
HAL Id: hal-01368911
https://hal.science/hal-01368911

Submitted on 20 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PAG: Private and Accountable Gossip
Jérémie Decouchant, Sonia Ben Mokhtar, Albin Petit, Vivien Quéma

To cite this version:
Jérémie Decouchant, Sonia Ben Mokhtar, Albin Petit, Vivien Quéma. PAG: Private and Accountable
Gossip. ICDCS - International Conference on Distributed Computing Systems, Jun 2016, Nara, Japan.
�10.1109/ICDCS.2016.34�. �hal-01368911�

https://hal.science/hal-01368911
https://hal.archives-ouvertes.fr

PAG: Private and Accountable Gossip
Jérémie Decouchant

SnT, University of Luxembourg
Luxembourg

Sonia Ben Mokhtar
CNRS LIRIS
Lyon, France

Albin Petit
INSA

Lyon, France

Vivien Quéma
Grenoble INP

Grenoble, France

Abstract—A large variety of content sharing applications
rely, at least partially, on gossip-based dissemination proto-
cols. However, these protocols are subject to various types of
faults, among which selfish behaviours performed by nodes
that benefit from the system without contributing their fair
share to it. Accountability mechanisms (e.g., PeerReview, AVMs,
FullReview), which require that nodes log their interactions with
others and periodically inspect each others’ logs are effective
solutions to deter faults. However, these solutions require that
nodes disclose the content of their logs, which may leak sensitive
information about them. Building on a monitoring infrastructure
and on homomorphic cryptographic procedures, we propose in
this paper PAG, the first accountable and partially privacy-
preserving gossip protocol. We assess PAG theoretically using
the ProVerif cryptographic protocol verifier and evaluate it
experimentally using both a real deployment on a cluster of 48
machines and simulations. The performance evaluation of PAG,
performed using a video live streaming application, shows that
it is compatible with the visualisation of live video content on
commodity Internet connections. Furthermore, PAG’s bandwidth
consumption inherits the desirable scalability properties of gossip
when the number of users in the system grows.

I. INTRODUCTION

Peer-to-peer content sharing systems account for a large
amount of traffic in today’s Internet [1]. Examples of such
systems that are widely used by thousands of users every-
day include P2P content delivery networks (e.g., BitTorrent,
eMule), on demand audio and video streaming (e.g., Popcorn-
Time, Velocix [2]) and P2P TV (e.g., PPLive [3], LiveSky [4]).
These systems often rely (totally or partially) on gossip-based
message dissemination schemes [5], [6] where nodes periodi-
cally exchange data chunks with randomly chosen nodes.

Gossip-based systems are cost effective, scalable up to
millions of users and highly resilient to churn. However, they
rely on the willingness of the users to share their resources
(e.g., upload bandwidth, CPU cycles, memory) with each
other. Consequently, they are vulnerable to selfish behaviours
performed by users that modify their software or use a
tampered version of it (e.g., BitThief, BitTyrant).

Recent studies performed on real peer-to-peer systems
(e.g., [7], [8]) have shown that clients behaving selfishly
get better performance than compliant ones (e.g., in a live
streaming system, they would download the video stream
faster while saving upload bandwidth). Moreover, these studies
show that above a given proportion of selfish clients, the
compliant clients observe a major degradation in the quality of
the video stream they obtain. Dealing with selfish behaviours
has thus been the centre of active research in the last decade.

In this context, accountability protocols, which have re-
cently been proposed for fault detection in distributed sys-
tems (e.g., [9]–[11]) are promising candidates for effectively
dealing with selfish behaviours. In an accountable system,
nodes register their interactions with each other in secure logs.
These logs are periodically inspected by a set of nodes in
the system acting as monitors. In case of fault detection, the
monitors generate a proof of misbehaviour and the misbehav-
ing nodes get punished. Thanks to their effectiveness, these
protocols have been recently used to build selfish-resilient
content dissemination systems (e.g., [12], [13]).

However, these solutions require nodes to share their log
with each other, which may leak sensitive information about
them. For instance, in a video streaming application a curious
monitor inspecting a node’s log may learn about the user’s
interests, which may disclose information such as her sex,
age, sexual, political or religious preferences. Furthermore,
monitors can infer further information by analysing the interest
graphs made of links between nodes sharing similar interests.

In this context, a challenging objective is to build proto-
cols that enforce accountability while preserving their users’
privacy. However, this objective may seem contradictory as
there is a clear trade-off between privacy and accountability:
the deeper the verifications that can be performed regarding
the behaviour of a node, the more faults can be deterred but
the more information need to be collected.

Few protocols have been recently proposed to address
both accountability and privacy issues in distributed systems.
Among them Dissent [14] and RAC [15] allow nodes to
exchange messages anonymously while forcing them to stick
to the original protocol specification. However, these systems
heavily rely on all-to-all communications, which makes their
performance unsuitable for live content dissemination systems.

We propose in this paper PAG, an accountable and privacy-
preserving gossip protocol, practical for live content sharing
applications, where messages exchanged between any two
nodes are kept private. PAG is decentralised and relies on
nodes acting as monitors to enforce the correct dissemination
of content updates. Specifically, through an homomorphic
encryption of the disseminated messages, monitors enforce
accountability without getting access to the content of the
exchanged messages, thus protecting users’ interests. Finally,
through the modification of cryptographic keys at every hop
of the dissemination process, monitors can not follow the
progress of a given content update in the dissemination graph,
thus preventing monitors from building interest graphs.

We assess PAG both theoretically and experimentally re-
garding accountability, privacy and performance. Regarding
accountability, our analysis shows that PAG is a Nash equi-
librium [16], which means that selfish nodes have no interest
in deviating from the protocol. Further, regarding privacy, we
prove the resilience of PAG against a global and active oppo-
nent using the ProVerif cryptographic protocol verifier [17].
Finally, regarding performance, we show through the imple-
mentation of a video live streaming application instantiated
using 432 clients deployed in a cluster of 48 machines that:
(1) PAG is practical in terms of bandwidth and CPU costs
for streaming live video content compared to anonymous
communication protocols like RAC and (2) its cryptographic
overhead is reasonable for modern architectures. Complemen-
tary simulations show that PAG scales logarithmically in terms
of bandwidth consumption.

The rest of the paper is structured as follows. Section II
provides some background about accountability and privacy
in gossip. Section III presents our system model and our
objectives. Section IV presents the building blocks of PAG,
which consist in a monitoring infrastructure and homomorphic
messages hashing. Section V details the message exchanges of
nodes running PAG. Section VI presents the privacy guarantees
and an accountability analysis of PAG. Section VII presents
a detailed performance evaluation. Section VIII reviews the
related works. Section IX concludes this paper.

