Can a Condorcet Rule Have a Low Coalitional Manipulability?

Abstract : We investigate the possibility of designing a voting rule that both meets the Condorcet criterion and has a low vulnerability to coalitional manipulation. For this purpose, we examine the Condorcification of a voting rule, where the original rule is altered to elect the Condorcet winner when one exists, and we study its impact on coalitional manipulability. A recent result states that for a large class of voting rules based on strict total orders, their Condorcification is at most as coalitionally manipulable as the original rule. We show that for most of them, the improvement is strict. We extend these results to a broader framework that includes weak orders and cardinal voting rules. These results support the main message of this paper: when searching for a "reasonable" voting rule with minimal coalitional manipulability, investigations can be restricted to Condorcet rules. In other words, in a class of "reasonnable" voting rules, it is possible to have both the Condorcet criterion and a minimal vulnerability to coalitional manipulation.
Type de document :
Communication dans un congrès
European Conference on Artificial Intelligence (ECAI), Aug 2016, Den Haag, Netherlands. Frontiers in Artificial Intelligence and Applications, 285, pp.707-715, 2016, ECAI 2016
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01369877
Contributeur : François Durand <>
Soumis le : mercredi 21 septembre 2016 - 16:06:24
Dernière modification le : vendredi 30 novembre 2018 - 01:25:06
Document(s) archivé(s) le : jeudi 22 décembre 2016 - 13:30:58

Fichier

condorcification.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01369877, version 1

Collections

Citation

François Durand, Fabien Mathieu, Ludovic Noirie. Can a Condorcet Rule Have a Low Coalitional Manipulability?. European Conference on Artificial Intelligence (ECAI), Aug 2016, Den Haag, Netherlands. Frontiers in Artificial Intelligence and Applications, 285, pp.707-715, 2016, ECAI 2016. 〈hal-01369877〉

Partager

Métriques

Consultations de la notice

389

Téléchargements de fichiers

172