

g(τ) − g(σ) ≤
n∑

k=1

Ä
a

t(τ)
k,τ(k) − a

t(τ)
k,σ(k)

ä
1τ(k),σ(k) ≤

n∑

k=1

a
t(τ)
k,τ(k)1τ(k),σ(k),

where t(τ) ∈ F is chosen so that

g(τ) =

n∑

k=1

a
t(τ)
k,τ(k).

Let us consider the function

h(σ) = sup
t∈F

(
n∑

k=1

(at
k,σ(k))

2

)
, σ ∈ G.

The mean of h, µ(h), can be interpreted as a variance term as regards to g.

Observing that g satisfies the condition of (b) with

αk(τ) := a
t(τ)
k,τ(k),

and |α|22 ≤ h, Corollary 1.2 provides the following Bernstein deviation’s

bounds, for all u ≥ 0,

µ (g ≤ µ(g) − u) ≤ exp

Ç
− u2

2c(ℓ)2µ (h)

å
,

and for all λ, v ≥ 0,

µ

Ç
g ≥ µ(g) + v +

λc(ℓ)2h

2

å
≤ e−λv.

If the real numbers ai, j are bounded by M, then |α|22 ≤ Mg and therefore

Corollary 1.2 also provides for all u ≥ 0,

µ (g ≥ µ(g) + u) ≤ exp

Ç
− u2

2c(ℓ)2 M(µ(g) + u)

å
.

If we want to bound the deviation above the mean in terms of the variance

term µ(h), it suffises to observe that the last inequality provides deviations

bounds for the function h, replacing g by h and M by M2. Then, as a conse-

quence of all the above deviation’s results, it follows that for all λ, v, γ ≥ 0,

µ

Ç
g ≥ µ(g) + v +

λc(ℓ)2(µ(h) + γ)

2

å

≤ µ
Ç

g ≥ µ(g) + v +
λc(ℓ)2h

2

å
+ µ(h ≥ µ(h) + γ)

≤ e−λv
+ exp

Ç
− γ2

2c(ℓ)2 M2(µ(h) + γ)

å
.

By choosing γ = Mu, λ = u
c(ℓ)2 M2(µ(h)+Mu)

, and v = u/2, we get the follow-

ing Bernstein deviation inequality for the deviation of g above its mean,
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for all u ≥ 0

µ(g ≥ µ(g) + u) ≤ 2 exp

Ç
− u2

2c(ℓ)2(µ(h) + Mu)

å
.

All the previous deviation’s inequalities extend to countable sets F by

monotone convergence.

When F is reduced to a singleton, these deviation’s results simply im-

plies Bernstein deviation’s results for g(σ) =
∑n

k=1 ak,σ(k) when −M ≤
ai, j ≥ M for all 1 ≤ i, j ≤ n, by following for example the procedure pre-

sented in [BDR15, Section 4.2]. Thus, we extend the deviation’s results of

[BDR15] to probability measures inMT .

• As a last example, let g(σ) = |σ|l denotes the number of cycles of lenght

l in the cycle decomposition of a permutation σ. Let us show that g is a

configuration function. Let Cl(τ) denotes the set of cycles of lenght l in the

cycle decomposition of a permutation τ. One has

|τ|l = #{Cl(τ) ∩ Cl(σ)} + #{c ∈ Cl(τ), such that c < Cl(σ)}
≤ |σ|l + #{c ∈ Cl(τ), such that c < Cl(σ)}.

If c ∈ Cl(τ) and c < Cl(σ) then there exists k in the support of c such that

τ(k) , σ(k). As a consequence, one has

#{c ∈ Cl(τ), such that c < Cl(σ)} ≤
n∑

k=1

αk(τ)1σ(k),τ(k) ,

where αk(τ) = 1 if k is in the support of a cycle of lenght l of the cycle

decomposition of τ, and αl(τ) = 0 otherwise. Thus, we get that the func-

tion g satisfies the condition of (b), g is a configuration function. Finally,

observing that |α|22 = lg, Corollary 1.2 provides for any measure µ ∈ MT
satisfying (10), for all u ≥ 0,

µ (g ≤ µ(g) − u) ≤ exp

Ç
− u2

2c(ℓ)2lµ (h)

å
,

and

µ (g ≥ µ(g) + u) ≤ exp

Ç
− u2

2c(ℓ)2l(µ(g) + u)

å
.

• The aim of this paper is to clarify the links between Talagrand’s type of

concentration results on the symmetric group and functional inequalities

derived from the transport-entropy inequalities. For brevity’s sake, ap-

plications of these functional inequalities are not fully developped in the

present paper. However, let us briefly mention some other applications

using concentration results on the symmetric group: the stochastic trav-

elling salesman problem for sampling without replacement (see Appendix

[Pau14]), graph coloring problems (see [McD02]). We also refer to the sur-

veys and books [DP09, MR02] for other numerous examples of application

of the concentration of measure principle in randomized algorithms.
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Proof of Corollary 1.2. We start with the proof of (b). From the assumption on the

function g, we get that for any p ∈ P(G)

∫
g dp ≥ g(σ) −

n∑

k=1

Å
αk(σ)

∫
1σ(k),τ(k) dp(τ)

ã

≥ g(σ) − |α(σ)|2
(

n∑

k=1

Å∫
1σ(k),τ(k)dp(τ)

ã2
)1/2

.

Let λ ≥ 0. Plugging this estimate into the definition of ÙQ(λg), it follows that for

any σ ∈ G

ÙQ(λg)(σ) ≥ λg(σ) − sup
u≥0

®
λ|α(σ)|2u − u2

2c(ℓ)2

´
= λg(σ) − λ

2|α(σ)|22c(ℓ)2

2
.

As α goes to 1, (13) applied to the function λg yields
∫

e
ÛQ(λg)dµ ≤ eλµ(g),

and therefore
∫

exp

Ç
λg − λ

2c(ℓ)2 |α|22
2

å
dµ ≤ eλµ(g),(16)

∫
eλgdµ ≤ exp

Ç
λµ(g) +

λ2c(ℓ)2 supσ∈G |α(σ)|22
2

å
,(17)

and if |α|22 ≤ Mg,

∫
exp

Ç
λ

Ç
1 − λc(ℓ)2 M

2

å
g

å
dµ ≤ eλµ(g).(18)

As α goes to 0, (13) yields
∫

e−λgdµ ≤ eλµ(ÛQ(λg)),

and therefore
∫

e−λgdµ ≤ exp

Ç
−λµ(g) +

λ2c(ℓ)2µ(|α|22)

2

å
.(19)

The deviation bounds of (b) follows from (16), (19), (17), (18) by Tchebychev

inequality, and by optimizing over all λ ≥ 0.

The deviation bounds of (a) are similarly obtained from (12) by Tchebychev

inequality. As above, the improvement for the deviation under the mean is a con-

sequence of (12) applied to λg, as α goes to 0, and using the estimate

‹QKn
(λg)(σ) ≥ λg(σ) − λ

2β(σ)2c(ℓ)2Kn

2
.

�
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Proof of Corollary 1.1. Take a subset A ⊂ G and consider the function ϕλ which

takes the values 0 on A and λ > 0 on G \ A. It holds

ÙQϕλ(σ) = inf
p∈P(G)



λ(1 − p(A)) +

1

2c(ℓ)2

n∑

j=1

Å∫
1σ( j),y( j) dp(y)

ã2





= inf
β∈[0,1]

{λ(1 − β) + ψ(β, σ)},

denoting by

ψ(β, σ) = inf





1

2c(ℓ)2

n∑

j=1

Å∫
1σ( j),y( j) dp(y)

ã2

; p(A) = β



 .

