Molecular Phylogeny of the Astrophorida ([i]Porifera, Demospongiae[/i]) Reveals an Unexpected High Level of Spicule Homoplasy

Paco Cárdenas, Joana R. Xavier, Julie Reveillaud, Christoffer Schander, Hans Tore Rapp

To cite this version:

Paco Cárdenas, Joana R. Xavier, Julie Reveillaud, Christoffer Schander, Hans Tore Rapp. Molecular Phylogeny of the Astrophorida ([i]Porifera, Demospongiae[/i]) Reveals an Unexpected High Level of Spicule Homoplasy. PLoS ONE, Public Library of Science, 2011, 6 (4), 18 p. 10.1371/journal.pone.0018318. hal-01369354

HAL Id: hal-01369354
https://hal.archives-ouvertes.fr/hal-01369354
Submitted on 20 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Molecular Phylogeny of the Astrophorida (Porifera, Demospongiae) Reveals an Unexpected High Level of Spicule Homoplasy

Paco Cárdenas1,5, Joana R. Xavier2,3, Julie Reveillaud4,5, Christoffer Schander1,6, Hans Tore Rapp1,6

1 Department of Biology, University of Bergen, Bergen, Norway, 2 CIBIO – Research Centre for Biodiversity and Genetic Resources, CIBIO-Azores, Biology Department, University of the Azores, Azores, Portugal, 3 CEBAB – Center for Advanced Studies of Blanes (CSIC), Blanes, Spain, 4 Marine Biology Section, Biology Department, Ghent University, Ghent, Belgium, 5 CeMoFE, Center for Molecular Phylogeny and Evolution, Ghent, Belgium, 6 Centre for Geobiology, University of Bergen, Bergen, Norway

Abstract

Background: The Astrophorida (Porifera, Demospongiae) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Anconinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution.

Methodology/Principal Findings: With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 5′ end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Anconinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiida clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelleta and Vulcanella).

Conclusion: The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. The current classification can be explained by the banality of convergent evolution and secondary loss in spicule evolution. These processes have taken place many times, in all the major clades, for megascleres and microscleres.

Introduction

Demospongiae Sollas, 1885 [Borchiellini et al., 2004] make up 85% of all living sponges, and is today subdivided in 13 extant orders. Based on molecular results, Demospongiae are subdivided in four clades: G1/Keratosa [Borchiellini et al., 2004], G2/Myxospongiae [Borchiellini et al., 2004], G3/Haplosclerida and G4/ Democlavia [1,2]. The Astrophorida Sollas, 1888 are found within the Democlavia clade and represent one of the few sponge orders to have been consistently and with strong support, shown to be monophyletic [1,3,4,5]. The Astrophorida is geographically and bathymetrically widely distributed around the world, and represent around 660 extant species (van Soest et al. 2010[6]; this study). In tropical and parts of warm temperate waters Astrophorida species are common at quite shallow depths, while in boreal/antiboreal and Arctic/Antarctic waters they are usually deep-water species. Astrophorida species have colonized hard- as well as soft-bottoms from various depths. In gravelly hard-bottom habitats on the outer shelf and upper slope, Astrophorida can dominate ecosystems in terms of abundance and biomass forming...
Astrophorida species display a wide array of external morphologies (massive to thin encrusting, subspherical-, fan-, cup- or irregularly-shaped) and external colors (Fig. 1a–d), and they range in size from a few millimeters to more than a meter in diameter. There is no single morphological synapomorphy of the Astrophorida. They are nonetheless well characterized by the simultaneous presence of star-shaped microscleres (small spicules called 'asters') and tetractinal megascleres (large spicules called 'triænes') (Fig. 1e–g). Star-shaped microscleres may be euasters — asters in which the rays originate from a central point (e.g. oxyasters, strongylasters, sphæroasters, sterrasters) or streptasters — asters in which the rays proceed from an axis that can be straight (amphiasters) or spiral (e.g. spirasters, metasteras, plesiasters). According to the latest major revision of the Astrophorida [9], five families are included: Acanthocididae Schmidt, 1870, Calthropellidae Lendenfeld, 1907, Geodiidae Gray, 1867, Pachastrellidae Carter, 1875, and Thrombidiidae, Sollas, 1888. Thirty-eight genera and two subgenera are currently distributed in those families. In an effort to incorporate some lithistids in the Astrophorida, the sub-orders Euastrafforida Reid, 1963 (Astrophorida with euasters) and Streptosphocrinoida Denisy, 1924 (Astrophorida/lithistids with streptasters) were erected [10,11], but in spite of molecular evidence confirming their incorporation within the Astrophorida [5,12,13], lithistids have been kept apart in the Systema Porifera [14]. Other taxa such as the boring sponges Alectona and Neamphius also have been suggested to be derived Astrophorida species, based on morphological [15], molecular [16] and larval data [17,18], but they are still considered to belong to the order Hadromerida in the Systema Porifera [19].

The Astrophorida is an order with one of the most diverse spicule repertoire among the Demospongiae. For example, Geodia barretti (Geodiidiae, Astrophorida) has up to ten different spicule types while Halichondria panacea (Halichondriidae, Halichondrida) has only one. This spicule diversity within the Astrophorida is ideal to trace spicule evolution and thereby evaluate the importance of homoplasies in this group. Homoplasies (convergent evolution and secondary loss) has always been acknowledged by sponge taxonomists and phylogeneticists but few studies have been able to show to what extent these evolutionary processes occur in sponges, due to the paucity of spicule types and morphological characters. Secondary loss has been particularly difficult to reveal in morphological studies and molecular studies of species with too few spicule types. Meanwhile, the parapoly and polyphyley of many sponge orders in Demospongiae and Calcarea (e.g. Haplosclerida, Halichondrida, Clathromniida, Murrayoniida) in molecular phylogenetic studies clearly suggest that the evolution of spicules may be more intricate than currently thought [3,4,20,21,22,23].

To date, the most complete molecular phylogenetic study focusing on the Astrophorida is based on ten species belonging to six families, including two species of lithistids [24]. Other Demospongiae molecular phylogenies include only three to six species of Astrophorida [1,4]. With over 660 species of Astrophorida described worldwide [6], needless to say that phylogenetic relationships within this order are for the most part unknown and hypotheses based on morphology largely untested. And, since Astrophorida families might not be monophyletic [24], any Astrophorida phylogenetic study needs to have the broadest sampling as possible, from the five Astrophorida families as well as from putative Astrophorida (lithistids, Alectona, Neamphius). With a sampling of 153 specimens [9 families, 89 species] covering the deep- and shallow-waters of the Atlantic, Pacific, Indian, and Southern Ocean, the overall aim of this work was to present the first comprehensive molecular phylogeny of the Astrophorida. More specifically, the first aim of this study was to test the monophyly i) of the Euastrafforida/Streptosphocrinoida sub-orders and ii) of the Astrophorida families and genera. Our second aim was to revise the taxonomy of this order using both the classical rank-based nomenclature (i.e. Lámanea classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. To be clear, names established under the PhyloCode are always in italics and will be identified with the symbol ‘p’ (e.g. Demospongiae). Authors of PhyloCode names are between square brackets (e.g. Demospongiae Sollas, 1885 [Borchelli et al., 2004]). Finally, our third aim was to investigate the evolution of Astrophorida megascleres and microscleres in order to evaluate the importance of homoplastic spicule characters in this order.

Materials and Methods

Ethics statement

This study has been approved by the University of Bergen through the acceptance of a Ph.D. project proposal.

Sponge sampling

Most of our collecting was done in the Northeast Atlantic. Sampling in the Korsfjord (60°10′N, 05°10′E), Langenuen (59°53′N, 05°31′E) and the Hjeldefjord (60°24′N, 05°05′E) (Western Norway, south of Bergen) were carried out using a triangular dredge and a bottom trawl between 40 and 500 meters (between the years 2005 and 2009). Southern Norway samples (58°13′N, 08°35′E) were dredged during the BIOSKAG 2006 cruise. Northern Norway samples were collected during the Polarstern ARK-XIX/la 2007 cruise with large boxcorers and the Jago manneled-submersible. Localities sampled were Sotbakken (70°45′N, 18°40′E), Røst reef (67°30′N, 9°24′E) and Tranæupjet (66°58′N, 11°7′E), Greenland Sea samples were collected on the “The Schultz Massive” seamount (73°47′N, 07°40′E) during the BIODEEP 2007 and H2DEEP 2008 cruises using the ROV Bathysaurus XL. Samples from Bocas del Toro (9°20′N, 82°15′E, Panama, Atlantic), Berlingas Islands (39°24′N, 09°30′W, Portugal) and the Azores Islands were collected by snorkeling/diving. The Gorrinage Bank (36°31′N, 11°34′W) specimens were collected by diving during Luso Expedição 2006 [25]. Samples from deep-water coral reefs off Cape Santa Maria di Leuca (Ionian Sea, Apulian Plateau, 39°33′N, 18°26′E) were collected with the ROV Victor and an Usnel core during the ‘Ifremer MEDECO 2007’ cruise. Samples of the seamounts Southern of the Azores were collected in the course of the campaigns EMEPC-G3-2007/2008 of the Task Group for the Extension of the Continental Shelf (EMEPC, Portugal) employing the ROV Luso. Other samples were kindly provided by different institutions and scientists (cf. Acknowledgments). Hologenophores — a sample or preparation of the same individual organism as the study organism [26] — were preserved in 95% ethanol and stored at room temperature at the Bergen Museum. Species, voucher numbers, Genbank accession numbers and collecting localities are given in Table S1.