II. ACCOUNTABLE FORWARDING AND PRIVACY

In this section, we present the principles of the gossip
paradigm and introduce selfish deviations that nodes may
execute (part II-A). We further present accountability solutions
(part II-B) and explain how accountability solutions threaten
the privacy of users (part II-C).

A. Principles of gossip and selfishness

Peer-to-peer gossip protocols aim at reliably distributing a
content (e.g., a video stream, membership updates) to a set
of interested nodes. To do so, gossip protocols handle two
tasks. First, they handle the neighbourhood of nodes by
providing them with a selection of partners with which they
can interact. This is commonly achieved by relying on a full
membership protocol (e.g., [18], [19]), or on a distributed
random peer sampling protocol (e.g., [20], [21]). Second,
gossip protocols handle message exchanges enabling a content
to be disseminated to all the participating nodes with a high
probability [6]. As membership management does not handle
content, we focus on bringing accountability and privacy to the
second task. Using the gossip principle, message exchanges
are organized in rounds (whose duration is called the gossip
period). A special node that holds the content to disseminate
(also called the source), generates and periodically sends
chunks of this content (also called updates), to a set of nodes
chosen uniformly at random. Then, periodically, each node
taking part in the dissemination is in charge of sharing the
updates it receives with f other randomly selected nodes (f is
also called the dissemination fanout).

Figure 1 illustrates the gossip-based dissemination of up-
dates, from the point of view of a node X depicted in
the centre of the figure. Specifically, node X has a set of
fp predecessors {P1, . . . , Pfp} and a set of fs successors
{S1, . . . , Sfs} that have been picked uniformly at random
from the nodes participating in the system. In this example,
during round R, node X receives a set of data chunks from
its predecessors (i.e., {u1} from P1, ..., {ufp} from Pfp in
the figure) and has to forward the received chunks in the
following round R+1 to all its successors (i.e., {u1, . . . , ufp}
to S1, . . . , Sfs in the figure).

However, as presented in various studies (e.g., [22], [23]),
gossip-based dissemination suffers from nodes behaving self-
ishly. Selfish behaviour takes place when nodes tamper with
their software or use tampered software in order to maximise
their benefit (e.g., receiving the disseminated content as fast
as possible) while minimising their contribution to the system
(e.g., saving bandwidth or computational resources).

B. Accountability solutions

Accountability mechanisms (e.g., PeerReview [9], FullRe-
view [11], AVMs [10]) are effective solutions to deter faults
in distributed systems. These mechanisms have already been
used as incentives for forcing selfish nodes to participate in
gossip-based content sharing protocols (e.g., [12]). Figure 2
shows an accountable gossip protocol in which a node X logs
its interactions with its predecessors and successors in a secure
log (depicted in the right part of the figure). For example,
the first line of this log specifies that node X received {u1}
from node P1 during round R. Secure logs can either rely on
cryptography techniques (e.g., recursive hash functions in [9],
[10]) or on secure hardware (as in [24]) to make them tamper
evident and append only. In these systems, each node X is
further assigned a set of monitors (depicted above X in the
figure) that periodically audit its log in order to assess whether
the logged entries correspond to a correct execution of the
gossip protocol. For instance, in the figure each monitor can
check that node X has forwarded all the updates it received
during round R (i.e., {u1, ..., ufp}) to all its successors (i.e.,
S1, ..., Sfs) during round R+1.

C. Privacy of users

A major drawback of accountability mechanisms is that
nodes must share their interaction logs with their monitors. In
gossip-based applications such as content sharing or live video
streaming applications, this allows monitors to learn about
nodes interests and thus possibly infer sensitive information
about them. Indeed, various studies (e.g., [25], [26]) have
shown that the consumed media can disclose information
about individuals (e.g., gender, sexual, religious or political
preferences). Further to learning nodes interests, this allows
to learn the interest graphs between nodes sharing similar
interests, thus possibly inferring private information about
them (e.g., learning that a given user is a lesbian because it
is interested in similar contents as a person known to be a
lesbian).

X

P
1

P
fp

S
1

S
fs

.

.

.

.

.

.

{u
fp

}

{u
1
, ... , u

fp
}

{u
1
, ... , u

fp
}

{u
1
}

X's predecessors X's successors

Round R Round R+1

Fig. 1. Forwarding of updates in a gossip-based system

X

P
1

P
fp

S
1

S
fs

.

.

.

.

.

.

{u
fp
}

{u
1
, ... , u

fp
}

{u
1
}

Round
R

Round
R+1

P
1

M
1

M
fm RCV R P

1
{u

1
}

...

RCV R P
fp

{u
fp
}

SND R+1 S
1

{u
1
,.., u

fp
}

...

SND R+1 S
fs

{u
1
,.., u

fp
}

X's monitors

X's log

Fig. 2. Accountable gossip

III. SYSTEM MODEL AND OBJECTIVES

In this section, we present the assumptions we make in the
rest of this paper and the objectives of PAG.

Communications and cryptographic assumptions. As
classically made in gossip-based protocols (e.g., in [19]
and [27]) we structure time using rounds. Nodes are roughly
synchronized, which allows them to check each others’ peri-
odical exchanges based on the specification of the exchange
protocol. Nodes are uniquely identified with an integer iden-
tifier, for example deterministically computed using their IP
addresses, and cannot generate multiple identities. Further,
we assume that nodes can generate prime numbers, and have
access to secure asymmetric key encryptions and signatures.
We will denote pk(X) the public key of a node X, {m}X the
encryption of a message m by node X, and 〈m〉X a message
m along with its signature by node X.

Gossip sessions and monitoring infrastructure. We as-
sume that several gossip sessions disseminating different con-
tents can hold simultaneously in the system. Each content is
generated and signed by its source. Updates are propagated
along with their signature so that they can be verified by
the nodes upon reception, which prevents data tampering.
Nodes interested in a content have to obtain the public key
of its source using an external service. We assume that a
membership protocol (e.g., Fireflies [18]) provides nodes with
a set of successors and monitors that can be identified, for a
given round, by each node in the system (as it has been done
in [12], [19], [27]).