So it holds

ÙQϕλ(σ) = min

Å
inf

β∈[0,1−ε]
{λ(1 − β) + ψ(β, σ)}; inf

β∈[1−ε,1]
{λ(1 − β) + ψ(β, σ)},

ã

≥ min

Å
λε; inf

β≥1−ε
ψ(β, σ)

ã
→ inf

β≥1−ε
ψ(β, σ),

as λ→∞. It is easy to check that for any fixedσ, the function ψ( · , σ) is continuous

on [0, 1], so letting ε go to 0, we get lim infλ→∞ ÙQϕλ(σ) ≥ ψ(1, σ). On the other

hand, ÙQϕλ(σ) ≤ ψ(1, σ) for all λ > 0. This proves that limλ→∞ ÙQϕλ(σ) = ψ(1, σ).

Applying (13) to ϕλ and letting λ go to infinity yields to
∫

eαψ(1,σ) dµ · µ(A)α/(1−α) ≤ 1.

It remains to observe that ψ(1, σ) =
f (σ,A)

2c(ℓ)2 . �

2. Proof of Theorem 1.3

Let Tn = (ti j , j, j ∈ {2, . . . , n}, i j ∈ O j) be a ℓ-local base of G. Let µ be a

probability measure of the set MTn
given by (4). Then, there exists a product

probability measure ν̂ = ν̂1 ⊗ · · · ⊗ ν̂n such that µ = UTn
#ν̂ where the map UTn

is

given by (37).

Each transport-entropy inequality of Theorem 1.3 is obtained by induction over

n and using the partition (Hi)i∈orb(n) of the group G defined by: for any i ∈ orb(n) =

On,

Hi := {σ ∈ G, σ(i) = n} .(20)

According to our notations, Hn = Gn−1 is a subgroup of G, and we may easily

check that Tn−1 is a ℓ-local base of this subgroup. We also observe that if G is a

normal subgroup of S n then Gn−1 is a normal subgroup of S n−1.

Moreover, for any i ∈ On, Hi is the coset defined by Hi = Hntin. From the def-

inition of µ, if σ ∈ Hi, then there exist i2, . . . , in−1 such that σ = ti2 ,2 · · · tin−1,n−1ti,n
and therefore

µ(σ) = ν̂2(i2) · · · ν̂n−1(in−1)ν̂n(i).
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As a consequence, one has µ(Hi) = ν̂n(i). Let µi denote the restriction of µ to Hi

defined by

µi(σ) =
µ(σ)

µ(Hi)
1σ∈Hi

.

From the construction of µ, µn = UTn−1
#(ν̂1 ⊗ · · ·⊗ ν̂n−1). Moreover, for all σ ∈ Hn,

one has σti,n ∈ Hi and

µn(σ) =
µ(σ)

µ(Hn)
=
µ(σti,n)

µ(Hi)
= µi(σti,n).(21)

Moreover if µ satisfies the condition (10), then µn ∈ P(Gn−1) satisfies the same

condition at rank n − 1: namely, for any σ ∈ Gn−1, t ∈ S n−1,

µn(σ) = µn(σ−1) and µn(σ) = µn(t−1σt).

These properties are needed in the induction step of the proofs.

When G is a ℓ-local group, let us note that if i and l are elements of On = orb(n),

then from the ℓ-local property, there exists ti,l ∈ G such that ti,l(i) = l and deg(ti,l) ≤
ℓ. We also have Hl = Hiti,l. If moreover µ = µo is the uniform law on G, then for

any i, l ∈ On, µi(Hi) = µl(Hl) =
1

#On
. In that case we will use in the proofs the

following property: for any σ ∈ Hn, one has σti,n ∈ Hi, σti,nt−1
i,l ∈ Hl, and

µn(σ) =
#On

#G
= µi(σti,n) = µl(σti,nt−1

i,l ).(22)

The measure µn is the uniform measure on the ℓ-local subgroup Hn = Gn−1.

Proof of (a) in Theorem 1.3. As already mentioned, since W1 satisfies a triangular

inequality, the transport-entropy inequality (7) is equivalent to the following one:

for all ν ∈ P(G),
2

c(ℓ)2
W2

1 (ν, µ) ≤ Kn H(ν|µ).

A dual formulation of this property given by Theorem 2.7 in [GRST15] and Propo-

sition 3.1 in [Sam17] is the following: for all functions ϕ on G and all λ ≥ 0,
∫

eλQϕdµ ≤ e

∫
λϕ dµ+Knc(ℓ)2λ2/8

,(23)

with

Qϕ(σ) = inf
p∈P(S n)

ß∫
ϕdp +

∫
d(σ, τ) dp(τ)

™

We will prove the inequality (23) by induction on n.

Assume that n = 2. If G = {id} then Kn = 0 and the inequality (23) is obvious.

If G , {id}, then G is the two points space, G = S 2, ℓ = 2 and one has

Qϕ(σ) = inf
p∈P(S 2)

ß∫
ϕdp + c(2)

∫
1σ,τ dp(τ)

™
.

In that case, (23) exactly corresponds to the following dual form of the Csiszar-

Kullback-Pinsker inequality (5) (see Proposition 3.1 in [Sam17] ): for any proba-

bility measure ν on a Polish space X, for any measurable function f : X → R,
∫

eλRc f dν ≤ eλ
∫

f dν+λ2c2/8, ∀λ, c ≥ 0,(24)
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with Rc f (x) = inf
p∈P(X)

ß∫
f dp + c

∫
1x,ydp(y)

™
, x ∈ X.

The induction step will be also a consequence of (24). Let (Hi)i∈On
be the par-

tition of G defined by (20). Any p ∈ P(G) admits a unique decomposition defined

by

p =
∑

i∈On

p̂(i)pi, with pi ∈ P(Hi) and p̂(i) = p(Hi).(25)

This decomposition defines a probability measure p̂ on On. In particular, according

to the definition of the measure µ ∈ MTn
and since ν̂n(i) = µ(Hi), one has

µ =
∑

i∈On

ν̂n(i) µi.

It follows that∫
eλQϕdµ =

∑

i∈On

ν̂n(i)

∫
eλQϕ(σ)dµi(σ) =

∑

i∈On

ν̂n(i)

∫
eλQϕ(σti,n)dµn(σ),

where the last equality is a consequence of property (21). Now, we will bound the

right-hand side of this equality by using the induction hypotheses.

For any function g : G → R and any t ∈ G, let gt : G → R denote the function

defined by gt(σ) := g(σt).

For any function f : Hn → R and any σ ∈ Hn, let us note

QHn f (σ) := inf
p∈P(Hn)

ß∫
f dp +

∫
d(σ, τ) dp(τ)

™
.

The next step of the proof relies on the following Lemma.

Lemma 2.1. Let i ∈ On, for any function ϕ : Hi → R and any σ ∈ Hn, one has

(1) Qϕ(σti,n) ≤ inf
p̂∈P(On)




∑

l∈On

QHnϕtn,l (σ)p̂(l) + c(ℓ)
∑

l∈On

1l,i p̂(l)



 ,

where c(ℓ) = min(2ℓ − 1, n) if d = dH and c(ℓ) = 2 if d = dT .

(2) Qϕ(σti,n) ≤ inf
p̂∈P(On)




∑

l∈On

QHnϕti,nt−1
i,l (σ)p̂(l) + c(ℓ)

∑

l∈On

1l,i p̂(l)



 ,

where c(ℓ) = ℓ if d = dH and c(ℓ) = 1 if d = dT , and ti,l denotes an element

of G with deg(ti,l) ≤ ℓ and such that ti,l(i) = l.