Outgroups belong to the Sphirophorida since all previous Demospongiae molecular phylogenetic studies place them in a strongly supported sister-order relationship with the Astrophorida [1,4,5,21,27] (see also the comprehensive COI, 18S and 28S phylogenetic Demospongiae trees on the Sponge Genetree Server, www.spongegenetrees.org/, accessed on the 15th of October 2010).

Taxonomy

Specimens collected were identified to the genus and species level by P. Cárdenas, H. T. Rapp and J. R. Xavier. Identifications of specimens donated by other institutions were also checked.
Astrophorida vouchers from previous studies [4,24,28,29,30] were re-examined by us or by others [31,32] and in some cases, given new identifications (Table S2). Some of the voucher specimens sequenced have been morphologically described previously: *Pachymatisma* species [33] and all specimens collected in Panama [34]. The Norwegian *Pachastrella* species will be described and reviewed in a separate paper.

Isops and *Sidonops* are synonyms of *Geodia* [35]; *Isops* and *Sidonops* species of this study were therefore all transferred to *Geodia*. *Geodia neptuni* Sollas, 1886 has been synonymized with *Geodia vosmaeri* Sollas, 1886 [36]. *Erylus euastrum* has been transferred to the genus *Penares*, owing to molecular and morphological results [35]. The lithistid *Exsuperantia* sp. corresponds to *Racodiscula clava* sensu Topsent, 1892 from the Azores [37] which had been re-identified as *Rimella* sp. [38], later found to be a preoccupied genus [39].

Because *Thrombus abyssi* can have variable spicule morphologies [40], it is important to note that our specimens have amphiasters and trichotriaenes with an extension of the rhabdome.

DNA extraction, amplification and sequencing

Two independent genes were used for this study: the Folmer fragment of the mitochondrial cytochrome c oxidase subunit 1 (COI) and the 5' end terminal part of the nuclear 28S rRNA gene. These have previously been shown to give robust and congruent results for Geodiidae relationships [35]. DNA extraction from choanosome samples was performed using the Tissue Genomic DNA extraction kit (Viogene, Sunnyvale, CA, U.S.A.) in accordance with the manufacturer’s instructions. A single centrifugation step was added just before pipetting the mixture into the columns in order to remove the spicules. For some species (*Pachastrella* sp. and *Pachymatisma* sp.)
Sequence alignments and phylogenetic analyses

The COI data matrix includes 118 sequences (with outgroups) of which 86 are new. 245/660 characters are parsimony informative. The 28S data matrix includes 108 sequences of which 80 are new and 9 are lengthened since Cardenas et al. [35]. 381/864 characters are parsimony informative. COI sequences were manually aligned in Se-Al v2a011 [43]. 28S sequences were first automatically aligned using MAFFT v6.705 [44] with default parameters, implemented in SeaView v.4.1 [45]. Four insertion-deletion regions (4–20 bp long) in the D2 domain were ambiguous to align and regional realignments using the MAFFT’s ENSI strategy were computed on these four regions. The alignment was subsequently improved visually using Se-Al.

Altogether, maximum likelihood (ML) analyses were conducted on four datasets: COI, COI amino-acids, 28S and 28S+COI. 28S (D1-D2) and COI have been shown to evolve at similar rates [35], so the two datasets were concatenated in a single matrix containing a total of 148 Astrophorida specimens (29 genera, 2 sub-genera, 89 species) and 1,527 characters, of which 811 are parsimony informative. The 28S data matrix includes 108 sequences of 28S comprising part of the C1 domain, and the total of the D1, C2 and D2 domains [5] (1 cycle [4 min/95°C, 2 min/59–60°C, 2 min/72°C]; 35 cycles [1 min/94°C, 45 s/59°C, 1 min/72°C]; 7 min/72°C). In some cases, C1 ASTR did not work and we used an intermediate primer instead: Ep1a* (5′-GGC AGA GGC GGR TGC ACC–3′) [5]. Sequences were then shorter, ca 690 pb (1 cycle [4 min/95°C, 2 min/59°C, 2 min/72°C]; 35 cycles [1 min/94°C, 45 s/59°C, 1 min/72°C]; 7 min/72°C). PCR products were purified using the ExoSAP-IT® kit (USB Europe, Taunton, Germany) or gel purified using a Gel-M™ Gel Extraction System (Viogene). Cycle sequencing was performed using a dye-labeled dideoxy terminator (Big Dye® Terminator v3.1, Applied Biosystems, Foster city, CA, U.S.A.). Products were analyzed using an ABI Prism 3700 DNA Analyzer (Applied Biosystems). The Astrophorida species of the sequences was checked by BLAST searches (http://blast.ncbi.nlm.nih.gov).

Astrophorida Phylogeny

Following our effort to revise sponge classification as we construct new molecular phylogenies [35], we followed the principles of phylogenetic nomenclature under the rules of the PhyloCode v.4c (http://www.ohiou.edu/PhyloCode/) to build a phylogenetic classification based on our results. Phylogenetic nomenclature provides the opportunity to propose taxonomical changes while waiting for independent evidence to confirm them, and before implementing those changes to the more widely used rank-based Linnaean classification. This is particularly important to reduce the phylogeny/classification gap. It is also very useful for intra-genera relationships (e.g. in Geodia) where the rank-based classifications are insufficient to name and describe all the clades present [35]. We named clades that have a bootstrap higher than 70 in the 28S+COI analysis. For the use and establishment of clade names, including species names, we will follow Cardenas et al. [35].

Results

The best tree resulting from the COI amino-acids analyses is poorly resolved with very few supported clades (Fig. S1). The best trees from the COI analyses (Fig. S2) and the 28S analyses (Fig. S3) are well resolved and congruent except for a few deep poorly-supported nodes. The main topology differences between the COI and 28S trees are: i) Ale cita clusters with the Spirophorida outgroups (28S) or with the rest of the Astrophorida (COI); ii) Thena and Pocilliastra Vulcanaform a monophyletic group (28S) or not (COI); iii) Godininae Sollas, 1888 [Cardenas et al., 2010] cluster either with the Erylininae Sollas, 1888 [Cardenas et al., 2010] (COI) or with some Ancorinidae (28S).

The best tree from the 28S+COI analyses (Fig. 2) is fairly close to the COI tree except for the poorly-supported positions of Pachastrella, Pocilliastra and Vulcanaform. From now on, we will present the results of the best tree obtained with the 28S+COI dataset (Fig. 2), unless significant topology differences were observed.
in the analyses of the other datasets. Parameters estimated by GARLI for the best 28S+COI tree were (lnL = -19335.537146; A = 0.191611; C = 0.247736; G = 0.290796; T = 0.269856; R-matrix = (1.137933 3.456486 1.476993 0.844933 4.787326; pinv = 0.567474; α = 0.557920). Out of the 100 best trees (each obtained from a different ML replicate), the first 66 trees (19335.56=PAUP* lnL<19336.10) had only minor topology differences, essentially within the Geodinap and the Erylinap. The best tree presented and discussed here is the one with the highest score (−lnL = 19335.56); it is also representative of more than half of the trees found.

Geodiidae, Calthropellidae and Ancorinidae

Astrophorida (including lithistids, Alectona and Neamphius) was monophyletic in all analyses except for the 28S analyses, where Alectona was within the Spirophorida outgroups. Out of the 100 best trees retrieved from the 28S+COI analyses, the first 76 trees suggested identical topologies concerning the relationships between the Geodiidae, Calthropellidae and Ancorinidae. The Geodiidae and the Ancorinidae were not monophyletic, while the Calthropellidae was monophyletic (but with only one genus sampled: Calthropella). Some Ancorinidae genera were distributed within the Geodiidae while the rest clustered in the Ancorinidae sensu stricto. Furthermore, some of the Ancorinidae genera appeared polyphyletic: i) within Geodinap (Eucinachyrella and Rhabdasatrella), or ii) distributed between Geodinap and Ancorinap (Stelletta, Melolophus sp., another Ancorinidae, clustered with Cusimarius vulcani in the Erylinap).