Nodes and adversary models. We consider several types
of nodes. Correct nodes strictly follow the protocols. In
particular, the source of each session is assumed to be correct.
Selfish nodes are self-interested, and deviate from a protocol
in any way that would improve their benefit (e.g., reduced
bandwidth consumption or CPU overhead). We consider a
global and active opponent, which is the strongest model of
attacker. A global opponent can monitor and record the traffic
on network links. Active means that it can control some nodes
in the system and make them share information or deviate from
the protocol (if possible) in order to reduce the privacy of other
nodes. The only limitation of the global and active opponent
is that it is not able to invert encryptions.

Objectives. To protect a gossip-based system from selfish
deviations, we aim at enforcing the two following properties:

R1 Obligation to receive: At a given communication
round, a node must receive the updates sent by its
predecessors that it never received.

R2 Obligation to forward: A node must forward the
updates it received at a given communication round
R to all its successors during round R+1.

In addition, we aim at enforcing the following privacy prop-
erty, which prevents an attacker from building interest graphs:
P1 Unlinkability between updates and nodes: Suppose that

node A sends an update u to node B. Other nodes than
A and B should not be able to link A or B with u.

IV. PAG IN A NUTSHELL

In this section, we present two mechanisms composing PAG
that when combined provide both accountability and privacy to
dissemination protocols. We first present how nodes monitor
each other to enforce accountability in part IV-A. Then, we
introduce the intuition of the cryptographic procedures that
preserve privacy in part IV-B.

A. Enforcing accountability using a monitoring infrastructure

We use a log-less monitoring infrastructure, because main-
taining the consistency of secure logs is costly in terms of
exchanges and computations. In addition, logs, which are
public, reveal too much information about nodes. The first
key idea of this infrastructure is that the monitors of a node A
learn which updates A receives from declarations of the node
(which are then verified by its predecessors’ monitors), and
check that A’s successors receive these updates (from their
monitors). Second, message transmissions between monitors
allow them to maintain the same information about the updates
a node receives and has to retransmit. Finally, using classical
techniques we handle omission failures.

In the following, let M(A), respectively M(B), be the set of
monitors of node A, respectively node B. Figure 3 illustrates
the situation where a node A that received an update u,
forwards it to node B (message 1.) during round R. Upon
reception of u, node B sends an acknowledgement to its
monitors (message 3.) and to node A (message 2.). If node
A does not receive an Ack, it emits an accusation against
node B, which consists in sending to nodes in M(B) the
update u, and making them forward it to node B and ask

for an acknowledgement. If nodes in M(B) receive an Ack
from node B, they transmit it to the nodes in M(A) using the
Confirm(〈Ack(u,A)〉B) message (message 4.), otherwise
they send a Nack message to nodes in M(A). Using this
message, nodes in M(A) can check that node A (i) contacted
all its successors, and (ii) forwarded the right update. In the
meanwhile, nodes in M(B) have learnt that node B received
the update u, or that node B is unresponsive.

We now briefly explain why the best interest of nodes is to
transmit each message represented in Figure 3. We assume
that node A received update u, and that its monitors are
informed of this reception. In addition, at least one node in
each monitoring set is assumed to be correct. First, node A
will correctly send u to node B, because sending accusations
is more costly than sending a single update. Second, nodes in
M(A) expect to receive either a Confirm(〈Ack(u,A,B)〉B)
message (which proves that node B received u), or a Nack
message (if node B did not send a signed Ack to A). If
nodes in M(A) receive none of these messages, they have to
determine if node A did not send update u, or if node B did not
send the acknowledgement to its monitors. To reach this goal,
they ask node A for the acknowledgement that node B should
have sent. If node A cannot exhibit this acknowledgement it is
considered guilty because it did not accuse node B, otherwise
node B is considered guilty.

To summarise, this monitoring infrastructure forces nodes to
interact with their successors as well as to receive and forward
updates. However, monitors are aware of all the transmitted
messages. Our next goal is to hide this information.

A's monitors B's monitors D's monitors

BA D

Round R Round R+1

2. ⟨Ack (u , A)⟩B ⟨Ack (u ,B)⟩D

3. ⟨Ack (u , A)⟩B ⟨Ack (u ,B)⟩D

1.u u

4.Confirm (⟨ Ack (u , A) ⟩B) Confirm (⟨ Ack (u ,B) ⟩D)

Fig. 3. Monitoring of nodes to ensure the forwarding of messages

B. Enforcing privacy using homomorphic hashes

A straightforward solution that one may think of to enforce pri-
vacy is to encrypt updates. However, doing so is not sufficient
against a global and active opponent, because nodes which
participate in the protocol would know the correspondence
between a content and its encryption, and the monitors of
a node would know which encrypted updates were received.
To deal with this issue, we rely on homomorphic procedures
that allow monitors to check that nodes forward updates and
prevents them from learning which updates are exchanged.

Specifically, we use a hash function, noted H, based on
an unpadded RSA encryption, that exploits two of its multi-

plicative properties. Its public key consists of a modulus M
and an exponent p, then the hash of an update u is given by
H(u)(p,M) = up mod M . Let u1 and u2 be two updates,
and p1 and p2 be two exponents. The following homomorphic
properties can be established:

H(u1)(p,M) ·H(u2)(p,M) = H(u1 · u2)(p,M)

H
(
H(u)(p1,M)

)
(p2,M)

= H(u)(p1·p2,M)

Any hash function verifying these two properties could be
used to check the dissemination of messages. We will use
a modulo size of 512 bits, as recommended in [28]. Nodes
cannot decrypt the hashed updates, as the value of the modulus
M is smaller than the size of updates.

Figure 4 illustrates the intuition of the application of this
hash to check retransmissions. In this figure, nodes A and F
are two predecessors of node B, and node D is a successor of
node B. We represent only two of the j predecessors of node B
for the sake of simplicity, even though having 3 predecessors is
a minimum to ensure privacy. We only focus on the reception
and forwarding of the messages that node B receives. The
same steps would also apply to the nodes A, F and D to secure
each forwarding step.

B's monitors

B

A

D

5.H (u1∗...∗u j)(∏
i

pi , M)

4.{u1, ... , u j ,∏
i

p i}pk (D)

F

3.H (u j)(p j , M) ,∏
i≠ j

pi

3.H (u1)(p 1, M) ,∏
i≠1

pi

2. {u1}pk(B)

2. {u j}pk (B)

1. p1 ,∏
i≠1

p i

1. p j ,∏
i≠ j

pi

.

.

.