This lemma is obtained using the decomposition (25) of the measures p ∈ P(G)

on the H j’s. Let σ ∈ Hn. By the triangular inequality and using the invariance by

translation of the distance d, one has∫
d(σti,n, τ) dp(τ) =

∑

l∈On

∫

Hl

d(σti,n, τ)dpl(τ)p̂(l)

≤
∑

l∈On

d(σti,n, σtl,n)p̂(l) +
∑

l∈On

∫

Hl

d(σtl,n, τ)dpl(τ)p̂(l)

=

∑

l∈On

d(ti,n, tl,n)p̂(l) +
∑

l∈On

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l)
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and therefore, since d(ti,n, tl,n) ≤ c(ℓ) with c(ℓ) = min(2ℓ − 1, n) if d = dH and

c(ℓ) = 2 if d = dT ,

∫
d(σti,n, τ) dp(τ) ≤

∑

l∈On

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l) + c(ℓ)

∑

l∈On

1l,i p̂(l).(26)

It follows that

Qϕ(σti,n) ≤ inf
p̂∈P(On)

inf
pl∈P(Hl),l∈On


∑

l∈On

ñ∫
ϕ dpl +

∫

Hl

d(σ, τt−1
l,n )dpl(τ)

ô
p̂(l) + c(ℓ)

∑

l∈On

1l,i p̂(l)





= inf
p̂∈P(On)

inf
ql∈P(Hn),l∈On


∑

l∈On

ñ∫
ϕtl,n dql +

∫

Hn

d(σ, τ)dql(τ)

ô
p̂(l) + c(ℓ)

∑

l∈On

1l,i p̂(l)





= inf
p̂∈P(On)




∑

l∈On

QHnϕtl,n (σ)p̂(l) + c(ℓ)
∑

l∈On

1l,i p̂(l)



 .

The proof of the second inequality of Lemma 2.1 is similar, starting from the fol-

lowing triangular inequality

∫
d(σti,n, τ) dp(τ) =

∑

l∈On

∫

Hl

d(σti,n, τ)dpl(τ)p̂(l)

≤
∑

l∈On

∫
d(σti,n, τti,l)dpl(τ)p̂(l) +

∑

l∈On

∫

Hl

d(τti,l, τ)dpl(τ)p̂(l)

=

∑

l∈On

∫
d(σ, τti,lt

−1
i,n )dpl(τ)p̂(l) +

∑

l∈On

d(ti,l, id)p̂(l)

≤
∑

l∈On

∫

Hl

d(σ, τti,lt
−1
i,n )dpl(τ)p̂(l) + c(ℓ)

∑

l∈On

1l,i p̂(l),(27)

with c(ℓ) = ℓ if d = dH and c(ℓ) = 1 if d = dT . The end of the proof of the second

inequality of Lemma 2.1 is left to the reader.

The induction step of the proof of (23) continues by applying consecutively

Lemma 2.1 (1), the Hölder inequality, and the induction hypotheses to the measure

µn on the subgroup Hn = Gn−1 with ℓ-local base Tn−1.

If On = {n} then Kn = Kn−1 and

∫
eλQϕdµ =

∫
eλQϕ(σ)dµn(σ) ≤ e

∫
λϕdµn+Kn−1c(ℓ)2/8

= e

∫
λϕdµ+Knc(ℓ)2/8
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If On , {n} then Kn = Kn−1 + 1 and for any i ∈ On,

∫
eλQϕ(σti,n)dµn(σ) ≤ inf

p̂∈P(On)




∏

l∈On

Å∫
eλQHnϕ

tl,n
dµn

ã p̂(l)

ec(ℓ)λ
∑n

l=1
1l,i p̂(l)





≤ exp


 inf

p̂∈P(On)



λ

∑

l∈On

Å∫
ϕtl,n dµn

ã
p̂(l) + Kn−1c(ℓ)2 λ

2

8
+ c(ℓ)λ

∑

l∈On

1l,i p̂(l)








= exp


λ inf

p̂∈P(On)




∑

l∈On

ϕ̂(l)p̂(l) + c(ℓ)
∑

l∈On

1l,i p̂(l)



 + Kn−1c(ℓ)2 λ

2

8


 ,

where, by using property (21), ϕ̂(l) :=
∫
ϕdµl =

∫
ϕtl,n dµn. Let us consider again

the above infimum-convolution Rcϕ̂ defined on the space X = On, with c = c(ℓ),

one has

Rcϕ̂(i) = inf
p̂∈P(On)




∑

l∈On

ϕ̂(l)p̂(l) + c
∑

l∈On

1l,i p̂(l)



 .

By applying (24) with the probability measure ν = ν̂n on On, the previous inequal-

ity gives

∫
eλQϕdµ =

∑

i∈On

ν̂n(i)

∫
eλQϕ(σti,n)dµn(σ) ≤

Ñ
∑

i∈On

eλRc(ℓ)ϕ̂(i)ν̂n(i)

é
eKn−1λ

2/8

≤ exp

[
n∑

i=1

ϕ̂(i)ν̂n(i) +
λ2c(ℓ)2

8
+ Kn−1c(ℓ)2 λ

2

8

]
= exp

ñ
λ

∫
ϕ dµ + Knc(ℓ)2 λ

2

8

ô
.

This ends the proof of (23) for any µ ∈ MTn
.

The scheme of the induction proof of (23), with a better constant c(ℓ) when

µ = µo is the uniform measure on a ℓ-local group G, is identical, starting from the

second result of Lemma 2.1 and using the property (22). This is left to the reader.

We now turn to the induction proof of the dual formulation (12) of the weak

transport-entropy inequality (8). The sketch of the proof is identical to the one of

(23).

For the initial step n = 2, one has G = S 2 and ℓ = 2, and one may easily check

that

‹Q1ϕ(σ) = inf
p∈P(S 2)

®∫
ϕdp +

1

2

Å∫
1σ,τ dp(τ)

ã2
´
.

In that case, the result follows from the following infimum-convolution property.

Lemma 2.2. For any probability measure ν on a Polish metric space X, for all

α ∈ (0, 1) and all measurable functions f : X → R, bounded from below

Å∫
eαR̃α f dν

ã1/α Å∫
e−(1−α) f dν

ã1/(1−α)

≤ 1,
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where for all x ∈ X,

R̃α f (x) = inf
p∈P(X)

®∫
f (y)dp(y) + cα

Å∫
1x,ydp(y)

ã2
´
,

and cα is the convex function defined by

cα(u) =
α(1 − u) log(1 − u) − (1 − αu) log(1 − αu)

α(1 − α)
, u ∈ [0, 1].

Observing that cα(u) ≥ u2/2 for all u ∈ [0, 1], the above inequality also holds

replacing R̃α f by

R̃ f (x) = inf
p∈P(X)

®∫
f (y)dp(y) +

1

2

Å∫
1x,ydp(y)

ã2
´
, x ∈ X.(28)

The proof of this Lemma can be found in [Sam07] (inequality (4)). For a sake of

completeness, we give in the Appendix a new proof of this result on finite spaces

X by using a localization argument (Lemma 4.1).

Let us now present the key lemma for the induction step of the proof. For any

function f : Hn → R and any σ ∈ Hn, we define

‹QHn
t f (σ) := inf

p∈P(Hn)

®∫
f dp +

1

2c(ℓ)2t

Å∫
d(σ, τ) dp(τ)

ã2
´
.

Here, writing Q
Hn
t f , we omit the dependence in c(ℓ) to simplify the notations. The

proof relies on the following Lemma.

Lemma 2.3. Let i ∈ On. For any function ϕ : Hi → R and any σ ∈ Hn, one has

(1) ‹QKn
ϕ(σti,n) ≤ inf

p̂∈P(On)




∑

l∈On

‹QHn

Kn−1
ϕtl,n(σ)p̂(l) +

1

2

Å∑
l∈On

1l,i p̂(l)

ã2



 ,

with c(ℓ) = min(2ℓ − 1, n) if d = dH and c(ℓ) = 2 if d = dT .

(2) ‹QKn
ϕ(σti,n) ≤ inf

p̂∈P(On)




∑

l∈On

‹QHn

Kn−1
ϕti,nt−1

i,l (σ)p̂(l) +
1

2

Å∑
l∈On

1l,i p̂(l)

ã2



 ,

where c(ℓ) = ℓ if d = dH and c(ℓ) = 1 if d = dT , and ti,l denotes an element

of G with deg(ti,l) ≤ ℓ and such that ti,l(i) = l.