Geodinap Gray, 1867 [Cárdenas et al., 2010] is poorly supported, but retrieved in the COI analyses (Fig. S2) and in the first 76 best trees of the 28S+COI analyses (Fig. 2). The 77th best tree offers a new topology: (Geodinap+Ancorinidae s.s.) Erylinap. When we go from tree 76 to tree 77 we go from lnL = −19337.93 to lnL = −19339.79, a significant jump in likelihood when compared with the lnL very slow decrease from tree 51 to tree 76. We therefore also ran constrained analyses on the 28S+COI dataset (100 ML replicates) forcing the Geodinap and Ancorinidae s.s. together. The best constrained tree scored a lnL = −19339.79 (same as our tree number 77). An Approximately Unbiased (AU) test using CONSEL v.0.1j [60] showed that the best constrained and unconstrained trees were not significantly different (P-value = 0.395), so both topologies are plausible according to our data. We would also note that the ((Geodinap+Ancorinidae s.s.) Erylinap) topology is also retrieved in the 28S analyses (Fig. S3). Geodinap and Erylinap were both strongly supported (bootstraps of 96). Erylus and Penares were both found polyphyletic, with most Erylinap internodes poorly supported. Within Geodinap, Depressogeadinap [Cárdenas et al., 2010] and Geodinap Lamarkc, 1815 [Cárdenas et al., 2010] were strongly supported (bootstrap of 99), while Cydoniump Fleming, 1828 [Cárdenas et al., 2010] was moderately supported (bootstrap of 86). All species for which we had sampled more than one specimen were found monophyletic except for Geodia cydonia (the British specimens were clearly separated from the Mediterranean/Portuguese specimens, K2P distance = 0.04606). Geodia gigas and Geodia huxleyi (paraphyletic) and Penares helleri (paraphyletic). Geodia symplicissima and Geodia barretti had identical COI sequences.

A Calthropella+Geodia intutu clade appeared as sister-group to Erylinap. This topology was poorly supported (bootstrap of 66 and 72) but retrieved in all ML replicates.

Ancorinidae sensu stricto

The Ancorinidae s.s. have the most recent common ancestors with lithistids, Chasrevella pachastrellidae (Pachastrellidae) and Neamphius huxleyi (Alectonidae). The Ancorinidae s.s. included Asteropus, Sphyranthus, Ancorina and some Stelletta (henceforth called Stelletta sensu stricto). Sphyranthus and Stelletta s.s. appeared paraphyletic, the first one because of the placement of Asteropus sp., the second because of Ancorina sp.. Dercitus bucklandi (Pachastrellidae) was found basal to the Sphyranthus+ Asteropus clade. As detailed above, a few 28S+COI trees (with lower likelihoods) and the 28S analyses suggested that the Ancorinidae s.s. was sister-group to Geodinap.

Pachastrellidae and lithistids

The Pachastrellidae appeared as a polyphyletic group distributed in four clades: clade 1) Chasrevella pachastrellidae, clade 2) Pachastrella+Pocillistra annulatulae+Triplastrina intextum, clade 3) Pocillстраива compressa+Vulcanella,Valcamella) and clade 4) Thoena/ Vulcanella,Annulatrella). As a result, Thoena and Pachastrella were monophyletic while Pocillistra and Valcamella were polyphyletic. C. pachastrellidae is grouping next to the lithistids. Clade 2 was found to be sister group to the Geodinap clade but this was very poorly supported (bootstrap<50). Clade 2 moved closer to the Erylinap and Calthropella in the COI and 28S analyses. Clade 3 and 4, both very well-supported, appeared closer to the base of the Astrophorida clade, but the nodes were moderately to poorly supported (bootstraps of 68 and 53). In the 28S analyses, Clade 3 and 4 form a poorly-supported monophyletic clade. In the COI analyses, Clade 3 is sister-group to the Geodinap clade, the branch is very short and poorly-supported.

The lithistids were here limited to three families two of which (Corallistidae and Phymarhiphiidae) were only represented by a single species. N. nohtangere and Exsuperantia sp. were found close to C. pachastrellidae but this was poorly supported (bootstraps<50). With three species sampled, the Thonellidae was found monophyletic (bootstrap of 100).

Thrombidae and Alectonidae

With two species sampled, the Alectonidae was found polyphyletic. Alectona miliaria branched between the Thrombidae and the rest of the Astrophorida. In the 28S analyses, Alectona was placed between the Cinachyrella and Cnirola outgroups. Neamphius huxleyi was sister-group to the Ancorinidae s.s. but this association was not supported (bootstrap<50). In the COI analyses, N. huxleyi branched with the lithistids, but not far away from the Ancorinidae s.s.; this position was not supported either. Thrombus abyssi is the most basal Astrophorida, branching before A. miliaria.

Maximum likelihood reconstruction of ancestral states

Mapping of the 13 characters on the molecular tree gave us 13 trees, each with relative probabilities for every character state for every node in the tree. We have summarized these results for megascleres (Fig. 3) and microscleres (Fig. 4) by only showing character states with 0.65>P>0.95, and P>0.95. Numerous cases of spicule convergent evolution and secondary losses are revealed. On a total of 89 species sampled, we found 43 to be shallow and 46 to be deep-sea species. If we consider secondary losses of megascleres with P>0.95, we found 9 losses in shallow-species vs. 2 losses in deep-sea species (Fig. 3). We note there are no losses of microscleres in deep-sea species. If we consider secondary losses of microscleres with P>0.95, we found 14 losses in shallow-species vs. 5 losses in deep-sea species (Fig. 4).

Convergent evolution can be difficult to identify since we often have low probabilities for all character states in deep ancestors. With such an uncertain ancestor separating two clades, we cannot be sure that a spicule appearing in a clade is homologous to the same spicule type in the other clade, or not (e.g. microxcas, amphistri). We nonetheless notice that convergent evolution is
Astrophorida Phylogeny

Families sensu Systema Porifera
- Geodiidae
- Ancorinidae
- Calthropellidae
- Pachastrellidae
- Thrombidae

Aleconidae
“lististid” families

Erylinae

Calthropellidae

Pachastrellidae

Geodiidae

Geodidae

Geodidae

Corallistidae

Phymaraphniidae

Theonellidae

Vulcanellidae fam. nov.

Theneidae (resurrected)

Thoosidae (resurrected)

Thrombidae

PLOs ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e18318
also quite frequent and concerns nearly all types of microscleres (amphistomas, toxas, sanidasters, euasters, aspidasters, microrhabds and possibly microceaes) and megascleres (short- and long-hafted triaenes, discotriaenes, phyllotriaenes, anatriaenes, calthrops). Desmas may have also appeared independently three times.

Discussion

Astrophorida and phylogenetic classification

A phylogenetic classification of the Astrophorida, henceforth named *Astrophorida*, is presented in File S1 and summarized in Figure 5. Names have been given to the well-supported clades (boosters >70). Rank-based names have also been given to clades for which no names existed in the Linnaean classification. Moreover, new definitions of families and genera were also required. The revised Astrophorida Linnaean classification is presented in File S2.

Very early on, sponge taxonomists subdivided the Astrophorida between those that possessed sterrasters and those that possessed euasters [15]: Streptosclerophorida and Euastrophorida respectively. Chombard et al. [5] previously found the Euastrophorida monophyletic and the Styphosclerophorida paraphyletic because they had mainly sampled Geodiidae species, except for *Styphos* *mucronatus* that they had classified as a Streptosclerophorida (on the basis that its sanidasters were homologous to streptasters). However, our study suggests that both sub-orders are polyphyletic (irrespective of the nature of the sanidasters of *Styphos*). Therefore, we propose to formally abandon the two suborders Euastrophorida and Streptosclerophorida.

Geodiidae and reallocated Ancorinidae

Since the last molecular phylogeny of Geodiidae [35], we lengthened the 28S sequences and increased the sampling from 24 to 38 Geodiidae species and from 24 to 62 Geodiidae specimens. We also added species from phylogenetically close families (Ancorinidae and Calthropellidae). Clearly, Geodiidae is poorly supported in our 28S+COI best tree (Fig. 2), but morphological data [33] and a majority of our 28S+COI best trees support the *Erylus* + *Geodiidae* grouping. This is therefore the topology we will discuss in this paper. However, as we stated earlier (cf. Results), the alternative topology *Erylus* + *Geodiidae* + *Ancorinidae* found in a few 28S+COI searches and 28S analyses could not be rejected on statistical grounds. The contentious *Geodiidae* node should therefore be investigated further with additional molecular markers.

The Geodiidae is here redefined: it appears as a much larger family than expected since it includes genera from the Calthropellidae and Ancorinidae. This is surprising for a group whose monophyly and morphological synapomorphies appear quite clearly [35]. To understand this, we must consider the morphology of the unexpected groups. The Ancorinidae is partly composed of species which have the same set of spicules as the Geodiidae except for the presence of sterrasters (ball-shaped euasters, Fig. 1c). Consequently, these Ancorinidae may have never had sterrasters or they may have secondarily lost them. In the second case, these species should be reallocated within the Geodiidae.