Fig. 4. Privacy preserving verification of a forwarding of a node B

Nodes A and F send updates u1 and uj to node B re-
spectively. First, nodes A and F ask node B to send them
a prime number. Node B chooses two prime numbers p1
and pj and respectively sends (p1,

∏
i6=1 pi) and (pj ,

∏
i6=j pi)

(messages 1.) to nodes A and F respectively. Then, nodes A
and F send their two updates to node B encrypted with its
public key (messages 2.). Nodes A and F declare (messages
3.) to the monitors of node B, that they sent updates to node
B whose hashes are respectively equal to H(u1)(p1,M) and
H(uj)(pj ,M). Node B then forwards the updates u1 and uj

to node D, and joins the product
∏

i pi (message 4.). Node D
acknowledges the reception of u1, ..., uj using the hash value
H(u1 ∗ ...∗uj)(

∏
i pi,M) to the monitors of node B that verify

that the following equation is verified:(
H(u1)(p1,M)

)∏
i6=1 pi ∗ ... ∗

(
H(uj)(pj ,M)

)∏
i6=j pi

mod M
= H(u1 ∗ ... ∗ uj)(

∏
i pi,M)

This short example shows that the monitors of a node
are able to check that it forwards the updates it receives
without learning the actual content. To break this privacy, an
attacker would have to learn the prime numbers a node has

chosen. With this information it would decrypt the exchanges
a node had with its predecessors, or successors. In practice,
predecessors and monitors of a node receive the product of
prime numbers, and are not able to factorise it efficiently, as
it is a notoriously known hard problem.

V. PAG DETAILED DESCRIPTION

The monitoring infrastructure and the homomorphic hashes
must be carefully combined so that selfish nodes can not
deviate from the protocol without being detected. In this
section, we detail the PAG protocol. We finally explain how
the forwarding mechanism is adapted to build a gossip-based
content dissemination protocol.

A. Transmission of updates between monitored nodes

Figure 5 presents the exchanges that occur when node A
forwards a set SA of updates to node B, which owns the
set SB of updates, during round number R. First, node A
asks a prime number to node B that it will use to hash the
product of the updates in SA (message 1.). Node B generates
one prime number pi for each of its predecessors. We note
K(R,B) =

∏
i pi the product of the prime numbers that node

B chooses during round R to receive updates.
In message 2., node B replies with the primary key pj in

a message signed using its private key, and then encrypted
using node A’s public key. It also joins the homomorphic
hashes H(ui∈SB

)(pj ,M) of the messages in SB using pj . Upon
reception of this message, node A can check if the updates in
SA are not in SB , and thus avoid to send them, as node B
already owns them.

In message 3., node A serves in a message signed using its
private key, and then encrypted using node B’s public key, the
updates in SA \SB , that node B does not have, and K(R-1,A).
The value of K(R-1,A) is the product of the prime numbers
node A used to receive the updates in SA from its predecessors
during round R-1. Node B has to use this value to acknowledge
the reception of updates using the hash function, in order for
the monitors of node A to check its forwarding.

In message 4., node A sends to node B a signed attestation
that declares the value of the hash of the product of the mes-
sages in SA using pj . This message will later be transmitted to
the monitors of node B, which will then check the forwarding
of node B based on its value.

In message 5., which is signed, node B acknowledges the
reception of the messages in SA using the hash of their product
with K(R − 1, A). If necessary, node A can later use this
message as a proof that it did forward the right set of messages
to node B during round R.

B. Transmission of hashes to the monitoring infrastructure

Monitors check that the node they monitor (i) contacts all
its successors, (ii) forwards all the messages it received at
round R during round R+1. The first verification consists
in checking the reception of messages from the monitors
of each successor, which correspond to forwarded updates.
For the second verification, monitors have to compute the

A

1. 𝐾𝑒𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝑅, 𝐴, 𝐵 𝐴

3. 𝑆𝑒𝑟𝑣𝑒, 𝑅, 𝐴, 𝐵, 𝐾 𝑅 − 1, 𝐴 , 𝑢𝑗∈𝑆𝐴\𝑆𝐵 , 𝑆𝐴 ∩ 𝑆𝐵 𝐴 𝑝𝑘(𝐵)

4. 𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑅, 𝐴, 𝐵, 𝐻 𝑢𝑖
𝑖∈𝑆𝐴 𝑝𝑗, 𝑀

𝐴

5. 𝐴𝑐𝑘, 𝑅, 𝐵, 𝐴, 𝐻 𝑢𝑖
𝑖∈𝑆𝐴 𝐾 𝑅−1,𝐴 , 𝑀

𝐵

B

2. 𝐾𝑒𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑅, 𝐵, 𝐴, 𝑝𝑗 , 𝐻(𝑢𝑖∈𝑆𝐵) 𝑝𝑗, 𝑀
𝐵 𝑝𝑘(𝐴)

Fig. 5. Exchange of updates between nodes

homomorphic hash of the product of all the messages that
the node receives during a given round, and check that its
successors during the following round acknowledge this hash.

In practice, at each round, the monitors of a node expect
to receive messages from it, and from the monitors of its
successors. Figure 6 illustrates the mechanisms that allow the
monitors to perform these tasks after node B has received the
set SA of updates from node A. In this figure, the monitors of
node B are nodes A, D and G, and node B sends two messages
to only one of its own monitors, to prevent monitors from
receiving all the products of the prime numbers.

Message 6. is a copy of the acknowledgement that node
B sent to node A in (message 5. of Figure 5), and message
7., which is signed, contains the attestation that node A sent
in message 4. of Figure 5, and the product of the prime
numbers that node B used to receive messages from its other
predecessors during round R.

The monitor that receives these two messages, here node D,
from node B computes the value(

H
(∏

i∈SA
ui

)
(pj ,M)

)∏
k 6=j pk

mod M =

H
(∏

i∈SA
ui

)
(
∏

k pk,M)
= H

(∏
i∈SA

ui

)
(K(R,B),M)

and broadcasts it to the other monitors of node B, along with
message 6. To check that monitors correctly compute and
forward the hashes of updates, nodes can compute this value
and send it to their monitors. Monitors are then able to check
each other’s correctness.

C. Homomorphic combination of hashes by monitors

During a round, each monitor of node B computes the product
of all the hash values forwarded by the other monitors of node
B. At the end of the round, the monitors of node B know
the homomorphic hash of the updates that node B received,
computed using the product of the prime numbers that node
B has chosen. This hash must then be acknowledged by the
successors of node B during the following round.

