EXISTENCE ET ÉQUIDISTRIBUTION DES MATRICES DE DÉNOMINATEUR n DANS LES GROUPES UNITAIRES ET ORTHOGONAUX

Abstract : We study some subsets of rational points in an algebraic groups defined by open conditions on their projection in the finite adeles points. Using adelic mixing we are able to prove an equidistribution's result for the projection of these sets in the real points. As an application, we study the existence and the repartition of rational unitary matrices having a given denominator. We prove a local-global principle for this problem and the equirepartition of the sets of denominator n-matrices when they are not empty. Then we study the more complicated case of non simply-connected groups applying it to quadratic forms.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01370209
Contributor : Antonin Guilloux <>
Submitted on : Thursday, September 22, 2016 - 9:54:29 PM
Last modification on : Tuesday, April 2, 2019 - 2:15:31 PM

File

denom.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Antonin Guilloux. EXISTENCE ET ÉQUIDISTRIBUTION DES MATRICES DE DÉNOMINATEUR n DANS LES GROUPES UNITAIRES ET ORTHOGONAUX. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2008, 58 (4), ⟨10.5802/aif.2382⟩. ⟨hal-01370209⟩

Share

Metrics

Record views

89

Files downloads

47