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Abstract—Spatial throughput (i.e. throughput with spatial
reuse) is important with new types of networks such as vehicular,
sensor and military networks. The aim of this study is to compute
the spatial throughput of Aloha and CSMA using tools for
stochastic geometry. Our network nodes will be modeled as
elements of a Poisson Point Process (PPP) of a one- or two-
dimensional space. Spatial Aloha can be modeled easily, the
transmitting nodes are just selected with a given transmission
probability. In spatial CSMA the nodes with the smallest back-
off counter in their neighborhood will be selected to transmit
and thus we can use random marks to perform the selection.
We use the two models we have built to compare the spatial
density of successful transmissions of CSMA and Aloha. To
carry out a fair comparison, we will optimize both schemes by
adjusting their parameters. For spatial Aloha, we can adapt the
transmission probability, whereas for spatial CSMA we have to
find the suitable carrier sense threshold.

The results obtained show that CSMA, when optimized,
outperforms Aloha for nearly all the parameters of the network
model values and we evaluate the gain of CSMA over Aloha. We
also find interesting results concerning the effect of the model
parameters on the performance of both Aloha and CSMA. The
closed formulas we have obtained provide immediate evaluation
of performance, whereas simulations may take minutes to give
their results. Even if Aloha and CSMA are old protocols,
this comparison of spatial performance is new and provides
interesting and useful results.

Keywords—CSMA, slotted and non-slotted Aloha, spatial per-
formance, stochastic geometry

I. INTRODUCTION

From the 60s to the 80s, most performance evaluations
were performed on wired networks. At the end the twentieth
century came the revolution of wireless networks and, in the
domain of local area networks, the IEEE 802.11 standard
also called WiFi. The dominant architecture of WiFi networks
involves an access point. This node, which is generally con-
nected to the Internet, exchanges packets with surrounding
nodes which are linked to the access point. In each cell around
an access point there is only one packet sent at each instant
since all the nodes are within carrier sense range of the each
other. More recently, great progress in wireless transmission

technology has paved the way to much bigger networks
with more massive transmission patterns. This phenomenon is
known as spatial reuse. In VANETs, extending the networks
along the roads leads to vast networks where spatial reuse must
inevitably be present. Moreover, the density of the vehicles
may vary greatly, which leads to further complications. The
high density of communicating vehicles on a road using
the IEEE 802.11p - a CSMA-based protocol - justifies the
optimization of CSMA in networks with spatial reuse.

However, the access schemes used in these recent wireless
networks also use the well-known Carrier Sense Multiple
Access techniques (CSMA) as did the first Wireless LANs
(WLANs) such as the IEEE 802.11 standard1. Therefore, a
deeper understanding of CSMA with spatial reuse is needed.
Aloha [1] was introduced in the early 70s. This is the simplest
medium access control scheme since each node in the network
simply transmits its packet at random and re-transmits it if
necessary. Aloha can also, like CSMA, be used in these more
recent networks which use the spatial reuse capability of the
radio medium.

The remainder of this paper is organized as follows.
Section II briefly describes related work. Section III describes
the model proposed to study spatial Aloha and CSMA and
develops the corresponding analytical model. The results of the
model evaluating the influence of the parameters are reported
in Section IV. Finally Section V concludes the paper.

II. RELATED WORK

The first studies on Aloha and CSMA were carried out
in the 1970s resulting in several seminal studies such as the
papers by Abramson [1] and Kleinrock [2].

These two papers, and a great number of others using
the same analytical model framework, assume that the shared
radio medium can carry only one packet at a given time.
This is a fundamental characteristic of these analyses. We will
see below that a period of ten yearrs was necessary before

1CSMA is also used in IEEE 802.15.4, a widely used protocol for sensor
networks.



papers investigating models with concurrent transmission on
the medium appeared.

The study by Kleinrock [2] was precise in its analysis of
the carrier-sense effect but, the model of the back-off technique
remained at a global level. It was only in 2000 that the
paper by Bianchi [3] which proposed a Markov model for the
transition between the back-off states of nodes in IEEE 802.11
networks made a significant step forward in the modeling
of the CSMA back-off technique. However [3] still did not
introduce concurrent transmissions.