Suppose that node B receives the set of messages SA from

node A, and the set of messages SF from node F during a
given round. Let

∏
j pj be the product of the prime numbers

that node B used to receive these messages. The monitors of
node B obtain the hash of the union of SA and SF applying
the formula

H (SA ∪ SF)(
∏

j pj ,M) = H (SA)(
∏

j pj ,M)×H (SF)(
∏

j pj ,M)

To allow the monitors of node A to obtain the right part of
this formula, the monitors of node B have to forward them the
acknowledgement (message 9.). The monitors of node A can
then verify that node B received the correct set of messages
from node A.

B

6. 𝐴𝑐𝑘, 𝑅, 𝐵, 𝐴, 𝐻 𝑢𝑖
𝑖∈𝑆𝐴 𝐾 𝑅−1,𝐴 , 𝑀

𝐵

9. 𝐴𝑐𝑘, 𝑅, 𝐵, 𝐴, 𝐻 𝑢𝑖
𝑖∈𝑆𝐴 𝐾 𝑅−1,𝐴 , 𝑀

𝐵

7. 𝐴𝑡𝑡𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑅, 𝐴, 𝐵, 𝐻 𝑢𝑖
𝑖 ∈ 𝑆𝐴 (𝑝𝑗, 𝑀)

𝐴

, 𝑝𝑘
𝑘 ≠𝑗

𝐵 𝑝𝑘(𝐷)

8. 𝐻 𝑢𝑖
𝑖 ∈ 𝑆𝐴 𝑝𝑗,𝑀

 𝑝𝑘𝑘 ≠𝑗

𝑋

D

A

G

B’s monitors

A’s monitors

Fig. 6. Monitoring part of an interaction between two nodes

D. Application to a content-dissemination system.

In this section we present the important details or optimisations
that allow the protocol to become practical when applied to a
gossip-based dissemination protocol.

Buffermap transmissions. A node sends to its predecessors
the hashes of a proportion of the messages it owns, in order to
avoid multiple receptions. Determining how many hashes to
send is dependent on the applications, and more particularly
on the sizes of updates and of hashes. In our scenario, updates
were bigger than their hashes, and the best results in terms of
bandwidth consumptions were obtained when the updates of
the last 4 rounds were hashed and transmitted.

Multiple receptions. While PAG avoids some multiple
receptions of a same update, they can still occur when a node
simultaneously receive updates from different predecessors.
However, to limit the bandwidth consumption of nodes it is
necessary to make them forward these updates only once. To
do so, when a node sends an update it also joins to it an
integer which describes the number of times it was received
by the sending node during the previous round. This enables
the receiving node to accurately compute the hash of the set
of received updates, and the monitors to match the hashes of
received updates with the ones of forwarded messages.

Expiration of updates. In the context of live-streaming,
updates have an expiration date after which nodes should not
continue to forward them. Determining this expiration delay

is up to the system designer. To allow updates to stop being
propagated, when a node forwards them to another node,
it separates the updates in two lists: the first one contains
updates that will expire in the next round, and that should
not be forwarded, while the other one contains updates that
must be forwarded. A small modification of the messages and
monitoring exchanges allow updates to expire. The monitors
of a node acknowledge the reception of the first list and check
the propagation of the second list.

VI. PRIVACY AND ACCOUNTABILITY ANALYSIS

In this section, we present the results of the security analysis
we made using the cryptographic protocol verifier ProVerif
(part VI-A). This proof shows that property P1 holds against
a global and active attacker if it controls less than f nodes,
where f is the number of successors per node. We then briefly
explain why the implementation of the forwarding mechanism
provides accountability (part VI-B).

A. Privacy Guarantees

ProVerif [17] is an automatic cryptographic protocol veri-
fier that uses Horn clauses to detect possible attacks. Us-
ing ProVerif, we modelled the cryptographic mechanisms of
PAG1. This model shows that there is no attack on the privacy
property P1 that involves less than f nodes, where f is the
number of predecessors, successors and monitors per node.

We consider the representative situation where a node B,
assumed to be correct, receives updates from three predeces-
sors A1, A2 and A3, and has to forward them to one of its
successors C. For each node, we instantiated a set of monitors.
The case where f=3 is the simplest where the protocol can
be proved secure. Increasing the value of f reinforces the
security of the protocol, as the necessary number of colluding
nodes sharing information in order to break the privacy also
increases. The aim of an attacker is to obtain the value of a
prime number that node B chooses in order to obtain the detail
of the exchange between node B and this node. For attacks to
be feasible, we assume that the attacker has access to the list
of updates that node B may have received from its predecessor.
In order to find the updates that B received, the attacker would
have to hash any possible combination of updates using the
prime number and see if it is equal to the observation. This
attack is not really practical because the number of subsets of
a set of size N is equal to 2N .

We modelled several attack scenarios to assess the privacy
property P1. These scenarios can be grouped under two cases:
• Case (1). The attacker listens all communications on the

network, and tries to break the privacy of exchanges
between nodes A1 and B. The attacker can replay, or
inject messages in the network.

• Case (2). In addition to the assumptions of case 1., we
consider that at most (f-1) nodes among the monitors or
predecessors of a node are part of a coalition. This case
can be instantiated with several configurations (e.g., (f-2)

1The code is available at https://github.com/jdecouchant/PAG

monitors and 1 predecessor, (f-3) monitors and 2 prede-
cessors, etc.) that were all tested in our configuration.

In case (1), ProVerif proves that no attack exists on the
cryptographic procedures of PAG. The experiments in case
(2) confirm that no attacks exist if the opponent controls less
than f nodes. An attack is possible if f nodes collude among
the monitors or predecessors of a node, and ProVerif found it.
In this case, the opponent is able to obtain the prime numbers
that B generated and thus learn the updates node B received.

B. Accountability Analysis

We present in this section a sketch of the incentives that
enforce properties R1 and R2.

Let us consider the exchanges depicted in Figure 5. In
the following, we briefly explain the incentives that force a
selfish node, say node A, to follow the steps depicted in this
figure. Remember that nodes register the messages they send
or receive, and can use them to prove their correctness or that
another node deviated.

Node A computes the set of updates that its successor does
not have (which enforces R1) and send them, along with the
identifiers of the updates its successor already have (message
3). If a node does not send the right set of updates to its
successors then the verification its monitors run will fail.
Eventually, as its successors receive signed messages that they
can exhibit, it will be proved guilty. The attestation (message
4) that node A sends can be verified by node B, thus a
selfish node will correctly compute its value. In return, the
acknowledgement (message 5) that node B sends can also be
verified by node A. This acknowledgement forces node B to
inform its monitors about the updates it received from node
A (messages 6 and 7 of figure 6). Finally, if the verifications
of node A pass then it means that it forwarded the right set of
updates to the right nodes. After having received these updates,
node B is engaged towards its own monitors to continue the
forwarding of updates, which enforces property R2.