Penares is one of these former Ancorinidae genera reallocated to the Geodiidae based on morphological, molecular and biochemical data [5,35]. To understand this reallocation, it was hypothesized that *Penares helleri* had secondarily lost its sterrasters [5]. Our study confirms this reallocation by adding two other species of *Penares*. Furthermore, the latter double the frequency of the secondary loss of sterrasters since our results suggest that *Penares* is polyphyletic, just like its counterpart *Erylus*. Secondary loss of sterrasters therefore happened at least twice in two different newly named clades: *Penares* (P* p* euaster, P* p* helleri and P* p* selerobosa) and *Erylus* (E* p* discophorus, E* p* manillensis, E* p* deficiens, E* p* sp., E* p* granulatus and E* p* candidata) (Fig. 4, Fig. 5). If it happened twice, it could have happened more, and this is what the placement of *Erylus* sp. (an *Erylus* with no aspidasters) and other genera of Ancorinidae within the Geodiidae suggest: Melophlus sp., *Rhabdastrella*, *Ecionemia*, and some *Stelletta* would also have lost their sterrasters (Fig. 4). As in the example of *Penares*, this is fairly easy to conceive since these Ancorinidae species share i) spicule repertoires identical to the Geodiidae except for the presence of sterrasters, and often ii) a similar external morphology (e.g. oscule organization). Despite these similarities, the placement of the polyphyletic *Rhabdastrella* and *Ecionemia* within the Geodiidae is not straightforward.

Based on the possession of microrhabds in the cortex, Chombard et al. [5] wondered if *Ecionemia* should be reallocated to the *Erylus* group. Our analysis suggests that the three *Ecionemia* species sampled belong to the *Geodiidae*, and are distributed in two groups. The two Australian *Ecionemia* group with some *Stelletta* — thus forming the new clade *Geosiella* — while *Ecionemia* megastylifera from the Caribbean is branching at the base of *Cydonium*. These three species of *Ecionemia* all share large spiny microrhabds in the cortex along with euasters. Since microrhabds are absent from all the other *Geodiidae*, the origin of these microrhabds is uncertain at this point and may represent yet another case of morphological spicule convergence in sponges (Fig. 4). Other species of *Ecionemia*, with small sanidaster-like microrhabds (e.g. *E. acerus*, type species of the genus, *E. demera*, *E. walkerii*), might instead be linked to sanidaster-bearing Ancorinidae as previously suggested [61,62,63]. In our opinion, the genus *Ecionemia* should therefore be kept valid for the remaining species of *Ecionemia* whose phylogenetic positions remain to be tested.

Based on its spicules and skeleton organization, *Rhabdastrella* has previously been suspected to be close to the *Geodiidae* [64] or even part of the *Geodiidae* [65]. Biochemical data also concurs with this result: isomalabaricane terpenes have been found in *R. globostelletta* and *Godia japonica* [66,67]. *Rhabdastrella* species from our study are distributed in three groups: 1) *R. globostelletta* and *Rhabdastrella* form a clade of uncertain position within the *Geodiidae*, 2) *R. cordata* from Australia forms a strongly supported group with *Godia* *pachyderma* and *Godia* sp. 2, both from the Atlantic/Mediterranean area, and 3) *R. intermedia* forms a strongly supported clade with *Godia* *philgnai*. *Rhabdastrella* species are characterized by sterrosheras in the cortex. Sterrosheras is a general ambiguous term that includes two main types of large euasters: i) very large spheres with smooth conical rays, filling the whole cortex (e.g. *R. globostelletta* and *Rhabdastrella* sp.) or ii) sterrasters, sometimes with incompletely fused actines (e.g. *R. nesi*, *R. aura*, *R. cordata*), placed in the endocortex. These morphological observations coupled with our results suggest that these sterrosheras might actually be, in the first case, true
Astrophorida Phylogeny

triaene megascleres and desmas
- phylotriaene
- discotriaene
- calthrops
- anatriaene
- short-shafted triaene
- long-shafted triaene
- mesotriaene
- calthrop with reduced 4th actine
- desmas

spicule presence/absence
- presence of triaene in ancestor (0.65 < p < 0.95)
- absence of triaene in ancestor (0.65 < p < 0.95)
- presence of triaene (p > 0.95)
- absence of triaene (p > 0.95)
spharasters — they resemble the ones found in the phylegetically close *G*³ phlegrai and *G*³ angulata — and are, in the second case, true spherasters. *Rhabadastrella* with true spharasters may therefore have secondarily lost their spherasters (and these have been replaced by the large spharasters). In light of these results we expect all *Rhabadastrella* species to be redistributed in *Geodinæ*. The genus *Rhabadastrella* is therefore not valid and should be synonymized with *Geodia*. As a consequence of the polyphyly of *Rhabadastrella*, the confusing spicule term ‘speraster’ should be once and for all rejected, as suggested before [68].

We should not be surprised to find Ancorinidae species with microrhabds such as *Melophlus* sp. grouping with *Caninus vulcani* (an *Eylinae* with spherules) since it has been argued that spherules may have evolved from microrhabds [35]. Furthermore, like the rest of the *Eylinae*, *Melophlus* sp. has no ana/protriaenes. The phylegetic position of *Melophlus* sp. among the *Eylinae* may be further supported by biochemical data: sarasinone M, a triterpenoidal saponin isolated from *Melophlus sarasinorum*, has strong similarities with the framework of *Eryloside L*, isolated in *Erylus lendenfeldi* [69].

To conclude, the reallocation of numerous Ancorinidae species in the Geodiidae calls for new definitions for these families (File S2).

Geodinæ

Most of the clades found in this study are identical to those found previously with fewer species and a shorter 28S fragment [35]. *Geodinæ*, *Clydoniæ* and *Depressiogeodinæ* were still strongly supported groups. The *Depressiogeodinæ+Clydoniæ* clade, poorly supported in Cárdenas et al. [35], was better supported here (bootstrap of 77), it exclusively grouped Atlantic species. In the following paragraphs, we will go through these clades and discuss new taxonomical results that have arisen due to the addition of new species since Cárdenas et al. [35].

The addition of *Geodia* *corticostylifera* from Brazil confirmed that the *Geodinæ* include species from North and South America, from the Atlantic and Pacific sides. Different clades of *Geodia* *tenuiarii* (former *G*² *neptuni*) appeared, two from Florida, another from Belize+Bahamas suggesting i) a strong geographical structure and that ii) the molecular markers used may be suited for future intraspecific studies. Our results confirmed that *Geodia* *gibberosa* represented a species complex, as previously hypothesized with morphological observations [34]. We propose that *G*³ *tumulosa* Bowerbank, 1872 (a synonym of *G*³ *gibberosa*) should be resurrected for the mangrove specimen from Panama. Its tumulose shape is clearly different from the barrel-shape of our reef specimens from Belize and Mexico, more similar to the shape of the holotype of *G*³ *gibberosa* (specimen MNHN DT-608).

Geodia *conchilega* and *E. megastylifera* are part of *Clydoniæ* so this clade still gathers Atlanto-Mediterranean species. The polyphyly of *Geodia* *corticostylifera* calls for a revision of this species whose taxonomical history is old and complex.

Geodia *megastrella* is part of the *Depressiogeodinæ*. This clade thus remained a Northeast Atlantic deep-water species group. The inclusion of *G*³ *megastrella* in the *Depressiogeodinæ* also confirmed a suggested morphological synapomorphy of the group: a deep proscule lacking spherasters in its cortex [35]. It should be noted that the *G*³ *megastrella* ZMBN 85208 (Scotland) and ZMAPOR 21654 (Azores) both had a distinct large deletion (35 bp long) in their 28S D2 domain while ZMAPOR 21231 (Morocco) appeared to have a slightly different sequence, notably without the deletion. This specimen’s morphology needs to be further investigated as *G*³ *megastrella* may represent a species complex.

The two deep-water *Geodia* species from New Caledonia grouped together but this is poorly supported. The most basal *Geodinæ* was a strongly supported clade named *Synoplos* grouping *G*³ *pachyderma*, *Geodid* sp. 2 and *R. cordata*. The surprising phylegetic position of *Geodia intuta* with *Calthropellina* will be discussed below. The positions of other *Geodinæ* species (e.g. *G*³ *phlegrai*, *G*³ *angulata*) were poorly supported and uncertain (different positions in different trees) so we cannot discuss their taxonomy at this point.