The study of Aloha has also received interesting contribu-
tions such as the analysis of slotted Aloha and the proposal of
a scheme to stabilize Aloha [4]. However these improvements
still do not consider concurrent transmissions.

Initial studies dealing with spatial reuse in spatial networks
appeared in articles devoted to Aloha such as [5] and [6]
and a model for slotted Aloha [5] was introduced by Ghez,
Verdu and Schwartz in 1988. Their model included multi-
packet reception capability and was, to our best knowledge, the
first quantitative model of wireless networks with spatial reuse.
In [6] Baccelli et al. revisited the model and demonstrated that
the probability of successful transmission in an Aloha network
with spatial reuse could be accurately computed if the distance
between the transmitter and the receiver was known. If this
distance is known, the density of successful transmissions can
also be computed.

In Aloha networks the randomization of the transmitters
is stateless and the pattern of the simultaneously transmit-
ting nodes is simple to evaluate. This explains the relative
simplicity of the evaluation of Aloha. Describing the set of
simultaneous transmission is a far more complex task for
CSMA than for Aloha. Although in [7] the mean number of
transmissions with CSMA is computed in a random linear
network of vehicles, the authors only take into account the
nearest interferer. In contrast, the present study takes the
entire interference into account. The pattern of simultaneous
transmissions in CSMA was evaluated in [8] using the Matern
selection process [9]. The authors in [10] employ a similar pro-
cess to evaluate interference but fail to compute the network
throughput which is the corner stone of this paper. The model
which was presented in [8], and improved in [11], forms the
basis of the model that we use and extend in this paper. To
the authors’ best knowledge, there is no recent work pursuing
these studies.

Concerning the comparison of spatial CSMA and spatial
Aloha, this paper is apparently among the very few papers to
tackle this subject. [12] uses extensive simulations to evaluate
performance whereas [13] focuses on the outage probability
and does not compute the spatial throughput. [14] focuses
on a novel power control protocol to improve the aggregate
throughput of the network. In addition to using of stochastic
geometry models, the present paper has the originality of
focusing its evaluation on transmission over a distance which
is the mean distance between a node and its closest neighbor.

III. SYSTEM MODEL

In our model, the network nodes are randomly distributed
according to a Poisson Point Process Φ. We denote by λ the

intensity of the process. In our study we consider a 2D infinite
plane, S = R2 or a 1D infinite line, S = R. The 2D model
will be suitable for Mobile Ad-hoc NETworks (MANETs)
and Wireless Sensor Networks (WSNs). The 1D model is
more relevant for vehicular Ad-hoc NETworks (VANETs). We
assume that the signal received in a transmission is the result
of the combination of a random fading F and a power-law in
the distance decay 1/rβ where β is the decay factor and is
generally between 2 and 6. In this paper the fading will be
Rayleigh i.e exponentially distributed with parameter µ. Thus
the signal received when the transmitter and the receiver are
at distance r from each-other is F/l(r)2 with l(r) = rβ .

We use the well-accepted SINR (Signal over Interference
and Noise Ratio) with a capture threshold T. In the following,
we assume that there is no thermal noise (i.e. W ≡ 0). Dealing
with thermal noise would be easy but is not done in this paper
due to limitations of space. An even more realistic model than
the SINR based on a graded SINR model using Shannon’s
law is possible in our framework though with an increased
computational cost. This is left for further work because we
consider that the SINR model is already a meaningful model.

This study assumes that each node in Φ has a receiver at
distance r from the transmitter. This distance will a typical
distance of the PPP computed as the average distance to the
closest neighbor3. We recall that this distance is r = 1/λ in
1D network and r = 1/

√
λ in 2D networks, see Figure 1.

In this paper we adopt a model where the network nodes
are saturated. This means that at each instant each node always
has a pending packet.
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Fig. 1. Transmission to a typical node in a 2D network over a distance
which is the average distance to the closest neighbor. .