VII. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
PAG. We start by introducing our methodology and the values
of the protocol’s parameters (part VII-A). We then evaluate
the overhead of PAG in terms of bandwidth consumption
using both simulations and real code deployments compared
to state-of-the art competitors while varying the size of the
content being disseminated (parts VII-B). Further, we evaluate
the cryptographic costs of PAG (part VII-C) as well as its
scalability with respect to the number of users (part VII-D).
We finally evaluate the proportion of exchanges that an active
and global attacker may discover if it controls more than f
nodes in the system (part VII-E).

Overall, our evaluation shows that PAG is more costly than
existing accountable gossip protocols which do not preserve
privacy. Yet, contrary to accountable anonymous communi-
cation protocols, its performance is compatible with stream-
ing live video content on commodity Internet connections.
Furthermore, PAG’s cryptographic overhead can be handled

by modern architectures and thanks to its inherited gossip
properties, its bandwidth overhead scales logarithmically with
the number of nodes in the system. Finally, PAG improves the
resilience to active and global opponents compared to state of
the art protocols.

A. Methodology and Parameter Settings

To assess the performance of PAG, we implemented it in Java
and used it as a video live streaming application. When it is
not specified, PAG is configured with the same numbers of
successors and monitors per node (e.g., 3 when the system
contains 1000 nodes). In this context, a source node diffuses a
video stream at a fixed rate and sends each update to random
successors. Updates are then disseminated using PAG or one
of the protocols we compare PAG with. Among these protocols
are an accountable gossip protocol, and two anonymous com-
munications protocols. AcTinG [12] is an accountable gossip
protocol that does not preserve the privacy of nodes as nodes
maintain a secure log, and audit each other. RAC [15] is an
anonymous communication system that forces nodes to relay
the messages that other nodes send. Using RAC, a source
could send a content to all nodes anonymously while enforcing
accountability. We do not study Dissent [14] at it was shown
to be even more costly than RAC in [15].

Real deployment settings. We deployed PAG on 48 ma-
chines of the Grid5000 cluster, interconnected using a 1Gb/s
network, and using 9 instances per machine, thus totalling 432
nodes. Each machine contains a 4-cores Intel Xeon L5420
processor clocked at 2.5Ghz with 32GB of RAM. A source
groups packets in windows of 40 packets. The duration of one
round is set to one second, and updates of 938B are released 10
seconds before being consumed by the nodes’ media player.
Signatures are generated using RSA-2048. The sizes of the
generated prime numbers is set to 512 bits. The modulus used
in the homomorphic hashes is 512 bits long.

Simulations settings. We used the OMNeT++ [29] sim-
ulator, and ran a C++ implementation of PAG using the
same parameters value we used in our deployment. We also
computed the scalability of the protocol when the number of
nodes was too high to be simulated.

B. Comparisons with existing protocols

We first compare the bandwidth consumption of PAG to
the one of AcTinG [12]. Figure 7 presents the cumulative
distribution functions of the bandwidth consumptions of nodes
during a 300Kbps streaming session. In average, nodes running
AcTinG consume 460 Kbps, while they consume 1050Kbps
using PAG. This additional cost comes from the forwarding
policy: nodes must receive, at least through hashes, the updates
of their predecessors. Hence, a given node may have to
forward several times a given update to its successors. AcTinG
is less costly because nodes can refuse updates, and it is then
controlled using their log during audits. Increasing the number
of monitors does not significantly increase the bandwidth cost
of the protocol, because the messages transmitted between

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 200 400 600 800 1000 1200

C
D

F
 (

%
)

Bandwidth (kbps)

AcTinG
PAG

Fig. 7. Bandwidth consumption with a 300 kbps stream and 3 monitors

and to monitors are small, and allows a better resilience to
collective deviations between nodes.

Relying on anonymous communication systems to run a
gossip protocol would enforce privacy. However, these proto-
cols are costly and can not scale like PAG and AcTinG. We
thus designed a second set of experiments. The first two lines
of Table I present the video qualities we considered and the
associated payload size. Table II details the results we obtained
with 1000 nodes. For each network capacity, ranging from
1.5Mbps to 10Gbps, we study the maximum video quality
that each protocol can provide, and the amount of bandwidth
that is used. For example, with 1.5Mbps network links AcTinG
provides a 480p video using 1.4Mbps. PAG is more costly than
AcTinG which is also accountable but not privacy preserving.
Using 10Mbps network links, PAG provides at most a 480p
video, consuming 6.9Mbps of bandwidth. In comparison, AcT-
inG is able to send a 1080p video using 6Mbps of bandwidth.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th
 (

k
b

p
s
)

Update size (kb)

Fig. 8. Bandwidth consumption with 1000 nodes and a 300Kbps stream in
function of the size of updates [sim]

However, using anonymous communication systems would
be much more costly. The maximum payload that RAC is able
to provide using 10Gbps network links is equal to 63kpbs,
which is far from the minimum of 300Kbps that a basic
streaming session would require.

Impact of updates size. Although we used 938B updates in
the previous experiments, as was done in [19], [30], Figure 8
shows that using bigger updates can further decrease the
bandwidth consumption of PAG. This is due to the fact that

Video quality 144p 240p 360p 480p 720p 1080p

Payload size
(Kbps)

80 300 750 1000 2500 4500

RSA signatures 33 33 33 33 33 33

Hashes 133 475 1170 1560 3934 7200
TABLE I

NUMBER OF RSA SIGNATURES AND HOMOMORPHIC HASHES PER SECOND
IN A SYSTEM OF 1000 NODES [SIM]

more content can be represented under each hash. For exam-
ple, nodes propagating 10Kb updates needed to perform 370
homomorphic hashes per second, while propagating 100Kb
updates decreased this number to 52 hashes per second. In
addition, using larger updates also enables the CPU overhead
to decrease, as hashes are computed modulo M.

C. Cryptographic costs

PAG relies on cryptographic mechanisms, which dominate its
CPU cost. To evaluate this cost, we measured the number
of generated RSA encryptions and homomorphic hashes per
second rather than the CPU load, which depends on the
hardware used. We measured these numbers depending on the
video quality, and depicted the results in Table I. The number
of RSA signatures is always equal to 33, as it depends on
the number of messages generated by the protocol, while the
number of homomorphic hashes performed depends on the
video quality, and more precisely on the number of 938B
updates. Using openssl, we measured that each core of the
machines we used is able to perform 4800 hashes per second
with a 512-bits modulus. Thus using a single core to compute
homomorphic hashes is enough to obtain a video quality up
to 720p using a 512 bits modulus, which would generate
3924 hashes per second. Using more cores would provide
enough cryptographic power to support better video qualities.
In addition, using a 256 bits modulus can also be considered
secure enough in many situations, and it would significantly
reduce the bandwidth overhead of the protocol. Overall, we
believe that PAG can be used by a wide range of commodity
hardware.