The proof of this lemma is similar to the one of Lemma 2.1. By (26) and the

inequality

(u + v)2 ≤ u2

s
+

v2

1 − s
, u, v ∈ R, s ∈ (0, 1),
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we get for any s ∈ (0, 1),

Å∫
d(σtl,n, τ) dp(τ)

ã2

≤

Ñ
∑

l∈On

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l) + c(ℓ)

∑

l∈On

1l,i p̂(l)

é2

≤ 1

s

Ñ
∑

l∈On

∫

Hl

d(σ, τt−1
l,n )dpl(τ)p̂(l)

é2

+
c(ℓ)2

1 − s

Å∑
l∈On

1l,i p̂(l)

ã2

≤ 1

s

∑

l∈On

Ç∫
Hl

d(σ, τt−1
l,n )dpl(τ)

å2

p̂(l) +
c(ℓ)2

1 − s

Å∑
l∈On

1l,i p̂(l)

ã2

.

It follows that for any σ ∈ Hn,

‹QKn
ϕ(σtl,n)

≤ inf
p̂∈P(On)

inf
pl∈P(Hl),l∈On




∑

l∈On

[∫
ϕ dpl +

1

2c(ℓ)2 sKn

Ç∫
Hl

d(σ, τt−1
l,n )dpl(τ)

å2
]

p̂(l)

+
1

2(1 − s)Kn

Å∑
l∈On

1l,i p̂(l)

ã2





= inf
p̂∈P(On)

inf
ql∈P(Hn),l∈On




∑

l∈On

[∫
ϕtl,n dql +

1

2c(ℓ)2 sKn

Ç∫
Hn

d(σ, τ)dql(τ)

å2
]

p̂(l)

+
1

2(1 − s)Kn

Å∑
l∈On

1l,i p̂(l)

ã2





= inf
p̂∈P(On)




∑

l∈On

‹QHn

Kn−1
ϕtl,n (σ)p̂(l) +

1

2

Å∑
l∈On

1l,i p̂(l)

ã2



 ,

where the last equality follows by choosing s = Kn−1/Kn, which ends the proof of

the first inequality of Lemma 2.3. The second inequality of Lemma 2.3 is obtained

identically starting from (27).

We now turn to the induction step of the proof. By the decomposition of the

measure µ on the Hi’s, we want to bound

∫
eαQ̃Knϕdµ =

∑

i∈On

ν̂n(i)

∫
eαQ̃Knϕ(σ)dµi(σ) =

∑

i∈On

ν̂n(i)

∫
eαQ̃Knϕ(σti,n)dµn(σ),

where the last equality is a consequence of property (21).

If On = {n}, then the result simply follows from the induction hypotheses applied

to the measure µn.
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If On , {n}, then applying successively Lemma 2.3 (1), the Hölder inequality,

and the induction hypotheses, we get

∫
eαQ̃Knϕ(σti,n)dµn(σ) ≤ inf

p̂∈P(On)




∏

l∈On

Å∫
e
αQ̃

Hn
Kn−1

ϕ
tl,n

dµn

ã p̂(l)

exp


1

2

Å∑
l∈On

1l,i p̂(l)

ã2







≤ inf
p̂∈P(On)




∏

l∈On

Å∫
e−(1−α)ϕ

tl,n
dµn

ã− p̂(l)α
1−α

exp


1

2

Å∑
l∈On

1l,i p̂(l)

ã2







= exp


α inf

p̂∈P(On)




∑

l∈On

ϕ̂(l)p̂(l) +
1

2

Å∑
l∈On

1l,i p̂(l)

ã2






 ,

where by property (21), we set

ϕ̂(l) := log

Å∫
e−(1−α)ϕdµl

ã− 1
1−α
= log

Å∫
e−(1−α)ϕ

tl,n
dµn

ã− 1
1−α

.

According to the definition of the infimum convolution R̃ϕ̂ on the space X = On

given in Lemma 2.2, the last inequality is
∫

eαQ̃Knϕ(σti,n)dµn(σ) ≤ eαR̃ϕ̂(i),

and therefore Lemma 2.2, applied with the measure ν = ν̂n, provides

∫
eαQ̃Knϕdµ =

∑

i∈On

eαR̃ϕ̂(i)ν̂n(i) ≤
Å∑

i∈On

e−(1−α)ϕ̂(i)ν̂n(i)

ã− α
1−α

=

Å∑
i∈On

ν̂n(i)

∫
e−(1−α)ϕdµi

ã− α
1−α
=

Å∫
e−(1−α)ϕdµ

ã− α
1−α

.

The proof of (12) is completed for any measure µ ∈ M. To improve the constant

when µ = µo is the uniform law on a ℓ-local group G, the proof is similar using the

second inequality of Lemma 2.3 together with property (22). �

Proof of (b) in Theorem 1.3. We prove the dual equivalent property (13) as a con-

sequence of the stronger following result: for any real function ϕ on G, for any

j ∈ {1, . . . , n}
Å∫

eαQ jϕdµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(29)

where the infimum convolution operator Q jϕ is defined as follows, for σ ∈ G

(30) Q jϕ(σ) = inf
p∈P(G)

®∫
ϕdp +

1

c(ℓ)2

Å∫
1σ( j),y( j)dp(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n]\{ j}

Å∫
1σ(k),y(k)dp(y)

ã2



 .
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The proof of (29) relies on Lemma 2.2 and the following ones. For any σ ∈ G,

we define

QHnϕ(σ) = inf
p∈P(Hn)

{∫
ϕdp +

1

2c(ℓ)2

n−1∑

k=1

Å∫
1σ(k),y(k)dp(y)

ã2
}
,

and for j ∈ [n − 1],

QHn, jϕ(σ) = inf
p∈P(Hn)

®∫
ϕdp +

1

c(ℓ)2

Å∫
1σ( j),y( j)dp(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n−1]\{ j}

Å∫
1σ(k),y(k)dp(y)

ã2



 .

Lemma 2.4. Let j ∈ [n]. For any σ ∈ G, one has

Q jϕ(σ) = Qσ( j)ϕ{−1}(σ−1),

where ϕ{−1}(z) = ϕ(z−1), z ∈ G.

This result follows from the change of variables σ(k) = l in the definition (30)

of Q jϕ(σ), one has

Q jϕ(σ) = inf
p∈P(G)

®∫
ϕdp +

1

c(ℓ)2

Å∫
1y−1(σ( j)),σ−1(σ( j))dp(y)

ã2

+
1

2c(ℓ)2

∑

l,l,σ( j)

Å∫
1l,y(σ−1(l))dp(y)

ã2





= inf
q∈P(G)

®∫
ϕ(z−1) dq(z) +

1

c(ℓ)2

Å∫
1z(σ( j)),σ−1(σ( j))dq(z)

ã2

+
1

2c(ℓ)2

∑

l,l,σ( j)

Å∫
1z(l),σ−1(l)dq(z)

ã2



 ,

where for the last equality, we use the fact that the map that associates to any

measure p ∈ P(G) the image measure q := R#p with R : σ ∈ G 7→ σ−1 ∈ G, is one

to one from P(G) to P(G).

Here is the key lemma for the induction step of the proof of (29).

Lemma 2.5. (1) Let j ∈ On. For any σ ∈ Hn, one has

Q jϕ(σt j,n) ≤ QHnϕt j,n (σ).

(2) For any ℓ ≥ 2, let c2(ℓ) := 8(ℓ − 1)2
+ 2. Assume that On , {n} and let

i, j ∈ On, i , j. We note Di = supp(t−1
j,n ti,n) \ {i} and d = |Di|. For any

σ ∈ Hn, for any θ ∈ [0, 1] one has

Qiϕ(σti,n) ≤ 1

d

∑

l∈ti,n(Di)

î
θQHn,lϕti,n(σ) + (1 − θ)QHnϕt j,n (σ)

ó
+

1

2
(1 − θ)2.
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(3) For any ℓ ≥ 2, let c2(ℓ) := 2(ℓ − 1)2
+ 2. Assume that On , {n} and let

i, j ∈ On, i , j. Let ti, j ∈ G such that ti, j(i) = j and deg(ti, j) ≤ ℓ. We note

Di = supp(ti, j) \ {i} and d = |Di|. For any σ ∈ Hn, for any θ ∈ [0, 1] one

has

Qiϕ(σti,n) ≤ 1

d

∑

l∈ti,n(Di)

[
θQHn,lϕti,n (σ) + (1 − θ)QHnϕ

ti,nt−1
i, j (σ)

]
+

1

2
(1 − θ)2.