A. Analysis of spatial Aloha

The analysis of spatial Aloha (slotted and non-slotted)
comes respectively from [6] and [15]. In addition to the general
network model described above, we need to add the nodes’
transmission probability p. In slotted Aloha, p denotes the
node’s transmission probability at each slot. In non-slotted
Aloha and in a given node, the duration between the end of a
packet transmission and the beginning of the next transmission
is exponentially distributed with rate ε. We can unify the
notation with p of the slotted model if we set p = 1/(B + 1

ε )

2The power received P = P0F
l(r)

and we set P0 = 1
3Dealing with a distance following the distribution of the n-th nearest

neighbor [generalized gamma distribution] is possible in our frame but will
incur more computation



where B denotes the duration of a packet4, see [15]. For non-
slotted Aloha we use the rain model introduced in [15]. This
model is shown to provide a very good estimation even when
the nodes are fixed, as in the present model. For a complete
presentation of the model for non-slotted Aloha the reader can
refer to [15].

With Rayleigh fading, the capture probability is di-
rectly linked to the Laplace of the interference and of
the noise, we have pc(r, λ) = LI(µT l(r))LW (µT l(r)) =
LI(µT l(r))(see[6]), with

LI(s) = exp
(
− λp

∫
S

(1− LF (s/l(|x|)))dx
)

and LF (.) is the Laplace transform of the fading.

For the 2D and slotted Aloha case we have:

pc(r, λ) = exp
(−2π2λpr2T 2/β

β sin(2π/β)

)
, (1)

and for non-slotted Aloha:

pc(r, λ) = exp
( −4π2λpr2T 2/β

(β + 2) sin(2π/β)

)
. (2)

For the 1D and slotted Aloha case we have:

pc(r, λ) = exp
(−2πλprT 1/β

β sin(π/β)

)
, (3)

and for non-slotted Aloha:

pc(r, λ) = exp
( −4πλprT 1/β

(β + 2) sin(π/β)

)
. (4)

The density of successful transmissions is:

D = λppc(r, λ).

The maximization of D with respect to p is straightforward.
The table below provides the maximization (in p) of D for
slotted Aloha and non-slotted Aloha for 2D networks.

2D popt Dopt

slotted Aloha β sin(2π/β)
2π2λr2T 2/β

β sin(2π/β)e−1

2π2r2T 2/β

non-slotted Aloha sin(2π/β)(β+2)
4π2λr2T 2/β

sin(2π/β)(β+2)e−1

4π2r2T 2/β

The case of 1D networks is given in the following table :

1D popt Dopt

slotted Aloha β sin(π/β)
2πλrT 1/β

β sin(π/β)e−1

2πrT 1/β

non-slotted Aloha sin(π/β)(β+2)
4πλrT 1/β

sin(π/β)(β+2)e−1

4πrT 1/β

The computations in the above tables assume that values
of popt are smaller than or equal to 1. This will be the case
for the values of the system used in Section IV. If it is not the
case, then popt = 1 and Dopt is obtained using the first four
formulas of the above section setting p = 1 in pc(r, λ).
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Fig. 2. Matern CSMA selection process and an example of over-elimination.

B. Analysis of spatial CSMA

To mimic the CSMA selection process, we use a Matern
process in a marked PPP: (Xi ∈ Φ,mi), as is done in [11].
The mi are thus random numbers in [0, 1]. We denote by
Fi,j the fading for the transmission between Xi and Xj The
Matern selection process elects the the points Xk with the
smallest random marks mk in their neighborhood. We need
to introduce the carrier sense threshold Pcs to precisely define
the neighborhood of a point Xi. We define V(Xi) = {Xj ∈
Xi Fi,j/l(|Xi−Xj |) > Pcs} the neighborhood of Xi. A node
Xi will be selected in the Matern selection process if and only
if ∀Xj ∈ V(Xi) mi < mj . As can seen in Figure 2, Xi has
the smallest mark mi in its neighborhood and thus it will be
selected in the Matern selection process. We observe that Xq

