T. Ahn, J. H. Kim, H. Yang, J. W. Lee, and J. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method, J. Phys. Chem. C, vol.116, pp.6069-6076, 2012.

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev, vol.108, pp.2064-2110, 2008.

L. Gu, Z. Shen, C. Feng, Y. Li, G. Lu et al., Synthesis of PPEGMEA-g-PMAA densely grafted double hydrophilic copolymer and its use as a template for the preparation of size-controlled superparamagnetic Fe 3 O 4 /polymer nano-composites, J. Mater. Chem, vol.18, pp.4332-4340, 2008.

V. Yathindranath, L. Rebbouh, D. F. Moore, D. W. Miller, J. Van-lierop et al., A versatile method for the reductive, one-pot synthesis of bare, hydrophilic and hydrophobic magnetite nanoparticles, Adv. Funct. Mater, vol.21, pp.1457-1464, 2011.

A. Bee, R. Massart, and S. Neveu, Synthesis of very fine maghemite particles, J. Magn. Magn. Mater, vol.149, pp.6-9, 1995.
DOI : 10.1016/0304-8853(95)00317-7

URL : https://hal.archives-ouvertes.fr/hal-00172906

C. Liu, A. J. Rondinone, and Z. J. Zhang, Synthesis of magnetic spinel ferrite CoFe 2 O 4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties, Pure Appl. Chem, vol.72, pp.37-45, 2000.

Y. Lee, J. Lee, C. J. Bae, J. G. Park, H. J. Noh et al., Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions, Adv. Funct. Mater, vol.15, pp.503-509, 2005.
DOI : 10.1002/adfm.200590040

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.200590040

G. Patrinoiu, D. Visinescu, A. Tirsoaga, and O. Carp, Green synthetic strategy for oxide materials: Polysaccharides-assisted synthesis. Part III. Dextran-assisted synthesis of nanosized metal-oxides, Rev. Roum. Chim, vol.56, pp.145-150, 2011.

K. G. Paul, T. B. Frigo, J. Y. Groman, and E. V. Groman, Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides, Bioconjug. Chem, vol.15, pp.394-401, 2004.
DOI : 10.1021/bc034194u

R. J. Benjamin, F. Michele, V. Jacob, and Y. L. Angelique, Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging, Nanotechnology, vol.18, 2007.

W. Feng, W. Lv, J. Qi, G. Zhang, F. Zhang et al., Quadruple-responsive nanocomposite based on dextran-PMAA-PNIPAM, iron oxide nanoparticles, and gold nanorods, Macromol. Rapid Commun, vol.33, pp.133-139, 2012.
DOI : 10.1002/marc.201100595

M. Srivastava, J. Singh, M. Yashpal, D. K. Gupta, R. K. Mishra et al., Synthesis of superparamagnetic bare Fe 3 O 4 nanostructures and core/shell (Fe 3 O 4 /alginate) nanocomposites, Carbohydr. Polym, vol.89, pp.821-829, 2012.

H. Yokoi and T. Kantoh, Thermal decomposition of the iron(III) hydroxide and magnetite composites of poly(vinyl alcohol). Preparation of magnetite and metallic iron particles, Bull. Chem. Soc. Jpn, vol.66, pp.1536-1541, 1993.

M. Sairam, B. V. Naidu, S. K. Nataraj, B. Sreedhar, and T. M. Aminabhavi, Poly(vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and tetrahydrofuran, J. Membr. Sci, vol.283, pp.65-73, 2006.
DOI : 10.1016/j.memsci.2006.06.013

C. Xu and A. S. Teja, Continuous hydrothermal synthesis of iron oxide and pva-protected iron oxide nanoparticles, J. Supercrit. Fluids, vol.44, pp.85-91, 2008.

H. Liu, S. P. Ko, J. Wu, M. Jung, J. H. Min et al., One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe 3 O 4 nanoparticles for biomedical applications, J. Magn. Magn. Mater, vol.310, pp.815-817, 2007.
DOI : 10.1016/j.jmmm.2006.10.776

A. Millan, A. Urtizberea, E. Natividad, F. Luis, N. J. Silva et al., Akaganeite polymer nanocomposites. Polymer, vol.50, pp.1088-1094, 2009.

A. S. Karakoti, S. Das, S. Thevuthasan, and S. Seal, PEGylated inorganic nanoparticles, Angew. Chem. Int. Ed, vol.50, 1980.

F. A. Harraz, Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: Synthesis and magnetic properties, Phys. E Low Dimens. Syst. Nanostruct, vol.40, pp.3131-3136, 2008.

C. Lin, C. Lee, and W. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid, J. Colloid Interface Sci, vol.291, pp.411-420, 2005.

J. Young, P. Patel, D. Gang-ho, L. Seungtae, W. Yongmin et al., Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications, Nanotechnology, vol.19, 2008.

Z. Li, B. Tan, M. Allix, A. I. Cooper, and M. J. Rosseinsky, Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection, Small, vol.4, pp.231-239, 2008.