Eylinae

Eylinae was a very strongly supported group (bootstrap of 96). The monophyly of *Eylina* has been previously challenged by morphological and molecular data [33,35]. Our results suggested that it was a polyphyletic genus, mixed with *Penasres*, *Caninus*, *Melophlus* and *Pachymatisma* species. *Eylina* species were distributed in three clades: *Eylina* *p* (‘*noen cladis conversam*’ because it holds the type species of *Eylina*: *E. mlanillaris*), *Penasres* *p* (‘*noen cladis conversam*’ because it holds the species type of *Penasres*: *P*³ *helleri*) and *Erylus* *p* (temporary name for the clade including *E. aleuticus*+ *E. expletus*+ *E. superbus*, poorly supported). If *Eylina* is polyphyletic, the most parsimonious scenario is that flattened sterrasters (=aspiderasters) have appeared independently at least three times; this is also suggested by our character reconstruction using ML methods (Fig. 4). Our study has not revealed the identity of *Eylina* *p* sp. collected in the Gorringe Bank [25], *Eylina* *p* sp. which has lost its aspiderasters was part of the *E. mlanillaris*+ *discofiborus* complex, but more rapidly evolving markers are required to fully understand this group.

Calthropellinae and Geodia intuta

The association of calthrops and euasters essentially characterizes the Calthropellinae. According to some morphologists, the Calthropellinae do not really have characters of their own and should be within the Ancorinidae [70,71,72]. However, the first molecular evidence suggested a sister-group relationship between the Calthropellinae and the Eylinae [5]. Although the *Eylinae* (*G. intuta+Calthropellina*) association was weakly supported (bootstrap of 66) it was present in all our trees obtained from the 100 ML searches. Furthermore, the external morphology of *Calthropellina* *geodoides* and some basal *Eylinae* species (e.g. *E. expletus*) is quite similar: they are massive sub-spherical sponges with numerous white uniporal oscules on the top surface. We propose to reallocate the Calthropellinae to the Geodiidae by downgrading them to a sub-family: the Calthropellinae, *Pachataxa* and *Corticellopsis* are the other genera of the Calthropellinae since *Chelotrepella* has been reallocated to the Ancorinidae [73]. Sequences of *Pachataxa* and *Corticellopsis* are therefore needed to confirm the monophyly and the position of this group.

The clustering of *Geodia intuta* with *Calthropellina* was surprising, but less so when reconsidering its external and spicule morphologies. Like *Eylina* *p* and *Penasres* *p*, *G. intuta* is a massive sub-hemispherical sponge with a smooth cortex, it is easily compressible, and has a rather confused skeleton organization. It was
originally described as an _Isopo_ because of its uniporal oscule and pores. According to our observations, the oscule actually leads to a branching atrium, similar to the ones found in _Erylus_ sp., _Penares_ or _Camina_. This prompted von Lendenfeld [74] to describe it in a new genus, as _Caminaella horiata_, before it was synonymized with _Geodia inuta_ [75]. Moreover, it has long-shafted triaenes (as in the _Geodinae_) but no ana/pro/mesotriaenes (as in the _Erylinae_). It has spherasters in the ectocortex and globose sterrasters in the endocortex. Globose sterrasters are also present in many _Erylinae_ spherasters in the ectocortex and globular sterrasters in the endocortex. Globose sterrasters are also present in many _Erylinae_ (e.g. _Camina_, _Pachymatisma_ P., _E. topomensis_). As for spherasters, they resemble the spherasters found in _C. vulcani_ (an _Erylinae_); or _Calthropellidae_ darwiniana. All in all, although _G. inuta_ shares many characters with some _Erylinae_ (_Erylus_ sp., _Penares_ sp., _Camina_), the presence of long-shafted triaenes and the absence of microrhabds suggest that it is not an _Erylinae_. Therefore, we decided to resurrect the Geodid genus _Caminaella_ von Lendenfeld, 1894 to welcome this species. On the other hand, we will wait for further data to confirm its phylogenetic position and name the _G. inuta+_ _Calthropellidae_ clade.

Ancorinidae

Ancorinidae _sensu stricto_ form a well-supported clade henceforth named Ancorinidae. _Stelleta_ species were distributed in three Ancorinidae clades: clade 1 (_Ancorina_ sp. + _Stelleta_ sp. 1) + _Stelleta clarela_, clade 2 (_Stellettina normani_ + _Stellettina raphidiophora_ + _Stelleta lactea_ and clade 3 (_Stelleta grubii_ + _Stelletta carolinensis_) + _Stelleta dorsigera_. Clade 1 was poorly supported (bootstrap < 50). Clade 2 clustered three Northeast Atlantic species; it was very well supported by our data (bootstrap of 98) and by the synapomorphy of trichodragmas (raphides in bundles) (Fig. 4): it was therefore named _Dragnastridae_. Clade 3 held the type species of the genus (_S. grubii_ so it was named _Stellettidae_. It should be noted that _S. dorsigera_ does not group with _S. grubii_ in the 28S analyses (Fig. S3). The unstable position of _S. dorsigera_ may be due to the fact that the _Stellettina_ COI sampling is quite poor with respect to the _Stelleta_ 28S sampling. The grouping of clade 1 _Dragnastridae_ is poorly supported or absent (28S analyses) but we nonetheless note that all of these species have dichotriaenes, except for _Ancorina_ sp._ Conversely, species in the _Stellettidae_ clade do not possess dichotriaenes. Instead, 28S analyses fully support a _Dragnastridae_ + _Stellettidae_ clade (Fig. S3).

Since _Ancorina_ and _Styphhus_ share similar spicule repertoire _[34]_, notably the presence of sandasters (Fig. 4), we were expecting them phylogenetically closer to each other than here observed. But the grouping of _Ancorina_ sp. with two _Stelletta_ species was poorly supported and may be due to the poor sampling of these speciose genera.

The close relationship between _Asterocephalus_ and _Styphthus_ has often been discussed [15,34,76,77,78,79]. Both genera have similar spicules, except for triaenes that _Asterocephalus_ would have secondarily lost (Fig. 3). For the first time, the synonymy of _Asterocephalus_ with _Styphthus_ is confirmed by molecular results. Therefore, we formally propose that _Asterocephalus_ becomes a junior synonym of _Styphthus_ and name this clade _Styphthina_.

The presence of _Dercitus bucklandi_ — a Pachastrellidae with cathrops, sandasters and toxas — within the Ancorinidae is once more supported by morphological data. _Dercitus_ (_Stoeba_ included) and _Styphthus_ notably share sandasters, large spherules, cells, and a similar aquiferous system [70,73,80]. But other authors had considered that the origin of the toxas being ambiguous, emphasis should instead be placed on the presence of cathrops, which had brought _Dercitus_ closer to the Pachastrellidae [15,31,82,83]. _D. bucklandi_ as an Ancorinidae suggests that toxas would have originated from asters, as previously hypothesized [75]. The modification of oxysters into toxa-like spicules is actually quite common in the _Astrophorida_ (e.g. _Elythus nanumulifer_, _Elythus espeletit, Goedea apearance, Elythus papulifer_, _Rhabdocelina oxytosa_ and _Stelleta toxastra_). The difference between the latter and _D. bucklandi_ which troubled morphologists, is that toxas in _D. bucklandi_ have completely lost trace of the original asterian centrum. The position of _D. bucklandi_ also shows that its sandasters are homologous to those of _Stoeba_ (Fig. 4). Unfortunately, we did not get 28S sequences for _D. bucklandi_ and the strongly supported _Styphthus_ + _D. bucklandi_ clade needs to be confirmed before resurrecting the Sanidasteriidae _Sollas, 1888_, characterized by the possession of sandasters. Furthermore, _Stoeba_ (_not_ sampled here) having been synonymized with _Dercitus_ [73], we can be confident that _Stoeba_ species should also be reallocated to the _Ancorinidae_.

The polyphyletic Alectonidae

The Alectonidae Rosell, 1996 (_Hadromerida_) are excavating sponges recently separated from the rest of the Clionaidae d’Orbigny, 1851 notably due to the possession of amphistrians or microrhabs, and absence of tylostyles. _Alectona_ are known to produce a unique type of larva in the Porifera: an armored planktonic larva (= hoplitomella larva) with discostraenes [17,18]. These are then lost by the adult, which settles and bores into biogenic substrata such as calcareous rocks or coral. The association of triaenes and amphistrians suggest that _Alectona_ should be placed near or within the _Tetractinellida_ [Borchiellini et al., 2004] [17,84]. A 28S (_D1-C2_) phylogenetic study then showed that the Alectonidae _sensu Rützler_ [19] is polyphyletic and that _Alectona millari_ belonged to the _Tetractinellida_ [16]. Our data not only confirmed this but also suggested that the Alectonidae genera _Alectona_ and _Neamphius_ belonged to the _Astrophorida_. In the 28S+COI analyses, _A. millari_ branched after _Thrombus abyssi_, an acknowledged _Astrophorida_. In the 28S analyses, _Alectona_ appeared within the Spirophorida outgroups branching between _Canacheryx_ and _Cranella_ (Fig. S3), but the node between _A. millari_ and _Cranella_ sp. is not supported, and the branch is short. This result may be due to the fact that the _Alectona_ 28S sequence is significantly shorter (_409 bp_.: _D1-C2_ domains) than the others sequences from this study. The ambiguous position of _Alectona_ certainly deserves further investigation as it may represent a pivotal evolutionary step between _Astrophorida_ and _Spirophorida_.