does in fact have a smaller mark, but it is not within node i’s
neighborhood. For the sake of simplicity, we have not taken
into account any Rayleigh fading (F ≡ 1) in Figure 2 and thus
the neighborhoods of the nodes are discs of the same radius.
We can observe that the Matern selection process results in an
over-elimination of nodes. When one node is eliminated by a
node with a smaller mark, the node which has been eliminated
should not continue to eliminate other nodes. But this over-
elimination can occur, as is shown in Figure 2 where node o
is eliminated by node i, but node o goes on to eliminate node
p in the Matern selection process, whereas in a real CSMA
system, node o is correctly eliminated by node i, but, being
eliminated, node o can not eliminate another node. We do not
take this case into account in our model.

We note the medium access indicator of node Xi ei =
1I(∀Xj ∈ V(Xi) mi < mj)

Proposition 1. The mean number of neighbors of a node is:

N = λ

∫
S

P{F > Pcsl(|x|)}dx.

In a 2D network we have :

N =
2πλΓ(2/β)

β(Pcsµ)2/β
. (5)

4 1
ε

is the mean duration between the end of a packet and the start time of
the next packet.



In a 1D network we have :

N =
λΓ(1/β)

β(Pcsµ)1/β
. (6)

This result is very simple. Let F 0
j be the fading between

the node at the origin Xi and node Xj

This is just the application of Slivnyak’s theorem and
Campbell’s formula, see [16], [11]

N = E0
[ ∑
Xj∈φ

1I(F 0
j l(|Xj −Xi|) > Pcs

]
= λ

∫
S

P{F > Pcsl(|x|)}dx

A straightforward computation provides the explicit value
of N in 1D and 2D cases.

Proposition 2. The probability5 p that a given node X0

transmits i.e. e0 = 1 is:

p = E0[e0] =
1− e−N

N
. (7)

Proof: The proof is obtained by computing the probability
that a given node at the origin with a mark m = t is allowed
to transmit. The result is then obtained by deconditioning on
t. The details of the proof can be found in [11].

Proposition 3. The probability that X0 transmits given that
there is another node Xj ∈ Φ at distance r is pr with

pr = p− e−Pcsµl(r)
(1− e−N

N2
− e−N

N

)
. (8)

Proof: The proof is the same as that of Proposition 2.

Proposition 4. Let us suppose that X1 and X2 are two points
in Φ such that |X1 − X2| = r. We suppose that node X2 is
retained by the selection process. The probability that X1 is
also retained is:

h(r) =

2
b(r)−N ( 1−e−N

N
− 1−e−b(r)

b(r) )(1− e−Pcsµl(r))
1−e−N

N
− e−Pcsµl(r)

(
1−e−N

N2 − e−N

N

) (9)

with

b(r) = 2N − λ
∫
S

e−Pcsµ(l(|x|)+l(|r−x|)dx. (10)

In a 2D network, we have:

b(r) = 2N −λ
∫ ∞
0

∫ 2π

0

e−Pcsµ(l(τ)+l(
√
τ2+r2−2rτcos(θ)))dτdθ.

(11)
In a 1D network, we have:

b(r) = 2N − λ
∫ ∞
−∞

e−Pcsµ(l(τ)+l(|r−τ |))dτ. (12)

5We use p here, the same notation as in Aloha since the two parameters have
the same meaning. In Aloha p is chosen by the user and is the transmission
probability. In CSMA p is the probability that a node transmits, which is
governed by the carrier sense mechanism and thus p is a function of Pcs .

Proof: The proof can be found in [11].