B. Tural, N. Özkan, and M. Volkan, Preparation andcharacterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates, J. Phys. Chem. Solids, vol.70, pp.860-866, 2009.

J. Q. Lu, N. Moll, Q. Fu, and J. Liu, Iron nanoparticles derived from iron-complexed polymethylglutarimide to produce high-quality lithographically defined single-walled carbon nanotubes, Chem. Mater, vol.17, pp.2237-2240, 2005.

S. Wan, Y. Zheng, Y. Liu, H. Yan, and K. Liu, Fe 3 O 4 nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers, J. Mater. Chem, vol.15, pp.3424-3430, 2005.

M. Guo, Y. Yan, H. Zhang, H. Yan, Y. Cao et al., Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery, J. Mater. Chem, vol.18, pp.5104-5112, 2008.

H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong et al., Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging, J. Am. Chem. Soc, vol.128, pp.7383-7389, 2006.

K. Wormuth, Superparamagnetic latex via inverse emulsion polymerization, J. Colloid Interface Sci, pp.366-377, 2001.

M. Kumagai, Y. Imai, T. Nakamura, Y. Yamasaki, M. Sekino et al., Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging, Colloids Surfaces B, vol.56, pp.174-181, 2007.

R. Sondjaja, T. ;-alan-hatton, and M. K. Tam, Clustering of magnetic nanoparticles using a double hydrophilic block copolymer, poly(ethylene oxide)-b-poly(acrylic acid), J. Magn. Magn. Mater, vol.321, pp.2393-2397, 2009.

P. Akcora, X. Zhang, B. Varughese, R. M. Briber, and P. Kofinas, Structural and magnetic characterization of norbornene-deuterated norbornene dicarboxylic acid diblock copolymers doped with iron oxide nanoparticles, Polymer, vol.46, pp.5194-5201, 2005.

P. Akcora, R. M. Briber, and P. Kofinas, TEM characterization of diblock copolymer templated iron oxide nanoparticles: Bulk solution and thin film surface doping approach, Polymer, vol.47, pp.2018-2022, 2006.

K. Y. Yoon, C. Kotsmar, D. R. Ingram, C. Huh, S. L. Bryant et al., Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells, Langmuir, vol.27, pp.10962-10969, 2011.

J. Lutz, S. Stiller, A. Hoth, L. Kaufner, U. Pison et al., One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents, Biomacromolecules, vol.7, pp.3132-3138, 2006.

J. S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer et al., A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents, Polym. Chem, vol.5, pp.2611-2620, 2014.

P. Papaphilippou, L. Loizou, N. C. Popa, A. Han, L. Vekas et al., Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing ?-ketoester functionalities, Biomacromolecules, vol.10, pp.2662-2671, 2009.

G. D. Moeser, W. H. Green, P. E. Laibinis, P. Linse, and T. A. Hatton, Structure of polymer-stabilized magnetic fluids: Small-angle neutron scattering and mean-field lattice modeling, Langmuir, vol.20, pp.5223-5234, 2004.

J. Zhi, Y. Wang, Y. Lu, J. Ma, and G. Luo, In situ preparation of magnetic chitosan/Fe 3 O 4 composite nanoparticles in tiny pools of water-in-oil microemulsion, React. Funct. Polym, vol.66, pp.1552-1558, 2006.

Z. Zhang, A. J. Rondinone, J. X. Ma, J. Shen, and S. Dai, Morphologically templated growth of aligned spinel CoFe 2 O 4 nanorods, Adv. Mater, vol.17, pp.1415-1419, 2005.

R. S. Underhill and G. Liu, Triblock nanospheres and their use as templates for inorganic nanoparticle preparation, Chem. Mater, vol.12, pp.2082-2091, 2000.

K. Ujiie, N. Kanayama, K. Asai, M. Kishimoto, Y. Ohara et al., Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles: Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly, Colloids Surfaces B Biointerfaces, vol.88, pp.771-778, 2011.

X. Pang, L. Zhao, W. Han, X. Xin, and Z. Lin, A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals, Nat. Nanotechnol, vol.8, pp.426-431, 2013.

Y. Yang and J. Jiang, Gradual phase and morphology transformation of Fe 3 O 4 nanoparticles to ?-FeOOH nanorods in alcohol/water media in the presence of surfactant F127, J. Mater. Sci, vol.43, pp.4340-4343, 2008.

M. Zhang, A. H. Müller, P. Teissier, V. Cabuil, and M. Krekhova, Polychelates of Amphiphilic Cylindrical Core-Shell Polymer Brushes with Iron Cations, Trends in Colloid and Interface Science XVII, vol.126, pp.35-39, 2004.
DOI : 10.1007/b94007

S. Wan, J. Huang, H. Yan, and K. Liu, Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers, J. Mater. Chem, vol.16, pp.298-303, 2006.