Having amphistrians but no triaenes, _Neamphius huxleyi_ (the single species of its genus) has also been suspected to be an _Astrophorida_ by morphologists [15]. According to our results it may be close to _Characella_ and the _lithistids_. This is further supported by biochemical data showing that _N. huxleyi_ and _Astrophorida_ lithistids (_Callipelta_ sp., _Thelella mirabilis_ and _Thelella sycinae_) share cyclic peptides and depsipeptides with cytotoxic and antiviral effects, notably with HIV-inhibitory activity [85,86]. However, the position of _N. huxleyi_ being equivocal and poorly supported, we propose to temporally consider it as _incertae sedis_.

Our results also have consequences for the rest of the Alectonidae genera. Following Borchiellini et al. [16], we advocate...
the reallocation of *Thoosa* along with *Alectona*. *Deleciona* might also join them since it shares amphistegates and toxas with *Thoosa*. These three genera (representing ca 29 species) would group in the Thoosidae Rosell and Uriz, 1997, here resurrected. The position of the rest of the Alecionidae (*Spiroxya, Dotona* and *Scolopes*) is at the moment uncertain although *Spongosoa* and *Dotona* are suspected to be phylogenetically close to each other [19]. On the Sponge Gene Tree Server (www.spongegenetrees.org [87], accessed on the 15th of October 2010), a phylogenetic 28S (B9-B21) tree of the Demospongiae suggested that *Spongosoa levispira* should remain close to the Placospooidae and the Trachycladidae (Hadromerida).

Thrombidae

Since Lévi [82], the puzzling Thrombidae have been linked to the Astrophorida, based on their unique amphistegates and trichotriaenes. With the discovery of *Yucatania sporoconuloides*, it appeared clear that *Thrombus* species had secondarily lost their triaenes [83], which confirmed that they belonged to the *Tetractinellidae*. Our study showed that *Thrombus abyssis* is alone, at the base of the *Astrophorida* tree which suggests, as for *Alectona*, the key role of this group in understanding how and when the *Astrophorida* originated.

The Pachastrellidae and the lithistids

The latest revision of the Pachastrellidae includes 12 genera [81] which share streptasters (rays proceeding from an axis that can be straight or spiral, Fig. 1e) and do not have euasters (rays radiating from a central point, Fig. 1e). Topsent [80] suggested that the Pachastrellidae could be subdivided between those that share a diverse set of streptasters (*Thenea, Vulcanella, Pocillastrella*, some Corallistidae) and those whose streptasters are mainly restricted to amphistegates (rays radiating from both ends of a straight shaft, Fig. 1e) (*Pachastrella, Characella*, most Astrophorida lithistids). However, in our study, none of these groups were monophyletic (Fig. 2). We sampled six Pachastrellidae genera and they were distributed in five different clades: clade 1) *Dorcitus* was reallocated to the Anconiniidae (cf. above); clade 2) *Characella* appeared at the base of the Anconiniidae along with lithistids and *Neamphius*; clade 3) *Pocillastrella* *amygdaloides* + *Pachastrella* + *Triptolemma* was the sister clade of the Geodiidae. Although the positions of Characella and clade 3 were poorly supported and unstable depending on the dataset (Fig. S2, S3), they were clearly separated from the other Pachastrellidae genera branching further down in the tree: clade 4) *Pocillastrella* + *Vulcanella* - *Vulcanella* and clade 5) *Theon* + *Vulcanella* [Annulastrella]. Clearly the Pachastrellidae were built on a plesiomorphy (the streptasters) and the family must be revised.

Characella is defined by amphistegates and at least two categories of monaxonomic spicules (microxeas, microstyles, microstrongylocoxas) while *Pocillastrella* is defined by a diverse set of streptasters (spirasters, metasters and plesiasters) and microxeas in a single category [81]. As *Characella* has been occasionally difficult to characterize with respect to *Pocillastrella*, morphologists have questioned their validity [72,76,89]. Their definitions may overlap and many species are found to be “intermediate”, with characters of both genera (e.g. *Pocillastrella saxicola*). According to our results, *Characella* was clearly separated from *Pocillastrella* and phylogenetically closer to amphistegate-bearing lithistids. The definitions of *Characella* and *Pocillastrella* should therefore prioritize the nature of streptasters and consider the number of categories of microxeas as a less reliable character, since these can be more ambiguous to characterize (cf. new definitions in File S2). Due to a lack of robustness, we propose to have *Characella* as incertae sedis at the moment, although we suspect that it could be allocated to a lithistid family in the future.

According to the ICZN and our results, the Pachastrellidae name should be kept for the *Pachastrella* + *Triptolemma* clade, henceforth named *Pachastrella*. Until further molecular data, we propose to include *Pocillastrella amygdaloides* in this newly defined Pachastrellidae (File S2), although its position was poorly supported. *P. amygdaloides* has calthrops: this species and its synonym *Pocillastrella debilis* had therefore originally been described as *Pachastrella* [90]. But *P. amygdaloides* was moved to *Pocillastrella* because of its atypical triactinal calthrops, with a reduced fourth actine, later considered to be a modified triaene [15,80]. Its sister-group position with *Pachastrella* is supported by its spicule characters which seem intermediate between the *Pocillastrella-Vulcanella/Vulcanella* clade and *Pachastrella*: i) plesiasters (most of them are amphistegate-like) and ii) no microstrongyles. Other species (not sampled here) share the triactinal calthrops with *P. amygdaloides*. *Pocillastrella nana*, *Pocillastrella connectens* and *Characella capitoli*. We propose to resurrect *Nethos Sollas, 1888* (originally defined as resembling *Pocillastrella* but with triaenes with an underdeveloped rhombode) to welcome these species. *Triptolemma* are cryptic excavating species penetrating the tissue of other sponges or coral. Many morphological characters support the *Pachastrella* clade claimed by Topsent [80]. *Triptolemma* are characterized by short-shafted mesotriaenes of all sizes, which can be also produced by some *Pachastrella* species (e.g. *P. owstenata*). Microscleres of *Triptolemma* are streptasters (from only amphistegates to a diverse set), microstrongyles and even microrhabdose streptasters [91]. These last two microscleres are apomorphies shared with *Pachastrella*. *Bouchiaster* (not sampled here) surely belongs to this clade since it also produces short-shafted mesotriaenes, microstrongyles and amphistegates [92].

Thenea, Vulcanella, and *Pocillastrella* share a diverse set of streptasters [80]. *Pocillastrella* + *Vulcanella* further share i) an oscule area surrounded by cloacal oxeas (in *Pocillastrella compresa* this area has expanded over a whole side of the sponge but the cloacal oxeas are still there), ii) an abundance of spiny microxeas, iii) a reduction of the triaenes to short-shafted triaenes or calthrops (even if long-shafted triaene species also exist) and iv) an absence of pro/anatriaenes (except in *Pocillastrella rudstra*). In order to welcome this very well supported clade named *Vulcanellidae*, we created the Vulcanellidae fam. nov. (File S2). On the other hand, the *Thenea* + *Vulcanella* clade was poorly supported (bootstrap<50). And yet, these two genera share i) large plesiasters and ii) absence of microxeas. For the time being, the Theneidae Carter, 1883 is resurrected to welcome these two genera. Also, *Vulcanella* needs to be upgraded to genus since it was clearly separated from *Vulcanella*. The *Thenea* clade, here named *Thenea*, is very well supported (bootstrap of 93) and also one of the few clades supported by the COI amino acid analyses (tree not shown). It groups species that share i) a characteristic external morphology (massive, hispid mushroom shape, Fig. 1d), with ii) a typical poral area, iii) long-shafted dichotriaenes (never calthrops), iv) an abundance of pro/anatriaenes and v) a system of roots to grow on muddy bottoms. Based on morphology, *Cladiophora* (not sampled here) should belong to this clade [81].
The Theneidae and the Vulcanellidae fam. nov. may i) form a poorly-supported clade (28S analyses, Fig. S3), ii) have a paraphyletic relationship (28S+COI tree, Fig. 2) or iii) be further apart (COI analyses, Fig. S2). All of these poorly supported topologies emphasize that relationships between these two families remain to be investigated.