Proposition 5. The probability of successfully receiving a
packet at distance r in a CSMA system (carrier sense threshold
Pcs modeled by a Matern selection process) and with a capture
threshold T is:

pc(r, Pcs) ' exp
(
− λ

∫
S

h(|x|)
1 + l(|x−r|)

Tl(r)

dx
)
. (13)

In a 2D network, we have:

pc(r, Pcs) ' exp
(
− λ
∫ ∞
0

∫ 2π

0

τh(τ)

1 +
l(
√
τ2+r2−2rτcos(θ))

Tl(r)

dτdθ
)

(14)
In a 1D network, we have:

pc(r, Pcs) ' exp
(
− λ

∫ ∞
−∞

h(τ)

1 + l(|r−τ |)
Tl(r)

dτ
)

(15)

Proof: The idea of the proof is to consider a transmitter
at the origin and to compute the probability of successful
reception by a receiver at distance r. We assume the presence
of another transmitting node at distance τ . According to propo-
sition 4, the density of such nodes is λh(τ). We approximate
the interference by the interference of a Poisson Process of
density λh(τ). The result is obtained by integrating on τ . The
details of the proof can be found in [11].

Proposition 6. The spatial density of successful transmis-
sions is thus: D = λppc(r, Pcs). (16)

This spatial density has a 1D and a 2D version and the values
of p and pc(r, Pcs) are chosen accordingly.

Proof: Proposition 6 is just the exploitation of proposi-
tions 2 and 5.

IV. RESULTS OF THE MODEL

In this section, we use the model to analyze the network
performance and the influence of the model’s parameters. We
study the transmissions for pairs of source-destination nodes
at distance r. r is set at 1/

√
λ or 1/λ for 2D and 1D networks

respectively. r can be seen as a typical distance in these
networks since it is the average distance between a node and
its closest neighbor. Thus the transmitters are in the Poisson
Point Process and for each transmitter, we create a random
receiver at distance r.

A. Optimizing the density of successful transmissions with p
for Aloha and the carrier sense threshold Pcs for CSMA

In this section we fix the parameters of the model λ, T
and µ.

Figure 3 illustrates the density of successful transmissions
for both slotted and non-slotted Aloha. This density starts to
increase, reaches a maximum for a value of the transmission
probability popt computed in Section III-A, and then decreases.

For CSMA we vary Pcs to maximize the density of
successful transmissions. The probability of transmission p in
CSMA increases when Pcs increases, which is because with
larger values of Pcs transmission is easier. But, in contrast,
when Pcs increases, pc(r, Pcs) decreases, as can be shown
using the equation of proposition 4. When Pcs increases,
h(τ) increases and thus pc(r, Pcs) decreases. Thus there is an
optimal value of Pcs which optimizes the density of successful
transmissions. Studying some significant examples, we have



seen that the density of successful transmissions always has the
same behavior, as shown in Figure 3. For small values of Pcs
and when we increase Pcs, p increases faster than pc(r, Pcs)
decreases, and thus the density of successful transmissions is
an increasing function of Pcs. This density reaches a maximum
for a given value of Pcs and then becomes a decreasing
function of Pcs. We assume that this is always the case
although it seems difficult to prove it in the equations. We use
Maple to numerically compute this optimum of the density of
successful transmissions.
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B. Effect of the fading rate µ

For Aloha, computing the probability of successful trans-
missions and the density of successful transmissions shows
that the fading rate µ disappears in the equations6. Thus this
parameter has no effect on the performance of Aloha (slotted
and non-slotted). For CSMA we observe that in the probability
of transmission p found in Proposition 2, we can isolate µPcs.
It is the same for pc(r, Pcs). Thus if we multiply µ by x, we
can obtain the same performance by dividing Pcs by x. Thus
µ does not influence the global performance of the system; the
optimum density of successful transmissions, the probability
of capture pc(r, Pcs) and the probability of transmission p at
the optimum value of Pcs.

C. Effect of the density of nodes λ

For both slotted and non-slotted Aloha, the maximum den-
sity of successful transmissions is obtained by we exploiting
formulas of Section III-A.

We study transmissions over the average distance to the
closest neighbor, thus λr = 1 for 1D networks and λr2 = 1
for 2D networks. We use the following parameters T = 1,
µ = 10 and β = 4. In the above formula, we observe that the
maximum density of successful transmissions is linear in λ
for 1D and 2D networks, as is also shown in Figures 4 and 5.