D. Scalability

In this experiment we increase the number of nodes in the
system and measure their bandwidth consumption. The band-
width scalability of PAG comes from its gossip nature, as in a
system of N nodes, each user has log(N) successors. Figure 9
presents the bandwidth consumption of AcTinG and PAG
depending on the system size when a 300Kbps video stream is
disseminated. With a million nodes PAG consumes 2.5Mbps,
while AcTinG needs 840Kbps. In these conditions, PAG is
able to provide nodes with the full 300Kbps stream, while
consuming less bandwidth than anonymous communication
systems, which are too costly to be used.

E. Probabilistic study of the impact of coalitions on privacy

As proved using ProVerif, a coalition of at least f nodes can
obtain the prime numbers used in some nodes’ interactions.
We now evaluate the privacy leakage performed by a global

1.5Mbps 10Mbps 100Mbps 1 Gbps 10Gbps

Privacy Accountability ADSL Lite Ethernet Fast Ethernet Gigabit Ethernet 10 Gigabit Ethernet

PAG 3 3 144p (660 Kbps) 480p (6.9 Mbps) 1080p (31 Mbps) 1080p (31 Mbps) 1080p (31 Mbps)

AcTinG 5 3 480p (1.4 Mbps) 1080p (6 Mbps) 1080p (6 Mbps) 1080p (6 Mbps) 1080p (6 Mbps)

RAC 3 3 ∅ ∅ ∅ ∅ ∅
TABLE II

MAXIMUM VIDEO QUALITY SUSTAINABLE IN FUNCTION OF THE NETWORK LINKS CAPACITY, AND THE ASSOCIATED BANDWIDTH CONSUMPTION, IN A
SYSTEM WITH 1000 NODES

 0

 500

 1000

 1500

 2000

 2500

10
3

10
4

10
5

10
6

B
a
n
d
w

id
th

 (
k
b
p
s
)

Number of nodes [Log scale]

AcTinG
PAG

Fig. 9. Scalability of PAG and AcTinG with a 300Kbps content [sim]

and active attacker that would control more than f nodes
in PAG. We also perform this attack on an existing state
of the art protocol, i.e., AcTinG [12]. In AcTinG, monitors
probabilistically audits nodes’ secure logs, which contain the
detail of past interactions. Differently, in PAG, it is possible to
discover the details of the interactions of a node if all its pre-
decessors except at most two and at least one of the monitors
of this node collude. This essentially means that collecting the
prime numbers a node used, and observing all its encrypted
interactions is enough to understand them. The success of
attacks is evaluated in terms of probabilities as nodes are
randomly affected predecessors, successors, and monitors. We
evaluate the probability that an exchange between two nodes
is discovered in function of the size of the coalition.

In Figure 10, we evaluate the proportion of exchanges that
an attacker controlling a variable proportion of the membership
can discover. The lowest possible proportion in this case is
represented in plain black, and expresses the probability that
at least one of the two nodes that interact is corrupted. As
this figure shows, increasing the number of monitors, and the
number of nodes in the system, makes the privacy guarantees
of PAG close to ideal, while all interactions are discovered
when an attacker controls 10% of nodes in AcTinG.

VIII. RELATED WORKS

In this section we describe how existing solutions relate to the
problem we solve in this paper.

Selfish resilient gossip protocols. BAR Gossip [19] and
FlightPath [27] are streaming protocols that handle both selfish
and Byzantine deviations through deterministic interactions.
However, peers are not forced to initiate exchanges. Differ-
ently, LiFTinG [30] uses audits to control that nodes forward
the updates they receive. However, it relies on statistical prop-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100P
ro

p
o

rt
io

n
 o

f
in

te
ra

c
ti
o

n
s
 d

is
c
o

v
e

re
d

 (
%

)

Proportion of attackers (%)

AcTinG
PAG - 3 monitors
PAG - 5 monitors

Theoretical minimum

Fig. 10. Resiliency against a global and active attacker

erties that may produce up to 12% of false-positives, and false-
negatives, and reveal the detail of the interactions of nodes.

Anonymous communications. The first anonymous com-
munication protocols, DC-Net [31] and Onion Routing [32],
focused on enabling the strongest possible anonymity level
for the former, and on providing practical performance for
the latter. However, they take the participation of nodes for
granted. More recently, Dissent [14] and RAC [15] force nodes
to execute their role of relay. However, using these systems
can be seen as a performance overkill. For example, for each
message sent anonymously, Dissent [14] uses trusted nodes
which receive anonymous communication requests and runs a
protocol involving all-to-all communications.

Zero-Knowledge proofs. Classical zero-knowledge proofs
can not always be applied because they are designed to verify
functions that has a fixed number of inputs, whereas in many
distributed systems both the size and the number of a node’s
”inputs” (the messages it has received from other nodes) are
not known. In particular, in gossip, the quantity of messages
a node receives during a time interval is not predictable.

Accountability approaches. Software-based accountability
approaches, which include PeerReview [9], and A2M [33],
make nodes maintain a secure log, and audit each other. Audits
transfer logs, and reveal detailed information about nodes.
Similarly, hardware-based accountability approaches [24], [33]
rely on a trusted hardware to maintain secure logs. For exam-
ple, PeerReview associates each node with a set of monitors,
which verify it using the secure log. In our context, these
applications would allow an attacker to track the propagation
of an update among a membership, even if its encrypted.

Privacy-preserving accountability. In [34], nodes maintain
a Merkle Hash Tree in which the leaves represent all the
possible states of a node, and regularly publish its root hash

value. Nodes that interacted with a given node are then able to
collectively, but anonymously, check its state. This approach
has been applied to a BGP routing system [35]. However
elegant, we believe that this approach cannot be applied to
gossip protocols, as it is not possible to concisely represent
all the possible states of a node.

Virtual currency. In [36], a virtual currency approach
is shown to provide accountability without compromising
privacy in a peer-to-peer system. However, contrary to PAG,
which is fully-decentralised, this solution requires two trusted
entities that have access to nodes’ information: i) a bank,
which maintain an account for each user and knows about all
transactions in the system; and ii) the arbiter, which ensures
the fair exchange of e-cash for data.