As previously suggested by morphological [10,15,70,93,94,95] and molecular data [5,12,13], our phylogeny confirmed that some lithistids belong to the Astrophorida. The *Discosoma-Theneella* clade named *Theonellidae* was strongly supported (bootstrap of 100). According to morphology and a previous 18S phylogenetic study, *Ratiodiscus* may also be part of the *Theonellidae* [13]. We note that *Discosoma* has microxas and microrhabs while *Characella* (phylogenetically close to *Discosoma* in our tree) has two sizes of microxas. The microrhabs of the *Theonellidae* might therefore be homologous to the small microxas of *Characella*. We also notice that the microrhabs of *Discosoma* are similar to the ones found in *Pachastrella* (e.g. *Discosoma pusilfera*); these might also be homologous. *Exsuperanta* sp. (Phymaraphiniidae) is morphologically very close to the *Theonellidae*, but it has trider desmas instead of tetraclone desmas. *Exsuperanta* sp. either groups with *Characella* (28S+COI and 28S dataset), or with *N. luxlei* (COI analyses). In both cases, the support was low. Morphological [82] and molecular [13] data suggest that the Corallistidae is a sister-group to the *Theonellidae*. Because of the low supported nodes between our lithistids this cannot be excluded: the position of *Neophyssospongia noisettangere* (Corallistidae) is unsure but certainly close to the other lithistids. Our results also hint that desmas have appeared independently in different Astrophorida lithistid groups (at least four times, if we would consider *Brachaster*; not sampled here) (Fig. 3). This would not come as a surprise since desmas have appeared independently in other sponge orders as well [96]. It should be emphasized that, in our opinion, 8 out of the 13 extant lithistid families are of Astrophorida affinities (Corallistidae, Isoraphiniidae, Macandrewiidae, Neopeltidae, Phymaraphiniidae, Phymatellidae, Pleromidae, Theonellidae) representing ca 128 species [6]. A majority of them possess amphister streptasters while the remaining groups have additional spirasters (Corallistidae, Pleroma) or no asters (Macandrewiidae, Discosomida, Theneellinae). Therefore, although *Astrophorida* lithistids do not seem to form a natural group, we can be certain that they all radiated along with amphister-bearing *Astrophorida* (*Characella, Pachastrella, Triptolemma, Brachister, and Neanphius*). If they have a closest common ancestor with the *Ancorinidae*, the *Goodidae*, or both, is still unclear at this point.

The node following that of the Vulcaneidae may be of importance since it supports, albeit moderately, a clade comprising amphister- and euaster-bearing *Astrophorida* (Fig. 4), temporarily called ‘clade A’ (Fig. 2). Our study thus reveals for the first time the importance of amphistarians in *Astrophorida* aster evolution, as an intermediate step between spirasters and euasters. The shortening of the amphister central shaft may represent an essential and preliminary stage to the appearance of euasters. Clade A includes all the *Astrophorida* except for the Vulcaneidae, the Theneidae, *Alectona* and *Thombus*, but since the position of the Vulcaneidae is unstable, so is the content of clade A. We thus refrain from formally naming clade A and wait for confirmation from other molecular markers. *Lamellomorpha strigulata* Bergquist, 1968 *incertae sedis* (not sampled) lacks triaenes and possesses only two types of microscles: spiny microstrongyles and amphister-like streptasters. This species could therefore belong to the amphister/ euaster-bearing clade, and may be phylogenetically close to *Characella* or to *Pachastrella*, both of which have small ectosomal monaxial spicules.

Evolution of Megascleres in the Astrophorida (Fig. 3)

Astrophorida species are well characterized by the simultaneous presence of asters (microscles) and triaenes (megascleres) (Fig. 1c–g). Therefore, the classification of this order has essentially been based on variants of these two spicule types. The triaene is a synapomorphy of the *Tetractinellida* so it appeared in the common ancestor of Spirophorida and *Astrophorida*. Since then, it has evolved in different directions giving rise to numerous descriptive terms with respect to the cladome orientation (ortho/plagio/pro/meso/anatriaenes), cladome branching (phyllo/disco/dichothriaene) or the rhadome length (long-shafted/short-shafted/ pseudocalthrops/calthrops). According to our data, the presence of triaenes or anatriaenes is not likely in the common ancestor of *Astrophorida* (Fig. 3). This is probably due to the presence of *Alectona* and *Thombus* at the base of the tree, both without triaenes. Long-shafted triaenes possibly appear (p = 0.66) in the ancestor of the *Theonellidae* and the rest of the *Astrophorida*. Since then, they have evolved into short-shafted triaenes or calthrops. Calthrops have appeared independently many times (*Calthropella*, *Pachastrella*, *Dercitus*, some *Valcula*), and so have mesocalthrops and mesodichotriaenes (*Calthropella*, some *Pachastrella*). Concerning anatriaenes, our analyses (Fig. 3) suggest that they have appeared independently many times (*Thenea*, *Characella*, some *Stelleta*, *Goodina*). Discotriaenes have appeared independently in some lithistid *Astrophorida* (e.g. *Discosoma*) and in the larvae of *Alectona*, although we cannot rule out the possibility that they are present in other *Astrophorida* larvae (never observed to date). Phyllotriaenes are only known in some lithistid families, but may have appeared independently at least twice (Phymaraphiniidae and *Thenea*). To conclude, most variants of triaenes are clearly the product of convergent evolution and thus homoplastic characters that cannot be used for *Astrophorida* classification. On the other hand, they may still represent apomorphies at lower ranks.

Before going further, we should clarify the term ‘secondary loss’. An ‘absence’ state can be optimized as a plesiomorphy (true absence), a homoplasys (independent secondary losses which appeared through convergent evolution) or a synapomorphy (unique secondary loss shared by a single clade) [97]. In this last case, ‘absence’ states may also potentially bring phylogenetic information. Furthermore, a spicule secondary loss can be i) a ‘true’ loss when nothing replaces the spicule lost (e.g. loss of sterrasters) or ii) a ‘semantic’ loss by modification of a spicule into another (e.g. sterrasters becoming aspidasters). It may not always be possible to discriminate a ‘true’ loss from a ‘semantic’ loss. For example, secondary loss of triaenes is ambiguous because some species may have retained megascleres derived from triaenes, such as styles while others may have really lost their triaenes. We therefore considered that when styles were present, it was a semantic loss, because when only oxesas remained it had a higher chance of being a true loss of triaenes.

Our study shows that triaenes have been secondarily lost (with p>0.65) independently at least four times in our sampling (e.g. *Melophlis*, *Asteropus*, *Valcula* (Annulastrella), *Neanphius* and morphology suggests that it may have happened in even more *Astrophorida* taxa, not all sampled here) (*Thombus, Lamellomorpha, Holoxoa, Jaspis, some Stelleta, some Rhadastrella, some Elysia, some Geodia*) [62,78,83,98]. We observe similar results for anatriaenes which may have been lost eight times independently. It is also worth mentioning that anatriaenes do not seem to have been lost in the *Eulyinae* as suggested before [35]. According to our results (Fig. 3), the common ancestor of the *Goodidae* did not have anatriaenes, they only seem to appear in the *Goodinae*. Their absence should therefore not be considered as a synapomorphy of the *Eulyinae* [35] but as a plesiomorphy.
Our results clearly demonstrate how common secondary loss of a megasclere is, even when this megasclere has a clear function: providing support of the cortex, organization of the choanosome or even defending against predators. Secondary loss of triaene is a homoplastic character for the Astrophorida, but it may become synapomorphic in more restricted clades (e.g. Vulcanella (Annulastrella), Melophlus). Also, we remind that loss of triaenes can be “partial” if it takes place during the development (e.g. Alectona) so increasing our knowledge in Astrophorida larvae may shed some light on the classification and the evolution of triaenes.

Evolution of Microscleres in the Astrophorida (Fig. 4)