For CSMA, we compute the optimum density of successful
transmissions when Pcs is optimized versus λ the density
of nodes in the network. The results of these computations
are shown in Figure 4 for 2D networks and in Figure 5 for
1D networks. Our numerical study shows that the density of
successful transmissions is linear in λ. This means that the
maximum of the product of ppc(r, Pcs) does not depend on

6This because the fading affects the transmission and the interference
equally.

λ. This is an interesting result and one which is not easily
apparent in the analytical formulas of ppc(r, Pcs).

Figures 4 and 5 also show the density of successful
transmissions for CSMA when the carrier sense threshold is
constant and taken as the optimal value for λ = 1. The loss
is already significant for small values of λ: 26% for λ = 0.1
and is even more significant for large values of λ : 80% for
λ = 10 in 2D networks and 85% for λ = 10 in 1D networks.
For instance, this means that, in a VANET, the channel cannot
be used efficiently if the carrier sense threshold is not properly
optimized according to the density of vehicles. When λ = 0.1
and if we use the optimization for λ = 1 we do not have any
restriction on the transmission rights but rather an excess of
transmission rights. The problem arises from the probability
of success for a given transmission. When λ = 10 and if we
use the optimization for λ = 1 we have a tight restriction
on the transmission rights, whereas a given transmission is
very well protected by the CSMA scheme and thus every
transmission is nearly always successful. The model shows
that the problem concerning the access right is much more
detrimental to the global throughput than collisions would have
been if the density of nodes had been overestimated.

We have studied the probability of capture when the
throughput is optimized. We observed that, for CSMA, the
optimum throughput is not obtained when most of the trans-
missions are successful but rather when the success rate is
around 55% in 2D networks and around 70% in 1D networks.
The numerical results we obtained show that, at the optimum,
pc(r, Pcs) does not depend on λ and we also deduce that p
does not depend on λ. This is an interesting result which is
not brought to light using the analytical formulas. In Aloha
the probability of capture when the throughput is optimized is
1/e as shown by the computations in Section III-A.

When we compare the density of successful transmissions
for Aloha with the density of successful transmissions for
CSMA, we find that the gain of CSMA is 57% and 78%
with non-slotted and 18% and 33% with slotted Aloha for
2D and 1D networks respectively, see Figures 4 and 5. We
observe that this gain is particularly significant in 1D networks.
However, when the carrier sense threshold is not optimized,
Aloha can offer a larger density of successful transmissions, as
shown in Figures 4 and 5. A very useful property of Aloha is
that when we consider transmissions over the average distance
to the closest neighbor, the probability which optimizes the
density of successful transmissions does not depend on λ (see
the formulas for popt in Section III-A7). Thus in contrast to
CSMA, there is no risk of an unsuitable tuning for Aloha. This
represents a huge advantage of Aloha. In a VANET, where the
density of vehicles may greatly vary, we may wonder whether
Aloha would not be a better option than CSMA if we can not
dynamically adjust the carrier threshold.

D. Effect of the capture threshold T

We study the effect of the capture threshold on the
maximum density of successful transmissions. In Figure 6
and Figure 7 we plot the maximum density of successful
transmissions for T varying from 0.01 to 10 respectively for

7this is because in 1D networks λr = 1 and in 2D networks λr2 = 1
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Fig. 5. Density of successful transmissions versus density of nodes (T=1,
µ = 10, β = 4). Linear network (1 D)

2D and 1D networks. We observe that dividing the capture
threshold by 100 leads to multiplying the density of successful
transmissions by 5.6 and 1.9 for 2D and 1D CSMA networks.
For slotted and non-slotted Aloha, the density of successful
transmissions is multiplied by 10 and 3.16 for 2D and 1D
networks respectively. This means that a small capture thresh-
old is much more beneficial in 2D networks. Our study of the
analytical model does not show any obvious scaling of the
density of successful transmissions with the capture threshold
T in CSMA networks. For Aloha (slotted and non-slotted)
the scaling is respectively 1/T 2/β and 1/T 1/β . For T = 10,
CSMA outperforms slotted and non-slotted Aloha by 68% and
124% in 2D networks. For T = 10, CSMA outperforms slotted
and non-slotted Aloha by 65% and 119% in 1D networks

E. Effect of the transmission decay β

In Figures 8 and 9, we plot the maximum density of
successful transmissions for β varying from 2 to 6 respectively
for 2D and 1D networks.