P. Li and J. Huang, Preparation of poly (ethylene oxide)-graft-poly (acrylic acid) copolymer stabilized iron oxide nanoparticles via an in situ templated process, J. Appl. Polym. Sci, vol.109, pp.501-507, 2008.

J. I. Abes, R. E. Cohen, and C. A. Ross, Block-copolymer-templated synthesis of iron, iron-cobalt, and cobalt-nickel alloy nanoparticles, Mater. Sci. Eng. C, vol.23, pp.641-650, 2003.
DOI : 10.1016/j.msec.2003.08.001

S. Yun, B. Sohn, J. C. Jung, W. Zin, J. Lee et al., Tunable magnetic arrangement of iron oxide nanoparticles in situ synthesized on the solid substrate from diblock copolymer micelles, Langmuir, vol.21, pp.6548-6552, 2005.

T. Ghoshal, M. T. Shaw, C. T. Bolger, J. D. Holmes, and M. A. Morris, A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform, J. Mater. Chem, vol.22, pp.12083-12089, 2012.

N. Uekawa and K. Kaneko, Non stoichiometric properties of nanoporous iron oxide films, J. Phys. Chem. B, vol.102, pp.8719-8724, 1998.
DOI : 10.1021/jp982249x

M. Yoon, Y. M. Kim, Y. Kim, V. Volkov, H. J. Song et al., Magnetic properties of iron nanoparticles in a polymer film, J. Magn. Magn. Mater, vol.265, pp.357-362, 2003.

T. Yoon, C. Chae, Y. Sun, X. Zhao, H. H. Kung et al., Bottom-up in situ formation of Fe 3 O 4 nanocrystals in a porous carbon foam for lithium-ion battery anodes, J. Mater. Chem, vol.21, pp.17325-17330, 2011.

M. Breulmann, H. Cölfen, H. Hentze, M. Antonietti, D. Walsh et al., Elastic magnets: Template-controlled mineralization of iron oxide colloids in a sponge-like gel matrix, Adv. Mater, vol.10, pp.237-241, 1998.

S. Sepúlveda-guzmán, L. Lara, O. Pérez-camacho, O. Rodríguez-fernández, A. Olivas et al., Synthesis and characterization of an iron oxide poly(styrene-co-carboxybutylmaleimide) ferrimagnetic composite, Polymer, vol.48, pp.720-727, 2007.

R. Hernández, J. Sacristán, A. Nogales, T. A. Ezquerra, and C. Mijangos, Structural organization of iron oxide nanoparticles synthesized inside hybrid polymer gels derived from alginate studied with small-angle X-ray scattering, Langmuir, vol.25, pp.13212-13218, 2009.

Z. Xiong, Z. Sun, M. Zheng, Y. Cao, F. Jin et al., A facile method for the room-temperature synthesis of water-soluble magnetic Fe 3 O 4 nanoparticles: Combination of in situ synthesis and decomposition of polymer hydrogel, Mater. Chem. Phys, vol.130, pp.72-78, 2011.

O. Ozay, S. Ekici, Y. Baran, N. Aktas, and N. Sahiner, Removal of toxic metal ions with magnetic hydrogels, Water Res, vol.43, pp.4403-4411, 2009.
DOI : 10.1016/j.watres.2009.06.058

O. Ozay, S. Ekici, N. Aktas, and N. Sahiner, P(4-vinyl pyridine) hydrogel use for the removal of UO 2 2+ and Th 4+ from aqueous environments, J. Environ. Manag, vol.92, pp.3121-3129, 2011.

K. S. Sivudu and K. Y. Rhee, Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite, Colloids Surfaces A Physicochem. Eng. Asp, vol.349, pp.29-34, 2009.
DOI : 10.1016/j.colsurfa.2009.07.048

J. Zhang, S. Xu, and E. Kumacheva, Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles, J. Am. Chem. Soc, vol.126, pp.7908-7914, 2004.
DOI : 10.1021/ja031523k

A. Pich, S. Bhattacharya, Y. Lu, V. Boyko, and H. P. Adler, Temperature-sensitive hybrid microgels with magnetic properties, Langmuir, vol.20, pp.10706-10711, 2004.
DOI : 10.1021/la040084f

L. A. García-cerda, R. Chapa-rodríguez, and J. Bonilla-ríos, In situ synthesis of iron oxide nanoparticles in a styrene-divinylbenzene copolymer, Polym. Bull, vol.58, pp.989-994, 2007.

S. K. Suh, K. Yuet, D. K. Hwang, K. W. Bong, P. S. Doyle et al., Synthesis of nonspherical superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography, J. Am. Chem. Soc, vol.134, pp.7337-7343, 2012.

S. Bhattacharya, F. Eckert, V. Boyko, and A. Pich, Temperature-, pH-, and magnetic-field-sensitive hybrid microgels, Small, vol.3, pp.650-657, 2007.

C. Yang, Q. Shao, J. He, and B. Jiang, Preparation of monodisperse magnetic polymer microspheres by swelling and thermolysis technique, Langmuir, vol.26, pp.5179-5183, 2009.