Thomobiidae species have a unique type of amphistae with recurved spines at each end, not found anywhere else in the Astrophorida. It has been secondarily lost in some species of Thoosa. It is unclear if their amphastae are homologous to the more typical amphastae observed in A. millari. Thomobiidae also have trichotriaenes, not found anywhere else in the Astrophorida. Since trichotriaenes are fairly small (compared to true triaenes) and coexist with true triaenes in Triticostea, they may be derived from a large microsclere, and are certainly not triaenes per se. Seemingly, in Thoosa and Vulcanella (Annulastrella) large plesiasters have occasionally been considered as megascleres. Trichotriaenes could therefore have originated from a form of plesiaster. The characteristic large diactines in Alectona are also thought to be derived from large asters [17]. Supporting this hypothesis are the large triactines found in some Alectona and the oxyasters found in Thoosa. However, according to the position of A. millari in our tree, and if we are right about the reallocation of Thoosa with Alectona, these oxyasters are not homologous to the ones that appeared later in the Ancorinidadae and the Geodiidae. As for the fusiform amphastae found in Alectona, their origin remains unknown. Meanwhile, the diversified streptaster set (spirasters, metasteres, plesiasters) that developed in the Theneidae and Characella may have been reduced to amphastae in the ancestor of Clade A. On one side, the Ancorinidadae share a close common ancestor with the lithistids/Characella/Neamphius. On the other side, the Geodiidae share a close common ancestor with the newly defined Pachastrellidae. In both cases, we can hypothesize that a shortening and disappearance of the shaft and/or compression of amphastae, spirasters or even sanidasters could have easily led to the appearance of cuasters. Indeed, such ‘intermediate’ forms of asters can be observed in Characella, Pachastrella [99], Deciris [73] or Neophyssospinga [32]. Two independent appearances of cuasters in the Astrophorida are not surprising in comparison with their independent appearance in Thoosa, some Hadromerida and in Chondrina (Chondrosida). The reversed evolution is also known: amphastae are derived from cuasters in the case of Erylus amphisterna from Colombia (not sampled). According to our data, sterrasters have appeared once (p>0.65) in the ancestor of the Geodiidae. Evolution of spherules seem to be possible from microrhabds (as in Caminlus [35] or from asters (as in some Calathophela [73]). The sanidasters may have evolved from amphastae and/or microrhabds but our spicule reconstructions do not support this at the moment (Fig. 4). We have nonetheless observed sanidaster-like amphastae (in Pachastrella abyssa) and sanidaster-like microrhabds (in some Pachymatisma normani). We must stress that the intermediate nodes leading to the Ancorinidadae and the Geodiidae are poorly supported so these hypotheses need to be tested with additional molecular markers. The origin of microrhabds is seemingly contentious. The limit between microxas, sanidasters and microrhabds is ambiguous and probably reflects their multiple appearances. They have independently appeared in “some” Ecionemia, Pachastrella, the Erylinae, some lithistids and Characella (if we consider that small microxeas present in the cortex are microrhabds). In some cases, such as in the Erylinae, they might be derived from asters [35]. The appearance of microxeas in the ancestor of the Vulcanellidae might also be linked to asters. In the Theneidae, plesiasters reduced to two actines are common: they look like microxeas and are usually larger than the rest of the plesiasters. This is well documented in Vulcanella (Annulastrella) [37,89] and Thoosa [100,101,102,103], so we suggest that the microxeas found in the Vulcanellidae (and maybe later in the lithistids, Pachastrella and Characella) may have originated from large plesiasters reduced to two actines.

Sterrasters have been secondarily lost at least nine times independently (p>0.95) (Fig. 4); in Penaeus, Erylus sp., Erylus candidatus, Melophlus sp., Gostellettia, Calathophela, E. megastylifera, R. globastellata Rhobastella sp. and R. intermedia. This clearly demonstrates how common secondary loss of a microsclere is, even when it has a clear function (sterrasters form a strong barrier protecting the sponge). Interestingly, most of the secondary losses of sterrasters have occurred in shallow-water species, living in tropical or temperate — never boreal or arctic — waters (Fig. 4). Actually, our results suggest that secondary loss of megascleres and microscleres are more common in shallow-water species. It is therefore tempting to propose that secondary loss of spicules has been favored in tropical to temperate shallow-waters. This further suggests that environmental parameters such as lower pressure, higher water temperature and/or lower silica concentration could be responsible for the loss of these sterrasters. Such parameters are already known for their effect on spicule morphology [104, 105,106,107], especially silica concentration that appears to have played an important role in sponge evolution [108,109]. But since there is insufficient evidence for our hypotheses, we refrain from further speculation along these lines.

Conclusion

This study is the first comprehensive molecular phylogenetic study of the Astrophorida. We obtained a well-resolved tree that suggested phylogenetic relationships between 89 species of Astrophorida from nine families of sponges. Most incongruences found between the current classification (Systema Porifera) and our molecular tree systematically made sense in the light of morphology (e.g. reallocated Ancorinidae, G. intuta, D. bucklandi, C. pachastrelloides), scattered biochemical data and homoplasic processes (convergent evolution and secondary loss). The taxonomic translation of this tree was a revision of the Astrophorida for which we proposed new classifications: the Linnaean classification includes all extant taxa belonging to the Astrophorida (File S2) while the phylogenetic classification includes at the moment only clades supported by molecular data and morphological data (File S1, Fig. 5). We propose in File S3 a key to all the Astrophorida families, sub-families and genera incertae sedis. And Table S4 summarizes the nomenclatural changes resulting from our study with respect to the name of Astrophorida species. With addition of the eight families of lithistids as well as the Thosidae and Neamphius huxleyi, the Astrophorida became a larger order than previously considered, comprising ca 820 species [6]. However, the phylogenetic position of a few Astrophorida genera not sampled here is still pending (File S2). The polyphyly of some genera (Ecionemia, Rhobastella, Erylus, Stellate) suggest that they should be tested on a species to species basis. Finally, other contentious groups need to be tested as potential members of the Astrophorida: some may have been confused with aster-bearing Hadromerida (e.g. Jaspis vs. Hemisterrella) while others may have lost all their asters and...
triaenes and are mixed in polyphyletic orders such as the Haliichondrida or Haplosclerida.

Our study is far from being the first study to show the potential misleading nature of spicules and to question their utility in sponge taxonomy [22,110,111,112], especially with the numerous studies on the phenotypical plasticity of spicules (e.g. [113]) and the recent outburst of cryptic species identification [114,115,116]. But this is certainly the first study to show how widespread convergent evolution and secondary loss can be in spicule evolution: they have taken place many times, in all taxa, in mesoglides and microscleres, even when these seem to be adaptive and under selective pressures. Our results show for the first time the banality of spicule secondary loss (especially for microscleres) and its potential as a synapomorphy (e.g. in

Supporting Information

Figure S1 Molecular phylogeny of the Astrophorida obtained with maximum likelihood analyses (metREV+G model) of the COI amino-acid dataset. Bootstrap values >50 are given at the nodes (2,000 ML replicates).

Figure S2 Molecular phylogeny of the Astrophorida obtained with maximum likelihood analyses (HKY+I+G model) of the COI nucleotide dataset. Bootstrap values >50 are given at the nodes (2,000 ML replicates).

Figure S3 Molecular phylogeny of the Astrophorida obtained with maximum likelihood analyses (GTR+I+G model) of the 28S (C1-D2) dataset. Bootstrap values >50 are given at the nodes (2,000 ML replicates).

Table S1 Locality of collection, museum voucher numbers and Genbank accession numbers for the sponge specimens used in this study.

Table S2 Sponge identification modifications after re-examination of Astrophorida species from previous molecular phylogenetic and biochemistry studies.

Table S3 Morphological matrix of the Astrophorida species sampled in this study.

Table S4 Nomenclatural changes in the Linnaean and phylogenetic classification as a result of our study.

File S1 Definition of new clades defined in this study (following the rules of the PhyloCode v.4).e

File S2 Proposal for a new Linnaean classification of the Astrophorida.

File S3 Key to the Astrophorida families, sub-families and genera incertae sedis.

Acknowledgments

The authors wish to thank the shipboard parties and the crews of the R/V Hans Böeitzen (Marine Biological Station of the University of Bergen), the R/V Polarstern (ARK-XXII/1a), the R/V G. M. Dommeng (Marine Biological Station of Flodvigen), the R/V Pourquoi Pas? (IFREMER), the R/V Kommandor Jack (EPEM 2007) and the R/V Almirante Gago Coutinho (EMEP 2008). The authors wish to thank people that contributed to the sampling of this study: Bernard Picton and Claire Goodwin (National Museums, Northern Ireland), Isabelle Domard-Coulon (Muséum National d’Histoire Naturelle, Paris), Mary Kay Harper (University of Utah, Salt Lake City) in collaboration with the NCDDB program and with G. Concepcion, Rob van Soest and Elly Beglinger (Zoologisch Museum van de Universiteit van Amsterdam), Joseph R. Pawlik and Tse–Lynn Loh (University of North Carolina, Wilmington), Scott Nichols (University of California, USA), Marcel Jaspars (University of Aberdeen), IRD of Nouméa (New Caledonia), Shirley Sorokin (SARDI Aquatic Sciences, Adelaide) and Thierry Laptevounaz (South Australian Museum, Adelaide), Thierry Perez (Centre d’Oceanologie de Marseille, France), Kyle Sweeney and Grace McCormack (National University of Ireland, Galway, Ireland), Magnus Tornes (Norway), Chris Proctor (Devon), Marina Cunha (University of Aveira, Portugal) and Jeroen Ingels (University of Ghent),

Author Contributions

Conceived and designed the experiments: PC HTR. Performed the experiments: PC. Analyzed the data: PC. Contributed reagents/materials/analysis tools: HTR CS JX JR. Wrote the paper: PC. Collection of specimens: PC. HTR CS JX JR. Identification of specimens: PC. HTR CS JX JR. Phylogenetic analyses: PC. Contributed to the paper: HTR CS JX JR.

References

85. de Laubenfels MW (1936) A Discussion of the Sponge Fauna of the Dry Tortugas in Particular and the West Indies in General, with Material for a Revision of the Families and Orders of the Porifera. Papers from Tortugas Laboratory 30: 1–223, pls 221–222.