Skip to Main content Skip to Navigation
Conference papers

Polar Sine Based Siamese Neural Network for Gesture Recognition

Samuel Berlemont 1, 2 Grégoire Lefebvre 2 Stefan Duffner 1 Christophe Garcia 1 
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Our work focuses on metric learning between gesture sample signatures using Siamese Neural Networks (SNN), which aims at model-ing semantic relations between classes to extract discriminative features. Our contribution is the notion of polar sine which enables a redefini-tion of the angular problem. Our final proposal improves inertial gesture classification in two challenging test scenarios, with respective average classification rates of 0.934 ± 0.011 and 0.776 ± 0.025.
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download
Contributor : Stefan Duffner Connect in order to contact the contributor
Submitted on : Tuesday, September 20, 2016 - 5:16:46 PM
Last modification on : Monday, January 3, 2022 - 2:56:02 PM


Files produced by the author(s)



Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia. Polar Sine Based Siamese Neural Network for Gesture Recognition. International Conference on Artificial Neural Networks, Sep 2016, Barcelona, Spain. ⟨10.1007/978-3-319-44781-0_48⟩. ⟨hal-01369302⟩



Record views


Files downloads