Proof. The first part of this Lemma follows from the fact that P(H j) ⊂ P(G) and

the fact that
∫

1σt j,n( j),y( j)dp(y) = 0 for σ ∈ Hn and p ∈ P(H j). Therefore, accord-

ing to the definition of Q jϕ, one has for σ ∈ H j,

Q jϕ(σt j,n) ≤ inf
p∈P(H j)





∫
ϕdp +

1

2c(ℓ)2

∑

k∈[n]\{ j}

Å∫
1σt j,n(k),y(k)dp(y)

ã2





= inf
q∈P(Hn)





∫
ϕt j,n dq +

1

2c(ℓ)2

∑

k∈[n]\{ j}

Å∫
1σt j,n(k),yt j,n (k)dq(y)

ã2



 = QHnϕt j,n (σ).

For the proof of the second part of Lemma 2.5, we set

t̃i, j := t−1
j,nti,n.

Let us consider pl
i, l ∈ Di, a collection of measures in P(Hi), and p j ∈ P(H j)

( j , i). For θ ∈ [0, 1],

p :=
1

d

∑

l∈Di

[θpl
i + (1 − θ)p j],

is a probability measure on G. Therefore, according to the definition of Qiϕ, for

any σ ∈ Hn,

Qiϕ(σti,n) ≤ 1

d

∑

l∈Di

ï
θ

∫
f dpl

i + (1 − θ)
∫

f dp j

ò
+

1

2c(ℓ)2
(A + B +C),

with

A =
∑

k∈[n]\ supp(t̃i, j)

Å∫
1σti,n(k),y(k)dp(y)

ã2

, B =
∑

k∈Di

Å∫
1σti,n(k),y(k)dp(y)

ã2

,

and C = 2

Å∫
1σti,n(i),y(i)dp(y)

ã2

.

Since σ ∈ Hn and pl
i ∈ P(Hi), one has

∫
1σti,n(i),y(i)dpl

i(y) = 0 and
∫

1σti,n(i),y(i)dp j(y) =

1. It follows that

C = 2(1 − θ)2.

For any k ∈ [n] and l ∈ Di, let us note

Ui(k, l) :=

∫
1σti,n(k),y(k)dpl

i(y), and U j(k) :=

∫
1σti,n(k),y(k)dp j(y).
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By the Cauchy-Schwarz inequality, one has

A ≤ 1

d

∑

l∈Di


θ

∑

k∈[n]\ supp(t̃i, j)

U2
i (k, l) + (1 − θ)

∑

k∈[n]\ supp(t̃i, j)

U2
j (k)


 .

We also have

B =
∑

k∈Di

Ñ
θ

d
Ui(k, k) + (1 − θ)U j(k) +

θ

d

∑

l∈Di\{k}
Ui(k, l)

é2

≤
∑

k∈Di


d

Å
θ

d
Ui(k, k) + (1 − θ)U j(k)

ã2

+
θ2

d

∑

l∈Di\{k}
U2

i (k, l)




≤
∑

k∈Di


2θ2

d
U2

i (k, k) + 2d(1 − θ)2
+
θ2

d

∑

l∈Di\{k}
U2

i (k, l)




≤ 2d2(1 − θ)2
+
θ

d

∑

l∈Di


2U2

i (l, l) +
∑

k∈Di\{l}
U2

i (k, l)




All the above estimates together provide

A + B +C ≤ (2d2
+ 2)(1 − θ)2

+
1

d

∑

l∈Di


θ

Ñ
2U2

i (l, l) +
∑

k∈[n]\{i,l}
U2

i (k, l)

é
+ (1 − θ)

∑

k∈[n]\ supp(t̃i, j)

U2
j (k)


 .

Observe that

d = deg(t̃i, j) − 1 = deg(t−1
j,nti,n) − 1 ≤ 2ℓ − 2.

Therefore, according to the definition of c(ℓ), one has 2d2
+ 2 ≤ c(ℓ)2. As a conse-

quence we get from all estimates above, by optimizing over all pl
i ∈ P(Hi) and all

p j ∈ P(H j),

Qiϕ(σti,n) ≤ 1

d

∑

l∈Di

[
θVl + (1 − θ)W j

]
+

1

2
(1 − θ)2,
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with

Vl := inf
pi∈P(Hi)

®∫
ϕdpi +

1

c(ℓ)2

Å∫
1σti,n(l),y(l)dpi(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n]\{i,l}

Å∫
1σti,n(k),y(k)dpi(y)

ã2





= inf
qi∈P(Hn)

®∫
ϕti,n dqi +

1

c(ℓ)2

Å∫
1σ(ti,n(l)),y(ti,n(l))dqi(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n−1]\{ti,n(l)}

Å∫
1σ(k),y(k)dqi(y)

ã2





= QHn,ti,n(l)ϕti,n (σ)

and

W j := inf
p j∈P(H j)





∫
ϕdp j +

1

2c(ℓ)2

∑

k∈[n]\ supp(t̃i, j)

Å∫
1σti,n(k),y(k)dp j(y)

ã2





= inf
q j∈P(Hn)





∫
ϕt j,n dq j +

1

2c(ℓ)2

∑

k∈[n]\ supp(t−1
j,n

ti,n)

Å∫
1σti,n(k),yt j,n (k)dq j(y)

ã2





≤ inf
q j∈P(Hn)





∫
ϕt j,n dq j +

1

2c(ℓ)2

∑

k∈[n]\{i}

Å∫
1σti,n(k),yti,n(k)dq j(y)

ã2





= inf
q j∈P(Hn)





∫
ϕt j,n dq j +

1

2c(ℓ)2

∑

k∈[n−1]

Å∫
1σ(k),y(k)dq j(y)

ã2





= QHnϕt j,n (σ)

where we used successively the following arguments: Hnt j,n = H j; if k ∈ [n] \
supp(t−1

j,n ti,n) then ti,n(k) = t j,n(k); [n] \ supp(t−1
j,n ti,n) ⊂ [n] \ {i}. This ends the proof

of part (2) of Lemma 2.5.

The proof of part (3) Lemma 2.5 is identical replacing t̃i, j by ti, j. In that case

2d2
+ 2 ≤ 2(ℓ − 1)2

+ 2 = c2(ℓ).
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Then, the only minor change is for the last step

W j := inf
p j∈P(H j)





∫
ϕdp j +

1

2c(ℓ)2

∑

k∈[n]\ supp(ti, j)

Å∫
1σti,n(k),y(k)dp j(y)

ã2





= inf
q j∈P(Hn)





∫
ϕ

ti,nt−1
i, j dq j +

1

2c(ℓ)2

∑

k∈[n]\ supp(ti, j)

Å∫
1σti,n(k),yti,n t−1

i, j
(k)dq j(y)

ã2





≤ inf
q j∈P(Hn)





∫
ϕ

ti,nt−1
i, j dq j +

1

2c(ℓ)2

∑

k∈[n]\{i}

Å∫
1σti,n(k),yti,n(k)dq j(y)

ã2





= inf
q j∈P(Hn)





∫
ϕ

ti,nt−1
i, j dq j +

1

2c(ℓ)2

∑

k∈[n−1]

Å∫
1σ(k),y(k)dq j(y)

ã2





= QHnϕ
ti,nt−1

i, j (σ)

where we used successively the following arguments: Hnti,nt−1
i, j = H j; if k ∈ [n] \

supp(ti, j) then ti, j(k) = k; [n] \ supp(ti, j) ⊂ [n] \ {i}. The proof of Lemma 2.5 is

completed. �

We will now prove (29) by induction over n. For n = 2, G is the two points

space S 2 which is 2-local. For i ∈ {1, 2}, and for any p ∈ P(G),

1

c(2)2

Å∫
1σ(i),y(i)dp(y)

ã2

+
1

2c(2)2

∑

k,k,i

Å∫
1σ(k),y(k)dp(y)

ã2

=
3

8

Å∫
1σ,ydp(y)

ã2

≤ 1

2

Å∫
1σ,ydp(y)

ã2

.