In 2D CSMA networks, we observe that the maximum
density of successful transmissions is multiplied by 1.91 when
β varies from 2.5 to 6. For linear (1D) CSMA networks the
maximum density of successful transmissions is multiplied by
1.32 when β varies from 2 to 6. As for the capture threshold,
the effect of a large transmission decay is less beneficial for
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Fig. 6. Density of successful transmissions versus capture threshold T for
2D networks (λ=1, µ = 10, β = 4).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1  1  10

d
e

n
si

ty
 o

f 
su

cc
e

ss
fu

l t
ra

n
sm

is
si

o
n

s 
D

Capture threshold T

slotted Aloha
non-slotted Aloha

CSMA

Fig. 7. Density of successful transmission versus the capture threshold T
(λ=1, µ = 10, T = 1). Linear network (1 D)

1D networks than for 2D networks. Our study does not show
any apparent scaling of the density of successful transmissions
with the capture threshold β.

In 2D Aloha networks, we observe that the maximum
density of successful transmissions is multiplied by 3.54 and
2.62 for slotted and non-slotted Aloha when β varies from
2.5 to 6. In 1D Aloha networks, the maximum density of
successful transmissions is multiplied by 1.5 and 1.0 for
slotted and non-slotted Aloha when β varies from 2 to 6.
The scaling of Aloha’s performance with β is given by the
formulas in Section III-A.V. CONCLUSION

In this paper, we present spatial models for Aloha and
CSMA networks. These models providing closed formulas
result in instantaneous performance evaluation of the two
schemes. We show the importance of optimizing tuning pa-
rameters according to the network parameters. We have shown
that the optimized density of successful transmissions (when
transmissions over the average distance to the closest neighbor
are considered) scales linearly with the density of the nodes,
both for Aloha and CSMA networks. However, in CSMA the
carrier sense threshold must be adapted to the density of the
nodes, whereas in Aloha a constant transmission probability
can be used. In CSMA, using a constant carrier threshold leads
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Fig. 9. Density of successful transmissions versus the decay factor β (λ=1,
µ = 10, T = 1). Linear network (1 D)

to a very significant loss in the network’s global throughput.
This effect is much more detrimental when the density of
the nodes in the network is underestimated than when it is
overestimated.

For Aloha networks, when we study transmissions over the
average distance to the closest neighbor, the optimization does
not depend on the density of nodes, which is a very interesting
property. Thus in Aloha networks, the density of successful
transmissions easily scales linearly in λ when we vary λ
whereas in CSMA networks the protocol must be carefully
tuned to obtain this scaling.

However, CSMA (when optimized) outperforms Aloha for
nearly all values of the model’s parameters. For instance,
for λ = 1 and T = 1 the improvement brought about by
CSMA compared to Aloha is notable. This improvement is
very significant for λ = 1 and T = 10.

Our models allow the influence of the network model’s
parameters to be studied qualitatively. For instance, the im-
provement in the performance can be accurately computed
when T is decreased or when β is increased. The models
show that the influence of T and β on the performance is
more pronounced for 2D than for 1D networks.

The models for Aloha have already been compared with
simulation results. This comparison shows a very good match-

ing between the model and the simulation results. This is
because there is no approximation made in the Aloha model.
In contrast, there are a number of approximations made in the
CSMA model such as the selection process and the back-off
scheme. However, initial simulations suggest that the CSMA
model captures the essential behavior of the carrier sense
technique and provides reasonably accurate results.