IX. CONCLUSION

A number of gossip-based content dissemination protocols
tolerating selfish behaviours have been proposed in the past.
However, they do not preserve the privacy of users. On the
other side of the spectrum, accountable anonymous commu-
nication protocols are too costly to be used to disseminate
live multimedia content. In this paper, we have presented the
first protocol that enforces accountability through a monitoring
infrastructure and still preserves the privacy of users thanks to
homomorphic cryptographic procedures. Performance evalu-
ation of PAG combining both a real deployment and simu-
lations has demonstrated that its bandwidth consumption is
compatible with streaming live content and that the partial
privacy of nodes is close to optimal, even in presence of
a global and active attacker. We have also shown that the
reasonable cryptographic overhead of PAG makes it accessible
to modern architectures, and that it exhibits very desirable
scalability properties with a logarithmic growth of bandwidth
consumption, comparable to standard gossip-based protocols.
The privacy of nodes could be further enhanced if even the
direct neighbors of nodes could not determine the media
content they are interested in. Doing so in a peer-to-peer
system is challenging, and future works include the design of a
dissemination protocol that would improve on the obfuscation
approach, which hide the interests of nodes by making them
receive several contents at the same time.

ACKNOWLEDGMENT

This research was partially supported by the SnT and by the
National Research Fund Luxembourg (FNR), through PEARL
grant FNR/P14/8149128, and by the LABEX IMU (ANR-
10-LABX-0088) of Université de Lyon, within the program
”Investissements d’Avenir” (ANR-11-IDEX-0007) operated
by the French National Research Agency (ANR).

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] N. Basher, A. Mahanti et al., “A comparative analysis of web and peer-
to-peer traffic,” in WWW, 2008.

[2] “Velocix,” http://www.velocix.com, accessed: 2015-07-26.
[3] L. Vu, I. Gupta et al., “Understanding overlay characteristics of a large-

scale peer-to-peer iptv system,” TOMCCAP, 2010.
[4] H. Yin, X. Liu et al., “Design and deployment of a hybrid cdn-p2p

system for live video streaming: experiences with livesky,” in ACM
Multimedia, 2009.

[5] T. Bonald, L. Massoulié et al., “Epidemic live streaming: optimal
performance trade-offs,” in ACM SIGMETRICS, 2008.

[6] A.-M. Kermarrec, L. Massoulié et al., “Probabilistic reliable dissemina-
tion in large-scale systems,” Parallel and Distributed Systems, 2003.

[7] R. Eidenbenz, T. Locher et al., “Hidden communication in p2p networks
steganographic handshake and broadcast,” in INFOCOM, 2011.

[8] I. Cunha, E. C. Miguel et al., “Can peer-to-peer live streaming systems
coexist with free riders?” in P2P, 2013.

[9] A. Haeberlen, P. Kouznetsov et al., “Peerreview: Practical accountability
for distributed systems,” in ACM SIGOPS OSR, vol. 41, no. 6, 2007,
pp. 175–188.

[10] A. Haeberlen, P. Aditya et al., “Accountable virtual machines.” in OSDI,
2010.

[11] A. Diarra, S. B. Mokhtar et al., “Fullreview: Practical accountability in
presence of selfish nodes,” in SRDS, 2014.

[12] S. B. Mokhtar, J. Decouchant et al., “Acting: Accurate freerider tracking
in gossip,” in SRDS, 2014.

[13] P. Aditya, M. Zhao et al., “Reliable client accounting for hybrid content-
distribution networks,” in NSDI, 2012.

[14] D. I. Wolinsky, H. Corrigan-Gibbs et al., “Dissent in numbers: Making
strong anonymity scale.” in OSDI, 2012.

[15] S. Ben Mokhtar, G. Berthou et al., “Rac: a freerider-resilient, scalable,
anonymous communication protocol,” in ICDCS, 2013.

[16] J. Nash, “Non-Cooperative Games,” The Annals of Mathematics, vol. 54,
no. 2, 1951.

[17] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” in csfw, 2001.

[18] H. Johansen, A. Allavena et al., “Fireflies: scalable support for intrusion-
tolerant network overlays,” in ACM SIGOPS OSR, 2006.

[19] H. C. Li, A. Clement et al., “Bar gossip,” in OSDI, 2006.
[20] A. J. Ganesh, A.-M. Kermarrec et al., “Scamp: Peer-to-peer lightweight

membership service for large-scale group communication,” in Networked
Group Communication, 2001.

[21] M. Jelasity, S. Voulgaris et al., “Gossip-based peer sampling,” TOCS,
2007.

[22] E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday,
2000.

[23] R. Krishnan, M. D. Smith et al., “The impact of free-riding on peer-to-
peer networks,” in System Sciences, 2004.

[24] D. Levin, J. R. Douceur et al., “Trinc: Small trusted hardware for large
distributed systems.” in NSDI, 2009.

[25] E. Zheleva and L. Getoor, “To join or not to join: the illusion of privacy
in social networks with mixed public and private user profiles,” in WWW,
2009.

[26] H. Hu, G.-J. Ahn et al., “Detecting and resolving privacy conflicts for
collaborative data sharing in online social networks,” in ACSAC, 2011.

[27] H. C. Li, A. Clement et al., “Flightpath: Obedience vs. choice in
cooperative services.” in OSDI, 2008.

[28] Enisa, “Algorithms, key size and parameters report,” 2014.
[29] O. D. E. Simulator, https://omnetpp.org/.
[30] R. Guerraoui, K. Huguenin et al., “Lifting: lightweight freerider-tracking

in gossip,” in Middleware, 2010.
[31] D. Chaum, “The dining cryptographers problem: Unconditional sender

and recipient untraceability,” Journal of cryptology, 1988.
[32] D. Goldschlag, M. Reed et al., “Onion routing,” Communications of the

ACM, 1999.
[33] B.-G. Chun, P. Maniatis et al., “Attested append-only memory: Making

adversaries stick to their word,” in ACM SIGOPS, 2007.
[34] A. Papadimitriou, M. Zhao et al., “Towards privacy-preserving fault

detection,” in Hot Topics in Dependable Systems, 2013.
[35] M. Zhao, W. Zhou et al., “Private and verifiable interdomain routing

decisions,” in SIGCOMM, 2012.
[36] M. Belenkiy, M. Chase et al., “Making p2p accountable without losing
privacy,” in ACM workshop on Privacy in electronic society, 2007.

http://www.velocix.com
https://omnetpp.org/