As a consequence, we get the expected result from Lemma 2.2 applied withX = G.

We will now present the induction step. We assume that (29) holds at the rank

n − 1 for all j ∈ {1, . . . , n − 1}.
Let us first explain that it suffices to prove (29) for j = n. For any t ∈ S n, let

G(t)
= t−1Gt. The isomorphism ct : G → G(t), σ 7→ t−1σt pushes forward the

measure µ on the measure µ(t) := ct#µ ∈ P(G(t)), and conversely µ = ct−1 #µ(t). Let
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j ∈ [n]. For any σ ∈ G(t) and any real function ϕ on G, one has

(Q jϕ) ◦ ct−1 (σ) = inf
p∈P(G)

®∫
ϕ dp +

1

c(ℓ)2

Å∫
1tσt−1( j),y( j) dp(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n]

Å∫
1tσt−1(k),y(k) dp(y)

ã2





= inf
q∈P(G(t))

®∫
ϕ ◦ ct−1 dq +

1

c(ℓ)2

Å∫
1tσt−1( j),tyt−1 ( j) dq(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n]

Å∫
1tσt−1(k),tyt−1 (k) dq(y)

ã2





= inf
q∈P(G(t))

®∫
ϕ ◦ ct−1 dq +

1

c(ℓ)2

Å∫
1σt−1( j),yt−1( j) dq(y)

ã2

+
1

2c(ℓ)2

∑

k∈[n]

Å∫
1σ(k),y(k) dq(y)

ã2





= Qt−1( j)(ϕ ◦ ct−1 )(σ).

From this observation, by choosing t−1
= t jn, and setting ψ = ϕ ◦ ct−1 , one has

Å∫
G

eαQ jϕdµ

ã1/α Å∫
G

e−(1−α)ϕdµ

ã1/(1−α)

=

Å∫
G(t)

eα(Q jϕ)◦c
t−1 dµ(t)

ã1/α Å∫
G(t)

e−(1−α)ϕ◦c
t−1 dµ(t)

ã1/(1−α)

=

Å∫
G(t)

eαQnψdµ(t)

ã1/α Å∫
G(t)

e−(1−α)ψdµ(t)

ã1/(1−α)

If we assume that G is a normal subgroup of S n and that µ satisfies the second

property of (10), then G(t)
= G and µ(t)

= µ. Therefore the above expression is

bounded by 1 as soon as (29) holds for j = n. If we assume G is a ℓ-local group

and µ = µo is the uniform law on G, then G(t) is also a ℓ-local group and µ(t) is

exactly the uniform law on G(t). Therefore the last expression is bounded by 1

as soon as (29) holds with j = n for any uniform law on a ℓ-local group. As a

conclusion, it remains to prove inequality (29) for j = n.

We may assume that On , {n}, otherwise the induction step is obvious. We first

apply Lemma 2.4, by the first property of (10) satisfied by µ,
∫

eαQnϕdµ =

∫
eαQσ(n)ϕ{−1}(σ−1)dµ(σ) =

∫
eαQσ−1(n)ϕ{−1}(σ)dµ(σ).

Let g = ϕ{−1}. According to the decomposition of the measure µ on the sets Hi, i ∈
On,

∫
eαQnϕdµ =

∑

i∈On

ν̂n(i)

∫
eαQigdµi.(31)
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For k ∈ On, let us note

ĝ(k) := log

Å∫
e−(1−α)gdµk

ã−1/(1−α)

.

We choose j ∈ On such that

min
k∈On

ĝ(k) = ĝ( j).

By property (21) and then applying Lemma 2.5 (1), we get

∫
eαQ jgdµ j =

∫
eαQ jg(σti,n)dµn(σ) ≤

∫
eαQHn g

t j,n

dµn.

By the induction hypotheses applied to the measure µn on the subgroup Hn = Gn−1,

it follows that

∫
eαQ jgdµ j ≤

Å∫
e−(1−α)g

t jn
dµn

ã−α/(1−α)

=

Å∫
e−(1−α)g dµ j

ã−α/(1−α)

= eαĝ( j).(32)

Let us now consider i , j, i ∈ On. When G is a normal subgroup of S n, property

(21), the second part of Lemma 2.5 and Jensen’s inequality yield: for any θ ∈ [0, 1],

∫
eαQigdµi =

∫
eαQig(σti,n)dµn(σ)

≤ exp





1

d

∑

l∈ti,n(Di)

ï
θ log

∫
eαQHn ,lgti,n

dµn + (1 − θ) log

∫
eαQHn g

t j,n
dµn

ò
+
α

2
(1 − θ)2





By the induction hypotheses applied with the measure µn on the normal subgroup

Gn−1 = Hn of S n−1, and from property (21), it follows that

∫
eαQigdµi ≤ exp

ß
θαĝ(i) + (1 − θ)αĝ( j) +

α

2
(1 − θ)2

™
.(33)

We get the same inequality when G is a ℓ-local group and µ = µo is the uniform

law on G, by using property (22), the third part of Lemma 2.5 and the induction

hypotheses applied to the uniform measure µn on the ℓ-local subgroup Gn−1 = Hn.

According to the definition (28) of the infimum-convolution operator R̃ĝ defined

on the space X = On, we may easily check that for every i ∈ On,

R̃ĝ(i) = inf
θ∈[0,1]

ß
θĝ(i) + (1 − θ) min

k∈On

ĝ(k) +
1

2
(1 − θ)2

™
.

Therefore optimizing over all θ ∈ [0, 1], we get from (32) and (33): for all i ∈ On,

∫
eαQigdµi ≤ eαR̃ĝ(i).
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Finally, from Lemma 2.2 applied with the measure ν = ν̂n on On, the equality (31)

gives

∫
eαQnϕdµ ≤

∫
eαR̃ĝ dν̂n ≤

Å∫
e−(1−α)ĝ dν̂n

ã−α/(1−α)

=

Ñ
∑

i∈On

ν̂n(i)

∫
e−(1−α)g dµi

é−α/(1−α)

=

Å∫
e−(1−α)g dµ

ã−α/(1−α)

=

Å∫
e−(1−α)ϕ dµ

ã−α/(1−α)

.

The proof of (29) is completed. �

3. Transport-entropy inequalities on the slice of the cube.

Proof of (a) in Theorem 1.4. We adapt to the space Xk,n−k the proof of (a) in The-

orem 1.3. In order to avoid redundancy, we only present the main steps of the

proof.

By duality, it suffices to prove that for all functions ϕ on Xk,n−k and all λ ≥ 0,
∫

eλQϕdµk,n−k ≤ e

∫
λϕ dµk,n−k+Ck,n−kλ

2/2,(34)

where

Qϕ(x) = inf
p∈P(Xk,n−k)

ß∫
ϕdp +

∫
dh(x, y) dp(x)

™
, x ∈ Xk,n−k,

and for any 0 < α < 1,
Å∫

e
αQ̃Ck,n−k

ϕ
dµ

ã1/α Å∫
e−(1−α)ϕdµ

ã1/(1−α)

≤ 1,(35)

where for t > 0,

‹Qtϕ(x) = inf
p∈P(Xk,n−k)

®∫
ϕ dp +

1

2t

Å∫
dh(x, y) dp(y)

ã2
´
, x ∈ Xk,n−k.

The proof is by induction over n and 0 ≤ k ≤ n.

For any n ≥ 1, if k = n or k = 0, the set Xk,n−k is reduced to a singleton and the

inequalities (34) or (35) are obvious.

For n = 2 and k = 1, Xk,n−k is a two points set, (34) and (35) directly follows

from property (24) and Lemma 2.2 on X = X1,1.

For the induction step, we consider the collection of subset Ωi, j, with i, j ∈
{1, . . . , n}, i , j, defined by

Ω
i, j :=

{
x ∈ Xk,n−k, xi = 0, x j = 1

}
.