REFERENCES

[1] N. Abramson, “The aloha system: Another alternative for computer
communications,” in Proceedings of the November 17-19, 1970,
Fall Joint Computer Conference, ser. AFIPS ’70 (Fall). New
York, NY, USA: ACM, 1970, pp. 281–285. [Online]. Available:
http://doi.acm.org/10.1145/1478462.1478502

[2] L. Kleinrock and F. Tobagi, “Packet switching in radio channels:
Part I—carrier sense multiple-access modes and their throughput-delay
characteristics,” IEEE Transactions on Communications, vol. COM-
23, no. 12, pp. 1400–1416, December 1975, (Also, ”Multiple Access
Communications, Foundations for Emerging Technologies”, Norman
Abramson (Ed), IEEE Press, 1992, pp. 272-288.).

[3] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE Journal of Selected Areas in
Communications., vol. 18, no. 3, pp. 535–547, March 2000.
[Online]. Available: http://dx.doi.org/10.1109/49.840210

[4] R. Rivest, “Network control by bayesian brodcast,” in Report
MIT/LCS/TM-285. Cambridge, MA: MIT, Laboratory for Computer
Science, 1985.

[5] S. Ghez, S. Verdu, and S. Schartz, “Stability properties of slotted Aloha
with multipacket reception capability,” IEEE Trans. Automat. Contr., vol
7, pp. 640–648, 1988.

[6] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An aloha protocol
for multihop mobile wireless networks,” Information Theory, IEEE
Transactions on, vol. 52, no. 2, pp. 421–436, Feb 2006.

[7] P. Jacquet and P. Muhlethaler, “Mean number of transmissions with
csma in a linear network,” in 2010 IEEE 72nd Vehicular Technology
Conference: VTC2010-Fall, 69 September 2010, Ottawa, Canada 2010.

[8] P. Muhlethaler and A. Najid, “Throughput optimization in multihop
csma mobile ad hoc networks,” in EW 2004. The 5th European Wireless
Conference, February 24 - 27. Barcelona 2004.

[9] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its
applications. 2nd edition. Wiley, 1995.

[10] A. Busson and G. Chelius, “Point processes for interference modeling
in csma/ca ad-hoc networks,” in Conference: Proceedings of the 6th
ACM International Workshop on Performance Evaluation of Wireless
Ad Hoc, Sensor, and Ubiquitous Networks, PE-WASUN 2009, October
28-29 2009, Tenerife, Canary Islands, Spain, 2009.

[11] F. Baccelli and B. Błaszczyszyn, Stochastic Geometry and Wireless
Networks, Volume II — Applications, ser. Foundations and Trends in
Networking. NoW Publishers, 2009, vol. 4, No 1–2.

[12] B. Blaszczyszyn, P. Muhlethaler, and S. Banaouas, “Comparison
of the maximal spatial throughput of Aloha and CSMA in
Wireless multihop Ad-Hoc Networks,” in Wireless Ad-Hoc Networks,
H. Zhou, Ed. InTech, Dec. 2012, pp. 3–22. [Online]. Available:
https://hal.inria.fr/inria-00530093

[13] M. Kaynia and N. Jindal, “Performance of aloha and csma in spatially
distributed wireless networks,” in Proceedings of ICC 2008, 19-23 May
2008, Beijing, China 2008.

[14] R. Manikandan and K. Selvakumar, “Throughput performance of aloha
and csma mac protocol in power for wireless ad hoc networks,”
International Journal of Computer and Information Technology (ISSN:
2279 0764) Volume 02 Issue 04, July 2013.

[15] B. Blaszczyszyn and P. Muhlethaler, “Interference and SINR coverage
in spatial non-slotted aloha networks,” annals of telecommunications,
arXiv admin note: substantial text overlap with arXiv:1002.1629.
[Online]. Available: https://hal.inria.fr/hal-01082772

[16] F. Baccelli and B. Błaszczyszyn, Stochastic Geometry and Wireless Net-
works, Volume I — Theory, ser. Foundations and Trends in Networking.
NoW Publishers, 2009, vol. 3, No 3–4.