Since for any x ∈ Xk,n−k,
∑

(i, j),i, j

1Ωi, j (x) = k(n − k),

any probability measure p on Xk,n−k admits a unique decomposition defined by

p =
∑

(i, j),i, j

p̂(i, j)pi, j, with pi, j
=

1Ωi, j p

p(Ωi, j)
and p̂(i, j) =

p(Ωi, j)

k(n − k)
.
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Thus, we define probability measures pi, j ∈ P(Ωi, j) and a probability measure p̂ on

the set I(n) = {(i, j) ∈ {1, . . . , n}2, i , j}. For the uniform law µ on Xk,n−k, one has

µ =
1

n(n − 1)

∑

(i, j)∈I(n)

µi, j,

where µi, j is the uniform law on Ωi, j, µi, j(x) =
(n−2

k−1

)
, for any x ∈ Ωi, j.

For any (i, j), (l,m) ∈ I(n), let s(i, j),(l,m) : Xk,n−k → Xk,n−k denote the map that

exchanges the coordinates xi by xl and x j by xm for any point x ∈ Xk,n−k. This map

is one to one from Ωi, j to Ωl,m. For any (i, j) ∈ I(n), the set Ωi, j can be identify to

Xk−1,n−k−1 and therefore the induction hypotheses apply for the uniform law µi, j on

Ω
i, j with Hamming distance

d
i, j
h (x, y) =

1

2

∑

k∈[n]\{i, j}
1xk,yk

, x, y ∈ Ωi, j.

For any function f : Ωi, j → R and any x ∈ Ωi, j, we define

QΩ
i, j

f (x) := inf
p∈P(Ωi, j)

ß∫
f dp +

∫
d

i, j
h (x, y) dp(y)

™
,

and

‹QΩi, j

t f (x) := inf
p∈P(Hn)

®∫
f dp +

1

2t

Å∫
d

i, j
h (x, y) dp(x)

ã2
´
.

The key lemma of the proof that replaces Lemma 2.1 and 2.3 is the following.

Lemma 3.1. For any function ϕ : Ωi, j → R and any x ∈ Ωi, j, one has

Qϕ(x) ≤ inf
p̂∈P(I(n))





∑

(l,m)∈I(n)

QΩ
i, j

(ϕ ◦ s(i, j),(l,m))(x)p̂(l,m) +
∑

(l,m)∈I(n)

1(l,m),(i, j) p̂(l,m)



 ,

and

‹QCk,n−k
ϕ(x) ≤ inf

p̂∈P(I(n))





∑

(l,m)∈I(n)

‹QΩi, j

Ck−1,n−k−1
(ϕ ◦ s(i, j),(l,m))(x)p̂(l,m)

+
1

2

Å ∑

(l,m)∈I(n)

1(l,m),(i, j) p̂(l,m)

ã2



 .

The proof of this lemma is obtained by decomposition of the measures p ∈
P(Xk,n−k) on the sets Ωi, j, and using the following inequality

dh(x, y) ≤ d
i, j
h (x, s(i, j),(l,m))(y)) + dh(s(i, j),(l,m))(y), y) ≤ d

i, j
h (x, s(i, j),(l,m))(y)) + 2,

for any x ∈ Ωi, j, y ∈ Ωl,m.

Finally, the proof of the induction step based on Lemma 3.1 and the identity

Ck,n−k = Ck−1,n−k−1 + 1, is left to the reader. �

Proof of (b) in Theorem 1.4. We will explain the projection argument on the dual

formulations of the transport-entropy inequalities. According to Proposition 4.5
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and Theorem 9.5 of [GRST15], the weak transport-entropy inequality (14) is equiv-

alent to the following property that we want to establish: for any real function f on

Xk,n−k and for any 0 < α < 1,

Å∫
eαQ̂ f dµk,n−k

ã1/α Å∫
e−(1−α) f dµk,n−k

ã1/(1−α)

≤ 1,(36)

where

“Q f (x) := inf
p∈P(Xk,n−k

{∫
ϕ dp +

1

8

n∑

k=1

Å∫
1xk,yk

dp(y)

ã2
}
, x ∈ Xk,n−k.

Let us apply property (13) to the function f ◦ P : S n → R. Since µk,n−k = P#µ,

we get

Å∫
eα
ÛQ( f◦P)dµ

ã1/α Å∫
e−(1−α) f dµk,n−k

ã1/(1−α)

≤ 1.

The inequality (36) is an easy consequence of the following result.

Lemma 3.2. For any σ ∈ S n, ÙQ( f ◦ P)(σ) ≥ “Q f (P(σ)).

It remains to prove this lemma. By definition, one has

ÙQ( f ◦ P)(σ) = inf
p∈P(S n)





∫
f ◦ P dp +

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2





= inf
q∈P(Xk,n−k)

inf
p∈S n,P#p=q





∫
f ◦ P dp +

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2





= inf
q∈P(Xk,n−k)





∫
f dq + inf

p∈S n,P#p=q




n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2





 .

Let p ∈ S n such that P#p = q.

∫
1σ( j),τ( j)dp(τ) =

∑

y∈Xk,n−k

∑

τ∈S n

1P(τ)=y,σ( j),τ( j) p(τ).

For y ∈ Xk,n−k, let us note Y = {i ∈ [n], yi = 1}. Then P(τ) = y if and only if

τ([k]) = Y .

Assume that j ∈ [k], if τ([k]) = Y and σ( j) < Y then τ( j) , σ( j). Therefore one

has
{
τ, τ([k]) = Y, σ( j) < Y

}
⊂
{
τ, P(τ) = y, σ( j) , τ( j)

}
.

Assume now that j < [k], if τ([k]) = Y and σ( j) ∈ Y then we also have τ( j) , σ( j).

It follows that

{
τ, τ([k]) = Y, σ( j) ∈ Y

}
⊂
{
τ, P(τ) = y, σ( j) , τ( j)

}
.
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From these observations, we get

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2

≥
∑

j∈[k]

Å∫
1P(τ)=y,σ( j)<Y dp(τ)

ã2

+

∑

j∈[n]\[k]

Å∫
1P(τ)=y,σ( j)∈Ydp(τ)

ã2

=

∑

j∈[k]

Å∫
1σ( j)<Ydq(y)

ã2

+

∑

j∈[n]\[k]

Å∫
1σ( j)∈Ydq(y)

ã2

=

∑

i∈σ([k])

Å∫
1i<Ydq(y)

ã2

+

∑

i<σ([k])

Å∫
1i∈Ydq(y)

ã2

=

∑

i∈σ([k])

Å∫
1yi=0dq(y)

ã2

+

∑

i<σ([k])

Å∫
1yi=1dq(y)

ã2

Setting x = P(σ), it follows that

n∑

j=1

Å∫
1σ( j),τ( j)dp(τ)

ã2

≥
n∑

i=1

ñ
1xi=1

Å∫
1yi=0dq(y)

ã2

+ 1xi=0

Å∫
1yi=1dq(y)

ã2
ô

=

n∑

i=1

Å∫
1yi,xi

dq(y)

ã2

.

This inequality provides

ÙQ( f ◦ P)(σ) ≥ “Q f (x) = “Q f (P(σ)).

The proof of Lemma 3.2 and (b) in Theorem 1.4 is completed. �

4. Appendix

Proof of Lemma 1.1. Let T = (ti j , j) be a ℓ-local base of a group of permutations

G = Gn. In order to prove that the map

O2 × O3 × · · · × On → G

UT : i2, i3, . . . , in 7→ ti2 ,2ti3 ,3 · · · tin,n,
(37)

is one to one, it suffises to construct its inverse.

For any j ∈ {2, . . . , n}, let U j denotes the map defined by

U j(i2, i3, . . . , i j) = ti2 ,2ti3 ,3 · · · ti j , j.

Let σ = σ(n) ∈ G. We want to find the unique vector (i1, . . . , in) ∈ O1 × · · · × On

such that

Un(i1, . . . , in) = UT (i1, . . . , in) = σ.

Since Un(i1, . . . , in)(in) = n, necessarily, one has to fixe in = (σ(n))−1(n). in belongs

to On. Let σ(n−1)
= σ(n)t−1

(σ(n))−1(n),n
. On has σ(n−1) ∈ Gn−1. Then, since

n − 1 = Un−1(i1, . . . , in−1)(in−1) = σ(n−1)(in−1),

we necessarily have in−1 = (σ(n−1))−1(n − 1) ∈ On−1. We set

σ(n−2)
= σ(n−1)t−1

(σ(n−1))−1(n−1),n−1 ∈ Gn−2.
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Following this induction procedure, we construct a family of permutations σ( j) ∈
G j for j ∈ [n], such that i j = (σ( j))−1( j) ∈ O j for all j ∈ {2, . . . , n}. Observing that

G1 = {Id}, it follows that σ(1)
= id and therefore

σ = σ(n)
= ti2 ,2ti3 ,3 · · · tin ,n.

This ends the proof of Lemma 1.1. �

Proof of Lemma 1.2. Let G = Gn be a ℓ-local group. From the definition of the

ℓ-local property, it is clear that any of the subgroup G j, j ∈ {2, . . . , n} is ℓ-local. As

a consequence, for any i j ∈ O j, i j , j, there exists ti j , j ∈ G j such that

ti j , j(i j) = j, and deg(ti j j) ≤ ℓ.
This completes the proof of Lemma 1.2. �

Proof of Lemma 2.2. Let α ∈ (0, 1) and f be a real function on the finite set X. We

want to show that for any probability measure ν on X,
Å∫

eαR̃α f dν

ã1/α Å∫
e−(1−α)hdν

ã1/(1−α)

≤ 1.

We will apply the following lemma whose proof is given at the end of this section.

Lemma 4.1. Let F be a real function on X and K ∈ R. Let us consider the set

C :=

ß
ν ∈ P(X),

∫
F dν = K

™
.

If C is not empty, then the extremal points of this convex set are Dirac measures or

convex combinations of two Dirac measures on X.

Given a real function f on X, for any K ∈ R, let

CK =

ß
ν ∈ P(X),

∫
e−(1−α) f dν = K

™
.

One has

sup
ν∈P(X)

Å∫
eαR̃α f dν

ã1/α Å∫
e−(1−α) f dν

ã1/(1−α)

= sup
K,CK,∅

Ç
sup
ν∈CK

∫
eαR̃α f dν

å1/α

K1/(1−α)

The supremum of the linear function ν 7→
∫

eαR̃α f dν on the non empty convex set

CK is reached at an extremal point of CK . Therefore, by Lemma 4.1, we get

sup
ν∈P(X)

Å∫
eαR̃α f dν

ã1/α Å∫
e−(1−α)hdν

ã1/(1−α)

= sup
x,y∈X

sup
λ∈[0,1]

(
(1 − λ)eαR̃α f (x)

+ λeαR̃α f (y)
)1/α Ä

(1 − λ)e−(1−α) f (x)
+ λe−(1−α) f (y)

ä1/(1−α)

Now, let x and y be some fixed points of X. It remains to show that for any real

function f on E and for any x, y ∈ X,

(
(1 − λ)eαR̃α f (x)

+ λeαR̃α f (y)
)1/α Ä

(1 − λ)e−(1−α) f (x)
+ λe−(1−α) f (y)

ä1/(1−α) ≤ 1.
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The left-hand side of this inequality is invariant by translation of the function

f by a constant. Therefore, by symmetry, we may assume that 0 = f (y) ≤ f (x).

It follows that R̃α f (y) = 0. Therefore we want to check that for any non-negative

function f on {x, y}, for any λ ∈ [0, 1],

(
(1 − λ)eαR̃α f (x)

+ λ
)1/α Ä

(1 − λ)e−(1−α) f (x)
+ λ
ä1/(1−α) ≤ 1,

or equivalently, setting ψ(λ) =
Ä
(1 − λ)e−(1−α) f (x)

+ λ
ä−α/(1−α) − λ,

eαR̃α f (x) ≤ inf
λ∈[0,1)

ψ(λ) − ψ(1)

1 − λ = −ψ′(1) =
α

1 − α
Ä
1 − e−(1−α) f (x)

ä
+ 1,

since ψ is a convex function on [0, 1].

So, it suffices to check that R̃α f (x) ≤ φ( f (x)), where

φ(h) =
1

α
log

Å
α

1 − α
Ä
1 − e−(1−α)h

ä
+ 1

ã
, h ≥ 0.

The function φ is concave and φ(0) = 0. For all h ≥ 0, one has

φ′(h) =
1 − α

e(1−α)h − α.

The function φ′ is a bijection from [0,+∞) to (0, 1]. It follows that

φ(h) = inf
θ∈(0,1]

{θh + cα(1 − θ)} , h ≥ 0,

where cα is the convex function defined by

cα(1 − θ) = sup
h∈[0,+∞)

{−θh + φ(h)} , θ ∈ (0, 1].

After computations, we get

cα(u) :=
α(1 − u) log(1 − u) − (1 − αu) log(1 − αu)

α(1 − α)
,

and therefore we exactly have for any x ∈ X,

φ( f (x)) = inf
θ∈[0,1]

{θ f (x) + cα(1 − θ)} = R̃α f (x).

The proof of Lemma 2.2 is completed. �

Proof of Lemma 4.1. We will show that, if ν ∈ C is a convex combination of three

probability measures ν1, ν2, ν3,

ν = α1ν1 + α2ν2 + α3ν3,

with α1 , 0, α2 , 0, α3 , 0, and α1 + α2 + α3 = 1, and ν1(X) > 0, ν2(X) > 0,

ν3(X) > 0, then there exists two measures ν̂1, ν̂2 in C and λ ∈ [0, 1] such that

ν = λν̂1 + (1 − λ)ν̂2.

Setting Fi =
∫

Fdνi, for i = 1, 2, 3, we may assume, without loss of generality,

that F1 ≤ F2 ≤ F3. Then one has either F1 ≤ K ≤ F2, either F2 ≤ K ≤ F3.
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We will assume that F1 ≤ K ≤ F2. The case F2 ≤ K ≤ F3 can be treated

identically and the proof in that case is let to the reader. Since F1 ≤ K ≤ F2 and

F1 ≤ K ≤ F3, there exists β, γ ∈ [0, 1] such that

K = βF1 + (1 − β)F2 and K = γF1 + (1 − γ)F3.(38)

If F1 = F3 then F1 = F2 = F3 = K and therefore ν1, ν2, ν3 ∈ C. We may choose

λ = α1, ν̂1 = ν1 and ν̂2 =
α2ν2+α3ν3

α2+α3
.

If F1 = F2 then necessarily F1 = F2 = F3 = K and we are reduced to the

previous case.

So, we may now assume that F1 , F3 and F1 , F2 and therefore F1 < K ≤
F2 ≤ F3. In that case, we exactly have

β =
F2 − K

F2 − F1

and γ =
F3 − K

F3 − F1

.

Let us choose

λ =
α2

1 − β = α2
F2 − F1

K − F1

, ν̂1 = βν1 + (1 − β)ν2, ν̂2 = γν1 + (1 − γ)ν2.

The equalities (38) ensure that ν̂1 ∈ C and ν̂2 ∈ C. The proof of Lemma 4.1 ends

by checking that λν̂1 + (1 − λ)ν̂2 = µ̂. One has

λν̂1 + (1 − λ)ν̂2 = (λβ + (1 − λ)γ)ν1 + λ(1 − β)ν2 + (1 − λ)(1 − γ)ν3.(39)

According to the definitions of λ, β, γ, we may easily check that λ(1− β) = α2, and

(1 − λ)(1 − γ) =
K − F1

F3 − F1

− α2
F2 − F1

F3 − F1

.

Since µ̂ ∈ C, one has (1 − (α2 + α3))F1 + α2F2 + α3F3 and therefore

(1 − λ)(1 − γ) = α3.

As a consequence λβ + (1 − λ)γ = 1 − α2 − α3 = α1 and according to (39), we get

λν̂1 + (1 − λ)ν̂2 = α1ν1 + α2ν2 + α3ν3 = ν.

�
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